JPH0584434B2 - - Google Patents

Info

Publication number
JPH0584434B2
JPH0584434B2 JP18861888A JP18861888A JPH0584434B2 JP H0584434 B2 JPH0584434 B2 JP H0584434B2 JP 18861888 A JP18861888 A JP 18861888A JP 18861888 A JP18861888 A JP 18861888A JP H0584434 B2 JPH0584434 B2 JP H0584434B2
Authority
JP
Japan
Prior art keywords
air
internal temperature
volume
air volume
blowout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18861888A
Other languages
Japanese (ja)
Other versions
JPH0237273A (en
Inventor
Tooru Henmi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Original Assignee
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kentetsu Co Ltd, Mitsubishi Electric Corp filed Critical Nihon Kentetsu Co Ltd
Priority to JP18861888A priority Critical patent/JPH0237273A/en
Publication of JPH0237273A publication Critical patent/JPH0237273A/en
Publication of JPH0584434B2 publication Critical patent/JPH0584434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Landscapes

  • Freezers Or Refrigerated Showcases (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、要冷蔵商品の展示及び販売を行う冷
蔵オープンシヨーケースの運転制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the operation of a refrigerated open show case for displaying and selling products that require refrigeration.

〔従来の技術〕[Conventional technology]

第6図は従来の冷蔵オープンシヨーケースの縦
断面図を示し、断熱壁3で形成された本体1の前
面を商品出入用の開口2とし、該本体1内をダク
ト板6で仕切り、商品陳列室10と冷気流循環風
路7とに区画する。
FIG. 6 shows a vertical cross-sectional view of a conventional refrigerated open show case. The front side of a main body 1 formed by a heat insulating wall 3 is an opening 2 for entering and exiting products, and the inside of the main body 1 is partitioned with a duct plate 6 to display products. It is divided into a chamber 10 and a cold air circulation path 7.

そして、この冷気流循環風路7内に送風機9と
冷却器8とを配設し、また冷気流循環風路7の各
端部は吹出口4及び吸込口5として前記前面開口
2の上端と下端に臨ませる。また、図中11は商
品陳列室10内に複数段に設けた商品載置棚を示
す。
A blower 9 and a cooler 8 are disposed in this cold air circulation passage 7, and each end of the cold air circulation passage 7 serves as an air outlet 4 and an inlet 5, and is connected to the upper end of the front opening 2. Face the bottom edge. Further, reference numeral 11 in the figure indicates a product shelf provided in multiple stages in the product display room 10.

かかる構成の冷蔵オープンシヨーケースにおい
て、送風機9により吸込口5から吸込まれた冷気
は冷却器8で冷却され、冷気流循環風路7を通つ
て吹出口4より吹出され、前面開口2にエアカー
テンを形成するとともに、商品陳列室10内を所
望の温度に冷却して、再び吸込口5より吸込ま
れ、この循環を繰り返しており、この場合、送風
機9により吸込まれ冷却器8へと送られる空気の
量は常に一定である。
In the refrigerated open case with such a configuration, the cold air sucked in from the suction port 5 by the blower 9 is cooled by the cooler 8, and is blown out from the air outlet 4 through the cold air circulation path 7, and an air curtain is formed in the front opening 2. At the same time, the interior of the product display room 10 is cooled to a desired temperature, and the air is sucked in through the suction port 5 again, and this circulation is repeated. In this case, the air is sucked in by the blower 9 and sent to the cooler 8. The amount of is always constant.

ところで、送風機9により送られる風量は一定
であつても、吹出口4から吹出される風量は外気
温度、運転経過時間により変化し、この関係は初
期風量Wmaxを一定にした場合、第4図の特性
曲線図に示すように、吹出風量は運転時間T1
経過するにしたがい減少し、また、その減少の度
合いは外気温度が高い程大きい。ここで吹出風量
が運転経過時間とともに減少する理由を説明する
と、前記のように送風機9により冷却器8に送風
された空気はこの冷却器8で冷却されて冷気とな
るが、このとき露点以下になると空気中の水分が
霜となつて冷却器8に付着する。この着霜現象は
冷却運転中、随時行われており、冷却器8への着
霜量が次第に増加していく。こうして着霜量が増
加すると、冷却器8を通過する空気の風量抵抗が
大きくなり、その結果、冷却器8からの吹出風量
が時間経過とともに次第に減少する。また、相対
湿度一定の場合、温度が高い方が空気中に含まれ
る水分量が大きく、よつて、外気温度の高い場合
の方が吹出風量の減少の度合いが大きくなる。
By the way, even if the air volume sent by the blower 9 is constant, the air volume blown out from the air outlet 4 changes depending on the outside temperature and the elapsed operation time.This relationship is as shown in Fig. 4 when the initial air volume Wmax is constant. As shown in the characteristic curve diagram, the blown air volume decreases as the operating time T 1 elapses, and the degree of the decrease increases as the outside air temperature increases. Here, to explain the reason why the amount of air blown decreases with the elapsed operating time, the air blown to the cooler 8 by the blower 9 as described above is cooled by the cooler 8 and becomes cold air, but at this time, the air becomes colder than the dew point. Then, the moisture in the air becomes frost and adheres to the cooler 8. This frosting phenomenon occurs at any time during the cooling operation, and the amount of frosting on the cooler 8 gradually increases. When the amount of frost increases in this way, the airflow resistance of the air passing through the cooler 8 increases, and as a result, the airflow volume blown from the cooler 8 gradually decreases over time. Furthermore, when the relative humidity is constant, the higher the temperature, the greater the amount of moisture contained in the air, and therefore, the higher the outside temperature is, the greater the degree of reduction in the blowout air volume.

さらに、吹出風量、庫内温度バラツキ値、シヨ
ーケースの所要冷凍力及び外気温度の関係は第5
図の特性曲線図に示すように、吹出風量Wが大き
くなるにしたがい所要冷凍能力Qは大きくなり、
庫内温度のバラツキ値ΔTが小さくなる。また、
吹出風量を一定とした場合は、外気温度が下がる
にしたがい所要冷凍能力Q、庫内温度のバラツキ
値ΔTともに小さくなる。
Furthermore, the relationship between the blowout air volume, the internal temperature variation value, the required refrigerating power of the case, and the outside air temperature is
As shown in the characteristic curve diagram in the figure, as the blowout air volume W increases, the required refrigerating capacity Q increases,
The internal temperature variation value ΔT becomes smaller. Also,
When the blowout air volume is constant, as the outside temperature decreases, both the required refrigerating capacity Q and the internal temperature variation value ΔT decrease.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

商品陳列室内の貯蔵商品の鮮度を維持するため
には、庫内温度のバラツキ値ΔTを常に一定値以
下に保持することが望ましい。
In order to maintain the freshness of stored products in the product display room, it is desirable to always maintain the internal temperature variation value ΔT below a certain value.

ところが、従来は、送風機で送風される風量が
一定であるため、例えば庫内温度のバラツキ値を
商品の鮮度維持に必要な所定値ΔT25以下に設定
するには外気温度が25℃である夏期の条件の下で
も前記所定のバラツキ値ΔT25が得られるよう、
風量をW1に設定しておく必要がある。
However, in the past, since the amount of air blown by the fan was constant, for example, in order to set the variation value of the internal temperature to a predetermined value ΔT 25 or less required to maintain the freshness of the product, it was necessary to set the variation value of the temperature inside the refrigerator to a predetermined value ΔT 25 or less required to maintain the freshness of the product. In order to obtain the predetermined variation value ΔT 25 even under the conditions of
It is necessary to set the air volume to W 1 .

このため、夏期よりも外気温度の低い春秋の中
間期や冬期においてもW1の値の風量で運転され
ることとなつて、この間は庫内温度バラツキ値
ΔTがΔT20、ΔT15と所定値ΔT25よりもはるかに
小さくなり、必要以上に庫内温度バラツキ値が小
さくなつてしまう。
Therefore, even in the middle of spring, autumn and winter when the outside air temperature is lower than in summer, the air volume is operated at the value of W 1 , and during this period, the internal temperature variation value ΔT is kept at the predetermined value of ΔT 20 and ΔT 15 . It becomes much smaller than ΔT 25 , and the internal temperature variation value becomes smaller than necessary.

その結果、商品の鮮度維持に最小限必要な庫内
温度バラツキ値ΔT25の下で得られる庫内条件よ
りも充分な条件となつて、その分だけ送風機や冷
却器に余分な能力を消費し、省エネ対策に反する
こととなる。
As a result, the conditions inside the refrigerator are more sufficient than those obtained under the minimum internal temperature variation value ΔT 25 required to maintain product freshness, and the extra capacity of the blower and cooler is consumed accordingly. , which goes against energy-saving measures.

本発明の目的は前記従来例の不都合を解消し、
庫内温度のバラツキ値を外気温度に対応させて常
に必要最小限の値に保持でき商品の鮮度維持が行
え、かつ、余分なエネルギーを消費することなく
省エネにも役立つ冷蔵オープンシヨーケースの運
転制御方法を提供することにある。
The purpose of the present invention is to eliminate the disadvantages of the conventional example,
Operation control of refrigerated open case that keeps the internal temperature variation at the minimum required value in response to the outside temperature, maintains the freshness of products, and also helps save energy without consuming excess energy. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記目的を達成するため、前面に商品
出入用開口を形成した本体内をダクト板で商品陳
列室と内部に送風機及び冷却器を配設した冷気流
循環風路とに区画し、該冷気流循環風路端を前記
商品出入用開口上下端に臨む吹出口と吸込口とに
形成して該開口面を冷気エアカーテンで閉塞する
冷蔵オープンシヨーケースにおいて、吹出風量セ
ンサーを設け、冷却運転開始後所定時間経過後に
前記吹出風量センサーで検出された吹出風量から
外気温度を算出し、この外気温度の下で所定の庫
内温度バラツキ値が得られるようその後の吹出風
量を調整することを要旨とするものである。
In order to achieve the above-mentioned object, the present invention divides the interior of the main body, which has an opening for entering and exiting products on the front surface, into a product display room and a cold air circulation path in which a blower and a cooler are installed. In a refrigerated open show case in which the cold air circulation air path ends are formed at the air outlet and suction port facing the upper and lower ends of the product inlet/outlet opening and the opening surfaces are closed with a cold air curtain, a blowout air volume sensor is provided to perform cooling operation. The gist is to calculate the outside air temperature from the airflow volume detected by the airflow sensor after a predetermined time has elapsed after the start, and then adjust the airflow volume thereafter so that a predetermined internal temperature variation value is obtained under this outside air temperature. That is.

〔作用〕[Effect]

本発明によれば、吹出口からの吹出風量は、運
転時間が経過するにしたがい、かつ外気温度が高
くなる程減少するという事実にもとづいて、冷却
運転開始後(例えば冷却運転が開始してからの次
の除霜運転開始までの時間の半分の時間が経過し
た後)に吹出風量センサーで検出された吹出風量
から外気温度を算出し、この外気温度から必要最
小限の庫内温度バラツキ値を得るに必要な吹出風
量が算出され、この風量によつて冷却運転が行わ
れる。よつて常に必要最小限の庫内温度バラツキ
値に庫内温度が設定されるから、無駄にエネルギ
ーを消費することなく、庫内の商品の鮮度を保持
できる。
According to the present invention, based on the fact that the amount of air blown from the outlet decreases as the operating time elapses and as the outside temperature increases, After half the time until the start of the next defrosting operation has elapsed, the outside air temperature is calculated from the blowout air volume detected by the blowout airflow sensor, and the minimum necessary internal temperature variation value is calculated from this outside air temperature. The amount of blowing air necessary to obtain the desired amount of air is calculated, and the cooling operation is performed based on this amount of air. Therefore, the temperature inside the refrigerator is always set to the minimum necessary internal temperature variation value, so the freshness of the products in the refrigerator can be maintained without wasting energy.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の冷蔵オープンシヨーケースの
運転制御方法の実施例を示すフローチヤート、第
2図は本実施例で使用する冷蔵オープンシヨーケ
ースの縦断側面図で、まず、冷蔵オープンシヨー
ケースの全体構成から説明する。
Fig. 1 is a flowchart showing an embodiment of the method for controlling the operation of a refrigerated open shed case according to the present invention, and Fig. 2 is a longitudinal sectional side view of the refrigerated open shed case used in this embodiment. The overall configuration will be explained.

第2図において、第6図について既に説明した
従来例と同一の構成要素には同一の参照符号を付
してここでの詳細な説明は省略する。
In FIG. 2, the same components as those of the conventional example already explained with reference to FIG. 6 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

冷蔵オープンシヨーケースの基本構成は従来と
同様であるが、本発明方法で使用するものは、吹
出口4に該吹出口4から吹出される冷気の風量を
計測する吹出風量センサー12を設け、冷気流循
環風路7内に配設した送風機9には送風機を調整
するためのインバータ制御、位相制御等による風
量可変装置14を接続した。
The basic structure of the refrigerated open-air case is the same as the conventional one, but the one used in the method of the present invention is equipped with a blowout air volume sensor 12 at the blower outlet 4 to measure the amount of cold air blown out from the blower outlet 4. An air volume variable device 14 using inverter control, phase control, etc. for adjusting the air blower was connected to the air blower 9 disposed in the air circulation air path 7.

また、第3図に示すような庫内温度バラツキ値
リニアーに設定する庫内温度バラツキ値設定装置
13を吹出口4の外側近傍に設ける。この庫内温
度バラツキ値設定装置13としては、庫内温度バ
ラツキ値の設定をリニアーに行えるものに限ら
ず、オンオフスイツチ等による2段階あるいは3
段階以上のステツプ的な設定によるものを用いる
ことも可能である。
Furthermore, an internal temperature variation value setting device 13 for setting the internal temperature variation value linearly as shown in FIG. 3 is provided near the outside of the air outlet 4. The internal temperature variation value setting device 13 is not limited to one that can set the internal temperature variation value linearly, but can also be set in two stages or three stages using an on-off switch, etc.
It is also possible to use a step-like setting with more than one stage.

さらに、マイクロコンピユータなどを用いる制
御装置15を設けて、吹出風量センサー12、庫
内温度バラツキ値設定装置13からの出力信号を
この制御装置15に導入し、該制御装置15から
の制御信号を風量可変装置14に導入した。
Further, a control device 15 using a microcomputer or the like is provided, and output signals from the blowout air volume sensor 12 and the internal temperature variation value setting device 13 are introduced into the control device 15, and the control signals from the control device 15 are transmitted to the air flow rate. It was introduced into the variable device 14.

次に動作について説明する。 Next, the operation will be explained.

送風機9により吸込口5から吸込まれた冷気は
従来と同様に冷却器8によつて冷却され、冷気流
循環風路7を通つて吹出口4から吹出され、前面
開口2に冷気エアカーテンを形成するとともに、
商品陳列室10内を冷却し、再び吸込口5より吸
込まれ、この循環を繰返している。
Cold air sucked in from the suction port 5 by the blower 9 is cooled by the cooler 8 as in the conventional case, and is blown out from the air outlet 4 through the cold air circulation air path 7 to form a cold air curtain in the front opening 2. At the same time,
The inside of the product display room 10 is cooled, and the air is sucked in through the suction port 5 again, and this circulation is repeated.

かかる運転動作において、庫内温度のバラツキ
値を、商品陳列室10内の貯蔵商品の鮮度を維持
できる必要最小限の値に常に設定する方法を第1
図のフローチヤートについて説明する。
In this operating operation, the first method is to always set the variation value of the internal temperature to the minimum necessary value that can maintain the freshness of the stored products in the product display room 10.
The flowchart shown in the figure will be explained.

運転の初期の段階では、外気温度が例えば25℃
と高い夏期の条件の下でも商品の鮮度維持に必要
な最小限の庫内温度バラツキ値が得られるよう、
庫内温度バラツキ値はΔTmaxに設定されてお
り、また、風量Wも最大風量Wmaxに設定され
ている。
At the initial stage of operation, the outside temperature is, for example, 25℃.
In order to obtain the minimum internal temperature variation necessary to maintain product freshness even under high summer conditions,
The internal temperature variation value is set to ΔTmax, and the air volume W is also set to the maximum air volume Wmax.

この設定値で冷却運転が開始し、運転時間T1
(T1=1〜3Hr)が経過後、吹出風量センサー1
2で吹出風量WT1が検出され、この吹出風量WT1
が制御装置15に出力される。
Cooling operation starts with this setting value, and the operation time T 1
(T 1 = 1~3Hr), the airflow sensor 1
2, the blowout air volume W T1 is detected, and this blowout air volume W T1
is output to the control device 15.

制御装置15ではこの検出値WT1にもとづいて
第4図に示した運転経過時間と吹出風量、外気温
度との関係特性により、現在の外気温度Toutを
算出する(Tout=f(W,T1))。
Based on this detected value W T1 , the control device 15 calculates the current outside air temperature Tout based on the relationship between the elapsed operation time, the airflow volume, and the outside air temperature shown in FIG. 4 (Tout=f(W, T 1 )).

こうして得られた外気温度Toutをもとにして、
第5図に示した吹出風量と外気温度、庫内温度バ
ラツキ値、所要冷凍能力の関係特性により現在の
外気温度Toutのもとで、庫内商品の鮮度維持の
ための必要最小限の庫内温度バラツキ値ΔT25
得るに必要な訂適正吹出風量を制御装置15で算
出し(Wfit=f(Tout,ΔTmax))、制御信号を
送風機9に接続した風量可変装置14に出力し、
この算出された適正吹出風量で次の除霜運転開始
までの冷却運転を行う。
Based on the outside air temperature Tout obtained in this way,
Based on the relational characteristics of airflow volume, outside air temperature, internal temperature variation, and required refrigerating capacity shown in Figure 5, the minimum required internal temperature to maintain the freshness of the products in the refrigerator is The control device 15 calculates the corrected appropriate blowout air volume necessary to obtain the temperature variation value ΔT 25 (Wfit=f(Tout, ΔTmax)), outputs a control signal to the air volume variable device 14 connected to the blower 9,
Cooling operation is performed at this calculated appropriate blowout air volume until the start of the next defrosting operation.

これにより、風量可変装置14が動作し、送風
機9により冷気流循環風路7内に送られる空気の
量が変わり、(W=Wfit)、例えば庫内温度のバ
ラツキ設定値をΔT25に一定に保ちこの状態で庫
内商品の鮮度維持を行う場合、外気温度が25℃か
ら20℃に変化した場合は風量をW1からW2に変更
するよう制御装置15から風量可変装置14に出
力される。
As a result, the air volume variable device 14 operates, and the amount of air sent into the cold air circulation air path 7 by the blower 9 changes (W=Wfit), for example, the variation set value of the internal temperature is kept constant at ΔT 25 . When maintaining the freshness of the products in the warehouse in this state, if the outside temperature changes from 25°C to 20°C, the control device 15 outputs an output to the air volume variable device 14 to change the air volume from W 1 to W 2 . .

この場合、外気温度が20℃に下がつたにもかか
わらず風量W1のままで運転すると、庫内温度バ
ラツキ値はΔT20となり、商品の鮮度を維持する
上で必要以上に庫内温度バラツキを小さくするこ
ととなり、この時の所要冷凍能力はQ20となる。
In this case, if the operation is continued with the air volume W 1 even though the outside temperature has fallen to 20℃, the internal temperature variation value will be ΔT 20 , and the internal temperature variation will be greater than necessary to maintain the freshness of the product. In this case, the required refrigeration capacity will be Q20 .

ところが、前記のように商品の鮮度維持に必要
な最小限のΔT25で一体に保持できるよう、風量
をW2に変化させれば、所要冷凍能力はQ20′と減
少し、第5図においてΔQ′分だけエネルギーの省
力化が図れる。
However, as mentioned above, if the air volume is changed to W 2 so that the products can be kept together at the minimum ΔT 25 required to maintain freshness, the required refrigerating capacity decreases to Q 20 ', and as shown in Figure 5. Energy savings can be achieved by ΔQ′.

なお、前記実施例では庫内温度バラツキ設定値
として、庫内商品の鮮度維持に必要な最小限の値
ΔT25に保持する場合について説明したが、鮮度
管理よりも省エネを優先させてさらに大巾に省エ
ネを図るには、庫内温度バラツキ設定値を前記実
施例の場合のΔT25よりも大きいΔT25″に設定す
ればよい。
In addition, in the above embodiment, the case where the internal temperature variation setting value is maintained at the minimum value ΔT 25 required to maintain the freshness of the products in the refrigerator was explained, but it is possible to set the temperature variation in the refrigerator at a much wider range by prioritizing energy saving over freshness management. In order to save energy, the internal temperature variation setting value may be set to ΔT 25 ″, which is larger than ΔT 25 in the above embodiment.

この場合は、外気温度が25℃の時は風量が
W1″に、また外気温度が20℃の時は風量がW2″に
なるよう制御装置15から風量可変装置14に出
力され、これにより所要冷凍能力がQ25″から
Q20″へと減少し、減少分ΔQ″だけ省エネが図れる
こととなり、この減少分ΔQ″は前記実施例の減少
分ΔQ′よりも大きいから、より大きな省エネとな
る。
In this case, when the outside temperature is 25℃, the air volume is
The control device 15 outputs an output to the air volume variable device 14 so that the air volume becomes W 1 ″ and when the outside temperature is 20°C, the air volume becomes W 2 ″, thereby changing the required refrigerating capacity from Q 25 ″.
Q 20 ″, and energy savings can be achieved by the amount of decrease ΔQ″. Since this amount of decrease ΔQ″ is larger than the amount of decrease ΔQ′ in the embodiment described above, the energy saving is even greater.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の冷蔵オープンシヨー
ケースの運転制御方法は、冷却運転開始後所定時
間経過後(例えば次の除霜運転開始までの時間を
2で割つた時間が経過した時点)の外気温度を吹
出風量をもとに算出し、庫内温度のバラツキを一
定に保持するように、所定時間経過後の吹出風量
を調整するようにしたので、必要以上に庫内温度
のバラツキを小さくすることなく庫内商品の鮮度
維持が行えるとともに省エネを図ることができ
る。
As described above, the method for controlling the operation of a refrigerated open shower case according to the present invention is based on the method of controlling the operation of a refrigerated open shower case when the outside air is The temperature is calculated based on the air volume, and the air volume is adjusted after a predetermined period of time to maintain a constant temperature variation within the refrigerator, making the variation in temperature inside the refrigerator smaller than necessary. It is possible to maintain the freshness of the products in the refrigerator without having to worry about it, and it is possible to save energy.

また、庫内温度のバラツキ設定値を任意のもの
に自由に設定できるので、この設定値を選択する
ことで、より大きな省エネを図ることもできるも
のである。
Further, since the internal temperature variation set value can be freely set to any desired value, greater energy savings can be achieved by selecting this set value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷蔵オープンシヨーケースの
運転制御方法の実施例を示す制御フローチヤー
ト、第2図は本発明方法で使用する冷蔵オープン
シヨーケースの縦断側面図、第3図は同上要部で
ある庫内温度バラツキ値設定装置の正面図、第4
図は運転経過時間と吹出風量と外気温度との関係
を示す特性曲線図、第5図は吹出風量と外気温
度、所要冷凍能力、庫内温度バラツキ値の関係を
示す特性曲線図、第6図は従来の運転制御方法で
使用する冷蔵オープンシヨーケースの縦断側面図
である。 1……シヨーケース本体、2……前面開口、3
……断熱壁、4……吹出口、5……吸込口、6…
…ダクト板、7……冷気流循環風路、8……冷却
器、9……送風機、10……商品陳列室、11…
…商品載置棚、12……吹出風量センサー、13
……庫内温度バラツキ値設定装置、14……風量
可変装置、15……制御装置。
Fig. 1 is a control flowchart showing an embodiment of the method for controlling the operation of a refrigerated open show case according to the present invention, Fig. 2 is a vertical cross-sectional side view of the refrigerated open show case used in the method of the present invention, and Fig. 3 is a main part of the same. A front view of the internal temperature variation value setting device, No. 4
Figure 5 is a characteristic curve diagram showing the relationship between elapsed operation time, airflow volume and outside temperature, Figure 5 is a characteristic curve diagram showing the relationship between airflow volume, outside temperature, required refrigerating capacity, and internal temperature variation value. FIG. 1 is a vertical sectional side view of a refrigerated open storage case used in a conventional operation control method. 1...Show case body, 2...Front opening, 3
...Insulating wall, 4...Air outlet, 5...Suction port, 6...
...Duct board, 7...Cold air circulation air path, 8...Cooler, 9...Blower, 10...Product display room, 11...
...Product placement shelf, 12...Blowout air volume sensor, 13
...Internal temperature variation value setting device, 14...Air volume variable device, 15...Control device.

Claims (1)

【特許請求の範囲】[Claims] 1 前面に商品出入用開口を形成した本体内をダ
クト板で商品陳列室と内部に送風機及び冷却器を
配設した冷気流循環風路とに区画し、該冷気流循
環風路端を前記商品出入用開口上下端に臨む吹出
口と吸込口とに形成して該開口面を冷気エアカー
テンで閉塞する冷蔵オープンシヨーケースにおい
て、吹出風量センサーを設け、冷却運転開始後所
定時間経過後に前記吹出風量センサーで検出され
た吹出風量から外気温度を算出し、この外気温度
の下で所定の庫内温度バラツキ値が得られるよう
その後の吹出風量を調整することを特徴とした冷
蔵オープンシヨーケースの運転制御方法。
1 The main body, which has an opening for entering and exiting products on the front side, is divided by a duct board into a product display room and a cold air circulation path in which a blower and a cooler are installed, and the end of the cold air circulation path is used to store the products. In a refrigerated open air case in which a blowout port and a suction port facing the upper and lower ends of an inlet/outlet opening are formed and the opening surface is closed with a cold air curtain, a blowout air volume sensor is provided, and the blowout air volume is measured after a predetermined period of time has elapsed after the start of cooling operation. Operation control of a refrigerated open case that calculates the outside air temperature from the airflow volume detected by a sensor, and then adjusts the airflow volume so that a predetermined internal temperature variation value is obtained under this outside air temperature. Method.
JP18861888A 1988-07-28 1988-07-28 Operation control method for refrigerated open display case Granted JPH0237273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18861888A JPH0237273A (en) 1988-07-28 1988-07-28 Operation control method for refrigerated open display case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18861888A JPH0237273A (en) 1988-07-28 1988-07-28 Operation control method for refrigerated open display case

Publications (2)

Publication Number Publication Date
JPH0237273A JPH0237273A (en) 1990-02-07
JPH0584434B2 true JPH0584434B2 (en) 1993-12-01

Family

ID=16226832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18861888A Granted JPH0237273A (en) 1988-07-28 1988-07-28 Operation control method for refrigerated open display case

Country Status (1)

Country Link
JP (1) JPH0237273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335469A (en) * 2013-07-15 2013-10-02 合肥美的电冰箱有限公司 Control method of air cooling refrigerator and air cooling refrigerator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936356B2 (en) * 2006-02-24 2012-05-23 愛知時計電機株式会社 Showcase
CN107726700B (en) * 2017-10-20 2021-05-11 四川长虹智能制造技术有限公司 Refrigerator control method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335469A (en) * 2013-07-15 2013-10-02 合肥美的电冰箱有限公司 Control method of air cooling refrigerator and air cooling refrigerator

Also Published As

Publication number Publication date
JPH0237273A (en) 1990-02-07

Similar Documents

Publication Publication Date Title
US5355686A (en) Dual temperature control of refrigerator-freezer
US20080233859A1 (en) Cold storage doorway with airflow control system and method
US7730732B2 (en) Refrigerating storage cabinet
US5197293A (en) Method of controlling an air conditioning apparatus and air conditioning apparatus using the method
US5220806A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
US3375677A (en) Method and apparatus for maintaining high humidity in a frost-free domestic refrigerator
EP1225406B1 (en) Defrost control method and apparatus
JPH0584434B2 (en)
CN114440527A (en) Refrigerator and control method thereof
CN209013566U (en) A kind of horizontal frostless dual temperature air-cooled freezer
JP2000274916A (en) Cooling storage chamber
JP2687637B2 (en) Operation control device for container refrigeration equipment
JP2567764B2 (en) High humidity cooling storage
JPH04240373A (en) Temperature and humidity control device for refrigerator
JP2680687B2 (en) Defrost control method for open showcase
JPH06294568A (en) Controller for freezer/refrigerator
JPH10332242A (en) Refrigerator
KR100878806B1 (en) Kimch refrigerator and method for maturing kimch using the kimch refrigerator
CN105674684A (en) Control method for temperature of refrigerator
KR100455185B1 (en) Direct cooling type refrigerator
JPH0712857Y2 (en) Air curtain refrigeration case with wind speed adjustment device
JPH01256779A (en) Refrigerating open show case
JPH08100976A (en) Refrigerator
JPH01102278A (en) Refrigerated open counter
JPH02157578A (en) Control method for temperature and humidity in show case