JPH04239713A - Film capacitor and its manufacture - Google Patents

Film capacitor and its manufacture

Info

Publication number
JPH04239713A
JPH04239713A JP615291A JP615291A JPH04239713A JP H04239713 A JPH04239713 A JP H04239713A JP 615291 A JP615291 A JP 615291A JP 615291 A JP615291 A JP 615291A JP H04239713 A JPH04239713 A JP H04239713A
Authority
JP
Japan
Prior art keywords
film
margin
polymer film
thin film
margins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP615291A
Other languages
Japanese (ja)
Inventor
Kazuo Iwaoka
和男 岩岡
Minoru Kikuchi
稔 菊地
Toshiyuki Inagaki
稲垣 俊幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP615291A priority Critical patent/JPH04239713A/en
Publication of JPH04239713A publication Critical patent/JPH04239713A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a film capacitor, where the selectivity of margin pattern is high and which is excellent in safety function, and its manufacture by solving the issue such as the meandering of margin, production loss, etc., which were occurring in the conventional manufacture, in a film capacitor used for electric and electronic apparatus. CONSTITUTION:This a film capacitor, which uses a metallized film where a metallic film layer 8 is made at the surface of a high polymer film 1, and this consists of margins 2a and 7a continuous in the longitudinal direction of the high polymer film, discontinuous margins 4a and 5a, and margins 3a and 6a discontinuous in the width direction of the high polymer film, and in each space between several margins 4a and 5a discontinuous in the longitudinal direction of the high polymer film is provided a fuse 9.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、電気機器や電子機器の
電気回路や電子回路に回路素子として用いるフィルムコ
ンデンサとその製造方法に関する。 【0002】 【従来の技術】近年、電気機器や電子機器の発展は著し
く、産業界における役割も益々重要になってきている。 また電気機器や電子機器の業界は発展とともに熾烈な競
争が行われている。高性能、高い安全性、しかも低コス
トな機器の開発にともなって、これら機器を構成する電
気回路や電子回路に使用される電子部品にも高性能,高
信頼性,高安全性,低コスト等が要求されている。電子
部品の一つであるフィルムコンデンサにも同様に高性能
,低コストが求められている。従来から提案されている
フィルムコンデンサには誘電体に高分子フィルムを用い
、電極に金属箔を用いた箔電極タイプのものと、高分子
フィルムの表面に真空蒸着法等で金属薄膜層を形成して
電極とした蒸着電極タイプのものとがある。 【0003】次に従来の蒸着電極タイプのフィルムコン
デンサについて図面を用いて説明する。蒸着電極タイプ
のフィルムコンデンサは通常図5に示すように高分子フ
ィルム12の表面に形成された金属薄膜層による電極1
3と他の電極14を対向電極とするために電極13を外
部電極15と接触させ、他の電極14を他の外部電極1
6と接触させることによりコンデンサ素子を形成してい
る。したがって電極13と他の外部電極16、他の電極
14と外部電極15の間にはそれぞれマージン17また
は18を設けて電極13と他の外部電極16、他の電極
14と外部電極15との接触がないように構成している
。 【0004】図6に従来のマージン形成例を示す。幅広
,長尺の高分子フィルム12の表面に真空蒸着法等で連
続して金属薄膜層よりなる電極13または14を形成す
るときに、電極13または14の形成直前に高分子フィ
ルム12の表面に一定間隔で一定の幅にオイル蒸気を塗
布して金属薄膜層の形成されない部分であるマージン1
7または18を設ける。他に金属薄膜層形成中にマージ
ン17,18を設ける方法としてマージン用テープを使
用する方法があり、また金属薄膜層形成後にマージン1
7,18を設ける方法としてレーザーエッチングを用い
た方法も提案されている。 【0005】 【発明が解決しようとする課題】しかしながら上記のよ
うな従来のマージン17,18の形成方法では、マージ
ン部形成に使うオイル蒸気の飛散による電極13,14
部分への影響や、マージン用テープによる場合はマージ
ン17,18の蛇行や金属薄膜層の電極13または14
の形成中にマージン用テープが切れたりすることによる
生産ロスが発生したりする。またこれら金属薄膜層形成
中にマージン17,18を設ける方法ではフィルムの幅
方向にマージン17,18を設けることや、マージン1
7,18を不連続に設けることは技術的に極めて困難で
あった。一方、レーザービームでマージン17,18を
設ける技術が近年になって開発されているが、この方法
では任意幅の横マージンや不連続マージン、5〜10m
m程度の幅の広いマージンを設けることは現状では極め
て困難であるという課題や、金属薄膜層をレーザーエッ
チングする際に高分子フィルム12に熱損傷を与える等
の課題を有していた。 【0006】本発明は上記課題を解決するものであり、
金属薄膜層形成中にマージンを設ける方法を改良すると
ともにマージン図柄の任意性や、長手方向,幅方向,連
続,不連続等のあらゆるタイプのマージンを容易に設け
ることのできる方法でマージン形成した金属化フィルム
を用いたフィルムコンデンサとその製造方法を提供する
ことを目的とする。 【0007】 【課題を解決するための手段】上記目的を達成するため
に本発明のフィルムコンデンサに用いるマージン付き金
属化フィルムは、マージン形成に印刷技術を応用したも
のであり、インクに水溶性の材料を用いて金属薄膜層形
成前の高分子フィルム表面に印刷技術で長手方向,幅方
向,連続,不連続等の印刷パターンをあらかじめ印刷し
、その印刷表面に真空蒸着法で金属薄膜層を形成した後
、水洗処理して水溶性インク、および水溶性インク表面
上の金属薄膜層を除去してマージンおよびヒューズ部を
形成するものである。 【0008】 【作用】したがって本発明の構成によれば、金属薄膜層
の形成中にマージンを設ける際に発生するロスや、高分
子フィルムの損傷によるフィルムコンデンサの性能低下
要因を減少させると同時に、マージンのパターンの選択
度が高いことを応用してフィルムコンデンサの性能を高
めることができるとともに高精度のヒューズ部を設ける
ことができるため、保安機能が充実され、フィルムコン
デンサの安全性の向上を図ることができる。 【0009】 【実施例】以下本発明の一実施例について図面を用いて
説明する。図1〜図3は本発明の一実施例におけるフィ
ルムコンデンサの製造方法の概略を示すそれぞれ断面図
(a)および部分平面図(b)である。 【0010】図において、1は高分子フィルム、2,3
,4,5,6および7はマージン部分2a,3a,4a
,5a,6aおよび7aの上に印刷塗布された水溶性イ
ンクの印刷膜、8は水溶性インクの印刷膜2,3,4,
5,6および7が塗布されている以外の高分子フィルム
1上に形成されたアルミニウム薄膜層よりなる金属薄膜
層である。                    
                         
              【0011】次にその製
造方法について説明する。図1に示すように、高分子フ
ィルム1の表面にポリビニルアルコールに炭酸カルシウ
ムの微粉末を混入した水溶性インクを用いて、マージン
2a,3a,4a,5a,6aおよび7aを形成する部
分に印刷膜2,3,4,5,6および7を塗布する。な
お図1中に示すAは高分子フィルム1の幅方向を、Bは
同長手方向を示すものである。 【0012】ここで、高分子フィルム1上に塗布された
水溶性インクの印刷パターンについてさらに詳しく説明
すると、高分子フィルム1の表面の幅方向に順に、幅5
mmで長手方向に連続した印刷膜2があり、その印刷膜
2から25mmのところに幅が0.5mmの長手方向に
長さが30.9mm毎に0.5mmのヒューズ部9がそ
の中間部分に設けてある印刷膜4がある。印刷膜2と印
刷膜4との間には幅0.5mmの印刷膜3がある。印刷
膜3と印刷膜4との交点は印刷膜4の中央部分となって
いる。さらに印刷膜4から幅方向20mmのところに幅
が0.5mmの長手方向に長さが30.9mm毎に0.
5mmのヒューズ部9が設けてある印刷膜5がある。印
刷膜5から幅方向に25mmのところに幅5mmで長手
方向に連続した印刷膜7があり、印刷膜7と印刷膜5の
間に幅0.5mmの印刷膜6が設けてある。印刷膜6と
印刷膜5との交点は印刷膜5の中央部分となっている。 水溶性インクの印刷はグラビア印刷で長尺の高分子フィ
ルム1を連続で走行させながら印刷し、印刷された水溶
性インクは印刷後硬化する。 このように水溶性インクで印刷された高分子フィルム1
の印刷面側に真空蒸着により、抵抗値が3Ω/□になる
ような厚さのアルミニウム薄膜層8を形成した。 【0013】図2に高分子フィルム1の印刷面側にアル
ミニウム薄膜層8を形成した状態を示す。アルミニウム
の蒸着は高分子フィルム1の全表面、すなわち印刷膜2
,3,4,5,6および7の表面を含む全体にアルミニ
ウム薄膜層8を形成するものであり、図2(a)はアル
ミニウム薄膜層8を形成したときの断面図、図2(b)
は高分子フィルム1に印刷された水溶性インクの印刷パ
ターン上にアルミニウム薄膜層8を形成したときの平面
図である。 【0014】図3(a),(b)は真空蒸着によりアル
ミニウム薄膜層8を形成した後、その表面を水洗して水
溶性インクによる印刷膜2,3,4,5,6および7の
部分を除去した状態を示すものであり、印刷膜2,3,
4,5,6および7、およびその上部に蒸着されている
アルミニウム薄膜層8は水洗によって除去され、それぞ
れマージン部分2a,3a,4a,5a,6aおよび7
aが高分子フィルム1の表面に形成されることになる。 水溶性インクの印刷されていない部分のアルミニウム薄
膜層8は電極となって高分子フィルム1上に残る。9は
フィルムコンデンサに保安機能を持たせるためのヒュー
ズ部で、本実施例では長手方向の長さを0.5mmとし
た。このヒューズ部9は次のような動作をする。ヒュー
ズ部9とマージン2a,4a間にあるアルミニウム薄膜
層よりなる電極8において異常が発生してヒューズ部9
を流れる電流が100mA以上になると、ヒューズ部9
の温度が上昇してヒューズ部9のアルミニウム薄膜層が
消滅することにより、対向電極とのショートを防止して
フィルムコンデンサの焼損を防止する。 【0015】図4は本実施例におけるフィルムコンデン
サの巻回構成例を示すものであり、図3(a)の断面図
に示すC,Dで切断されたマージン付き金属化フィルム
Gと、E,Fで切断されたマージン付き金属化フィルム
Hの2枚を互いのアルミニウム薄膜層8と高分子フィル
ム1の面が接するようにしてそれぞれ切断面CとEおよ
びDとFが合致するように巻回してコンデンサ素子10
を形成した後、外部電極11および外部引き出し電極1
2を設けてフィルムコンデンサを形成した。 【0016】本発明によるフィルムコンデンサの安全性
確認のため100個のフィルムコンデンサを用いて各種
のテストをした結果フィルムコンデンサ異常時に発生す
る焼損事故は皆無であった。 【0017】なお、実施例の説明に当たって具体的な材
料,形状,寸法および印刷パターンにより説明したが、
本発明はこれらの使用材料,寸法または印刷パターンの
みに限定されるものではない。特に金属薄膜層はアルミ
ニウム(Al)を例にとり説明したが、これ以外に金(
Au),銀(Ag),銅(Cu),ニッケル(Ni),
クロム(Cr),錫(Sn),亜鉛(Zn)等であって
もよいものである。 【0018】このように上記実施例によれば、高分子フ
ィルム1上に水溶性インクを用いてマージン部分に印刷
膜2,3,4,5,6および7を設け、さらにアルミニ
ウム薄膜層8を全面に蒸着した後、印刷膜2,3,4,
5,6および7を水洗して除去することにより、マージ
ン2a,3a,4a,5a,6aおよび7aを形成して
いるために、極めて安全性の高い、しかも安価なフィル
ムコンデンサを得ることができる。 【0019】 【発明の効果】上記実施例から明らかなように本発明の
フィルムコンデンサは、長手方向,幅方向の連続,不連
続のマージン形成が容易にできるためフィルムコンデン
サの安全機能を容易に付加できる。 【0020】すなわち、印刷によりマージン形成を行う
ので印刷パターンの自由度が高くフィルムコンデンサの
安全機能が容易に付加でき、安全性の高いフィルムコン
デンサを得ることができる。また印刷によるマージン形
成により生産コストの低減が図れ、安価なフィルムコン
デンサを提供することができる。
Description: FIELD OF INDUSTRIAL APPLICATION The present invention relates to a film capacitor used as a circuit element in an electric circuit or an electronic circuit of electric equipment or electronic equipment, and a method for manufacturing the same. 2. Description of the Related Art In recent years, electrical equipment and electronic equipment have made remarkable progress, and their role in industry has become increasingly important. Furthermore, as the electrical equipment and electronic equipment industries develop, fierce competition is taking place. With the development of high-performance, high-safety, and low-cost equipment, the electronic components used in the electric circuits and electronic circuits that make up these devices are also becoming more and more high-performance, highly reliable, highly safe, and low-cost. is required. Film capacitors, which are an electronic component, are similarly required to have high performance and low cost. Film capacitors that have been proposed so far include foil electrode types that use a polymer film for the dielectric and metal foil for the electrodes, and foil electrode types that use a vacuum evaporation method to form a metal thin film layer on the surface of the polymer film. There is also a vapor-deposited electrode type. Next, a conventional vapor-deposited electrode type film capacitor will be explained with reference to the drawings. A vapor-deposited electrode type film capacitor usually has an electrode 1 made of a metal thin film layer formed on the surface of a polymer film 12, as shown in FIG.
3 and another electrode 14 as opposed electrodes, the electrode 13 is brought into contact with the external electrode 15, and the other electrode 14 is brought into contact with the other external electrode 1.
6 to form a capacitor element. Therefore, a margin 17 or 18 is provided between the electrode 13 and the other external electrode 16, and between the other electrode 14 and the external electrode 15, so that contact between the electrode 13 and the other external electrode 16, and between the other electrode 14 and the external electrode 15 is established. It is configured so that there is no FIG. 6 shows an example of conventional margin formation. When forming an electrode 13 or 14 made of a metal thin film layer continuously on the surface of a wide and long polymer film 12 by vacuum evaporation or the like, a layer of metal is applied to the surface of the polymer film 12 immediately before the electrode 13 or 14 is formed. Margin 1 is the area where the metal thin film layer is not formed by applying oil vapor to a certain width at certain intervals.
7 or 18. Another method for providing the margins 17 and 18 during the formation of the metal thin film layer is to use margin tape, and also to provide the margins 17 and 18 after forming the metal thin film layer.
A method using laser etching has also been proposed as a method for providing the holes 7 and 18. [0005] However, in the conventional method of forming the margins 17 and 18 as described above, the electrodes 13 and 14 are damaged due to the scattering of oil vapor used for forming the margins.
If the margin tape is used, the meandering of the margins 17 and 18 or the electrodes 13 or 14 of the metal thin film layer may be affected.
Production losses may occur due to the margin tape breaking during formation. In addition, in the method of providing margins 17 and 18 during the formation of these metal thin film layers, margins 17 and 18 are provided in the width direction of the film, and margins 17 and 18 are provided in the width direction of the film.
It was technically extremely difficult to provide 7 and 18 discontinuously. On the other hand, a technique for creating margins 17 and 18 using a laser beam has been developed in recent years, but this method can be used to create horizontal margins of arbitrary width, discontinuous margins, etc. of 5 to 10 m.
There have been problems in that it is currently extremely difficult to provide a margin as wide as 1.0 m, and that thermal damage is caused to the polymer film 12 when laser etching the metal thin film layer. [0006] The present invention solves the above problems,
Metals with margins formed using a method that improves the method of creating margins during the formation of metal thin film layers, allows for arbitrary margin designs, and allows for easy creation of all types of margins, including longitudinal, widthwise, continuous, and discontinuous margins. The purpose of the present invention is to provide a film capacitor using a chemical film and a method for manufacturing the same. [Means for Solving the Problems] In order to achieve the above object, the metallized film with a margin used in the film capacitor of the present invention applies printing technology to form the margin, and uses water-soluble ink in the metallized film. Using printing technology, print patterns in the longitudinal direction, width direction, continuous, discontinuous, etc. are printed in advance on the surface of the polymer film before the metal thin film layer is formed using the material, and then a metal thin film layer is formed on the printed surface using a vacuum deposition method. After that, the water-soluble ink and the metal thin film layer on the surface of the water-soluble ink are removed by washing with water to form a margin and a fuse portion. Therefore, according to the structure of the present invention, it is possible to reduce the loss that occurs when providing a margin during the formation of a metal thin film layer and the factors that degrade the performance of a film capacitor due to damage to the polymer film. By applying the high selectivity of the margin pattern, the performance of film capacitors can be improved, and a high-precision fuse section can be provided, which enhances safety functions and improves the safety of film capacitors. be able to. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings. 1 to 3 are a sectional view (a) and a partial plan view (b), respectively, showing an outline of a method for manufacturing a film capacitor in an embodiment of the present invention. In the figure, 1 is a polymer film, 2, 3
, 4, 5, 6 and 7 are margin parts 2a, 3a, 4a
, 5a, 6a and 7a are printed films of water-soluble ink, 8 is a printed film of water-soluble ink 2, 3, 4,
This is a metal thin film layer consisting of an aluminum thin film layer formed on the polymer film 1 other than those coated with 5, 6 and 7.

Next, the manufacturing method will be explained. As shown in FIG. 1, printing is performed on the surface of a polymer film 1 using a water-soluble ink containing polyvinyl alcohol mixed with fine powder of calcium carbonate to form margins 2a, 3a, 4a, 5a, 6a, and 7a. Apply membranes 2, 3, 4, 5, 6 and 7. In addition, A shown in FIG. 1 shows the width direction of the polymer film 1, and B shows the same longitudinal direction. [0012] Here, to explain in more detail the printing pattern of the water-soluble ink applied on the polymer film 1, the printing pattern of the water-soluble ink applied on the polymer film 1 is sequentially printed in the width direction of the surface of the polymer film 1.
There is a printed film 2 that is continuous in the longitudinal direction with a width of 0.5 mm, and a fuse part 9 of 0.5 mm in width and a length of 0.5 mm in the longitudinal direction is located 25 mm from the printed film 2 in the middle part. There is a printed film 4 provided on. Between the printed film 2 and the printed film 4, there is a printed film 3 having a width of 0.5 mm. The intersection between the printed film 3 and the printed film 4 is at the center of the printed film 4. Further, at a position 20 mm in the width direction from the printing film 4, the width is 0.5 mm and the length is 0.5 mm every 30.9 mm in the longitudinal direction.
There is a printed membrane 5 provided with a 5 mm fuse portion 9. A printed film 7 having a width of 5 mm and continuous in the longitudinal direction is located 25 mm from the printed film 5 in the width direction, and a printed film 6 having a width of 0.5 mm is provided between the printed films 7 and 5. The intersection between the printed films 6 and 5 is the central portion of the printed films 5. The water-soluble ink is printed by gravure printing while the long polymer film 1 is continuously running, and the printed water-soluble ink is cured after printing. Polymer film 1 printed with water-soluble ink in this way
An aluminum thin film layer 8 having a thickness such that the resistance value was 3Ω/□ was formed by vacuum deposition on the printed surface side of the substrate. FIG. 2 shows a state in which an aluminum thin film layer 8 is formed on the printing surface side of the polymer film 1. The vapor deposition of aluminum is applied to the entire surface of the polymer film 1, that is, the printed film 2.
, 3, 4, 5, 6 and 7, and FIG. 2(a) is a cross-sectional view when the aluminum thin film layer 8 is formed, and FIG. 2(b) is a cross-sectional view of the aluminum thin film layer 8.
1 is a plan view when an aluminum thin film layer 8 is formed on a print pattern of water-soluble ink printed on a polymer film 1. FIG. FIGS. 3(a) and 3(b) show that after forming an aluminum thin film layer 8 by vacuum evaporation, its surface is washed with water to form printed films 2, 3, 4, 5, 6 and 7 with water-soluble ink. This shows the state in which the printed films 2, 3,
4, 5, 6 and 7, and the aluminum thin film layer 8 deposited on top thereof are removed by water washing, leaving the margin parts 2a, 3a, 4a, 5a, 6a and 7, respectively.
a will be formed on the surface of the polymer film 1. The portion of the aluminum thin film layer 8 on which the water-soluble ink is not printed remains on the polymer film 1 as an electrode. Reference numeral 9 denotes a fuse portion for providing a safety function to the film capacitor, and in this example, the length in the longitudinal direction is 0.5 mm. This fuse section 9 operates as follows. An abnormality occurs in the electrode 8 made of an aluminum thin film layer between the fuse part 9 and the margins 2a and 4a, and the fuse part 9
When the current flowing through the fuse section 9 exceeds 100 mA, the fuse section 9
As the temperature rises and the aluminum thin film layer of the fuse part 9 disappears, short circuit with the counter electrode is prevented and burnout of the film capacitor is prevented. FIG. 4 shows an example of the winding structure of the film capacitor in this embodiment, in which the metallized film G with a margin cut at C and D shown in the cross-sectional view of FIG. Two sheets of the metallized film H with a margin cut at F are wound so that the surfaces of the aluminum thin film layer 8 and the polymer film 1 are in contact with each other, and the cut surfaces C and E and D and F match, respectively. capacitor element 10
After forming the external electrode 11 and the external lead electrode 1
2 was provided to form a film capacitor. In order to confirm the safety of the film capacitor according to the present invention, various tests were conducted using 100 film capacitors, and as a result, there were no burnout accidents that occurred when the film capacitor was abnormal. [0017] In explaining the embodiments, specific materials, shapes, dimensions, and printing patterns were used.
The invention is not limited to these materials, dimensions or printed patterns. In particular, the metal thin film layer was explained using aluminum (Al) as an example, but in addition to this, gold (
Au), silver (Ag), copper (Cu), nickel (Ni),
It may be chromium (Cr), tin (Sn), zinc (Zn), or the like. According to the above embodiment, the printed films 2, 3, 4, 5, 6 and 7 are provided on the polymer film 1 at the margins using water-soluble ink, and the aluminum thin film layer 8 is further provided. After being deposited on the entire surface, printed films 2, 3, 4,
By washing and removing elements 5, 6 and 7, margins 2a, 3a, 4a, 5a, 6a and 7a are formed, making it possible to obtain an extremely safe and inexpensive film capacitor. . Effects of the Invention As is clear from the above embodiments, the film capacitor of the present invention can easily form continuous or discontinuous margins in the longitudinal direction and width direction, so that the safety function of the film capacitor can be easily added. can. That is, since the margin is formed by printing, the degree of freedom in the printing pattern is high, the safety function of the film capacitor can be easily added, and a highly safe film capacitor can be obtained. Furthermore, production costs can be reduced by forming margins by printing, and inexpensive film capacitors can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(a)本発明によるフィルムコンデンサに用い
る金属化フィルムの製造初期段階の断面図(b)同製造
初期段階の平面図
FIG. 1: (a) A cross-sectional view of a metallized film used in a film capacitor according to the present invention at an early stage of production; (b) A plan view of a metallized film at an early stage of production.

【図2】(a)同金属化フィルムの製造中間段階の断面
図 (b)同製造中間段階の平面図
[Figure 2] (a) Cross-sectional view at an intermediate stage in the production of the metallized film (b) Plan view at an intermediate stage in the production

【図3】(a)同金属化フィルムの製造終期段階(切断
前)の断面図 (b)同製造終期段階(切断前)の平面図
[Figure 3] (a) Cross-sectional view of the metallized film at the final stage of production (before cutting) (b) Plan view at the final stage of production (before cutting)

【図4】本発
明の一実施例におけるフィルムコンデンサの一部を展開
した斜視図
FIG. 4 is a partially exploded perspective view of a film capacitor in an embodiment of the present invention.

【図5】従来のフィルムコンデンサの概略断面図[Figure 5] Schematic cross-sectional view of a conventional film capacitor

【図6
】(a)従来のフィルムコンデンサに用いる金属化フィ
ルム(切断前)の断面図 (b)同金属化フィルム(切断前)の平面図
[Figure 6
] (a) Cross-sectional view of the metallized film (before cutting) used in a conventional film capacitor (b) Plan view of the same metallized film (before cutting)

【符号の説明】[Explanation of symbols]

1  高分子フィルム 2a  マージン                 
           3a  マージン 4a  マージン 5a  マージン 6a  マージン 7a  マージン 8  金属薄膜層 9  ヒューズ部
1 Polymer film 2a Margin
3a Margin 4a Margin 5a Margin 6a Margin 7a Margin 8 Metal thin film layer 9 Fuse section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】誘電体として使用する高分子フィルムの表
面に金属薄膜層を形成した金属化フィルムを用いたフィ
ルムコンデンサであって、その金属化フィルムのマージ
ンが前記高分子フィルムの長手方向に連続してなるマー
ジンと、同高分子フィルムの長手方向に不連続なマージ
ンと、同高分子フィルムの幅方向に不連続なマージンと
からなり、前記高分子フィルムの長手方向に不連続なマ
ージンの隙間にヒューズ部を構成したフィルムコンデン
サ。
1. A film capacitor using a metallized film in which a metal thin film layer is formed on the surface of a polymer film used as a dielectric, wherein the margin of the metallized film is continuous in the longitudinal direction of the polymer film. a margin that is discontinuous in the longitudinal direction of the polymer film, a margin that is discontinuous in the width direction of the polymer film, and a gap between the margins that are discontinuous in the longitudinal direction of the polymer film. The film capacitor that made up the fuse section.
【請求項2】誘電体として使用する高分子フィルムの表
面に金属薄膜層とマージンとヒューズ部とを形成した金
属化フィルムを用いて巻回または積層するフィルムコン
デンサの製造方法において、金属薄膜層を形成して金属
化する前の前記高分子フィルムの表面に水溶性インクで
所定の印刷パターンを印刷し、その印刷面側に真空蒸着
法でアルミニウム(Al),金(Au),銀(Ag),
銅(Cu),ニッケル(Ni),クロム(Cr),錫(
Sn),亜鉛(Zn)等の単一もしくは混合金属の単層
薄膜もしくは積層薄膜からなる金属薄膜層を形成した後
、大気中でその金属薄膜層の表面を水洗いすることによ
り水溶性インクおよびその水溶性インク上の前記金属薄
膜層を除去してマージンおよびヒューズ部を形成するフ
ィルムコンデンサの製造方法。
2. A method for manufacturing a film capacitor in which a metallized film having a metal thin film layer, a margin, and a fuse portion formed on the surface of a polymer film used as a dielectric is wound or laminated. A predetermined printing pattern is printed with water-soluble ink on the surface of the polymer film before it is formed and metallized, and aluminum (Al), gold (Au), and silver (Ag) are applied to the printed surface side by vacuum evaporation method. ,
Copper (Cu), nickel (Ni), chromium (Cr), tin (
After forming a metal thin film layer consisting of a single thin film or laminated thin film of single or mixed metals such as Sn), zinc (Zn), etc., water-soluble ink and its A method for manufacturing a film capacitor, comprising removing the metal thin film layer on the water-soluble ink to form a margin and a fuse part.
JP615291A 1991-01-23 1991-01-23 Film capacitor and its manufacture Pending JPH04239713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP615291A JPH04239713A (en) 1991-01-23 1991-01-23 Film capacitor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP615291A JPH04239713A (en) 1991-01-23 1991-01-23 Film capacitor and its manufacture

Publications (1)

Publication Number Publication Date
JPH04239713A true JPH04239713A (en) 1992-08-27

Family

ID=11630560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP615291A Pending JPH04239713A (en) 1991-01-23 1991-01-23 Film capacitor and its manufacture

Country Status (1)

Country Link
JP (1) JPH04239713A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177870A (en) * 2013-01-08 2013-06-26 吴卫东 Metalized safety film dry high-voltage power capacitor element
JP2013219305A (en) * 2012-04-12 2013-10-24 Nichicon Corp Metalization film capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085862A (en) * 1973-12-03 1975-07-10
JPS50153269A (en) * 1974-06-01 1975-12-10
JPS6414911A (en) * 1987-07-08 1989-01-19 Shizuki Electric Capacitor with safety mechanism for series winding structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085862A (en) * 1973-12-03 1975-07-10
JPS50153269A (en) * 1974-06-01 1975-12-10
JPS6414911A (en) * 1987-07-08 1989-01-19 Shizuki Electric Capacitor with safety mechanism for series winding structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219305A (en) * 2012-04-12 2013-10-24 Nichicon Corp Metalization film capacitor
CN103177870A (en) * 2013-01-08 2013-06-26 吴卫东 Metalized safety film dry high-voltage power capacitor element

Similar Documents

Publication Publication Date Title
TWI394175B (en) Resistor and method for making same
KR0168466B1 (en) Thin film surface mount fuses
JPH04239713A (en) Film capacitor and its manufacture
CA1042996A (en) Windable series-parallel resistance-capacitance network
JPH05267025A (en) Manufacture of chip part and manufacture of electronic part
RU2213383C2 (en) Method for manufacturing thin-film resistors
US5700338A (en) Method of manufacturing resistor integrated in sintered body and method of manufacturing multilayer ceramic electronic component
JP2017112188A (en) Electronic parts
JP2668375B2 (en) Circuit component electrode manufacturing method
US20050126707A1 (en) Manufacture having double sided features in a metal-containing web and manufacture and method for forming same in a liquid-based etch process
JP4306892B2 (en) Method for manufacturing circuit protection element
JP2002367801A (en) Chip resistor and its manufacturing method
JP7211930B2 (en) Method for manufacturing wired circuit board
JPH01173614A (en) Manufacture of chip-type film capacitor
JPS6356718B2 (en)
JP3124624B2 (en) Multilayer capacitor and method of manufacturing the same
KR100206385B1 (en) Method for making thin film capacitor
RU2062000C1 (en) Printed circuit board
JPH08274416A (en) Printed wiring board and its manufacture
JPH04239714A (en) Manufacture of metallized film for capacitor
JPH0379013A (en) Manufacture of film capacitor
JPH08288102A (en) Electronic component and its manufacture
JPS6181614A (en) Manufacture of coil
JPH0345908B2 (en)
JPS602060A (en) Manufacture of laminated flat coil