JPH04237987A - Sheet-shaped heating element and heating element-buried object - Google Patents

Sheet-shaped heating element and heating element-buried object

Info

Publication number
JPH04237987A
JPH04237987A JP2295891A JP2295891A JPH04237987A JP H04237987 A JPH04237987 A JP H04237987A JP 2295891 A JP2295891 A JP 2295891A JP 2295891 A JP2295891 A JP 2295891A JP H04237987 A JPH04237987 A JP H04237987A
Authority
JP
Japan
Prior art keywords
heating element
sheet
conductive
extensible
thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2295891A
Other languages
Japanese (ja)
Inventor
Atsuo Takeuchi
武内醇雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippo Ltd
Nippo Sangyo Co Ltd
Original Assignee
Nippo Ltd
Nippo Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippo Ltd, Nippo Sangyo Co Ltd filed Critical Nippo Ltd
Priority to JP2295891A priority Critical patent/JPH04237987A/en
Publication of JPH04237987A publication Critical patent/JPH04237987A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/4615Time

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

PURPOSE:To improve workability, uniformly heat, and simply adjust the heating temperature by leno-weaving an extensible required conductive weft yarn and a nonconductive warp yarn into an extensible woven fabric. CONSTITUTION:An extensible conductive weft yarn 1 entangled with a wrinkled extensible fiber thread 6 made of nonconductive fibers and a conductive thread 7 longer than the extended length of the thread 6 bent into a spiral or corrugated shape and a nonconductive warp yarn 3 are leno-woven to generate an extensible woven fabric 3. Electrodes 4, 5 conducting both end sides of the yarn 1 are provided at both edge sections in the horizontal width direction of the fabric 3, and metallic thread-shaped bodies 8 are woven at edge end sections of the fabric 3 to form a sheet-shaped heating element. It can be closely stuck to a complex stereoscopic face without being finely cut, the workability is improved, the whole object face can be uniformly heated with no complex electric wiring, and the heating temperature can be simply adjusted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、伸縮性を有する編組布
の形態を備えて、例えば、ガラス繊維強化プラスチック
を成形する為の、型加熱手段を付設した成形型を製作す
る等の使途に好適したシート状発熱体、及びこのシート
状発熱体を埋設乃至は添着させた発熱体埋設物品に関す
る。
[Industrial Application Field] The present invention has the form of a stretchable braided cloth, and is suitable for use, for example, in manufacturing molds equipped with mold heating means for molding glass fiber reinforced plastics. The present invention relates to a suitable sheet-like heating element and a heating-element-embedded article in which this sheet-like heating element is embedded or attached.

【0002】0002

【従来の技術】例えば、ガラス繊維強化ポリエステル樹
脂(FRP)製の浴槽やボート等をハンドレイアップ法
、スプレーアップ法、或いはレジン・トランスファー・
モールディング(RTM)法等によって成形する場合に
は、反応硬化性を有するポリエステル樹脂原料の硬化反
応を促進させる為に、その成形型に型加熱手段を付設す
ることが一般に行われている。この成形型もFRP製に
する場合が多い。上記加熱手段としては、スチームや熱
水を通すパイプや、カーボン繊維等の導電性繊維を編組
したシート状電気ヒーター等を用い、此等を型壁内に埋
設乃至は添着することが一般に使われて来た。そして、
上記パイプを埋設する場合には、スチームや熱水の流通
抵抗を増さない様に少なくとも8mm径以上のパイプを
使う必要があるので、必然的に隣接パイプ間の間隔が広
まって、型壁の加熱温度分布が不均等になる不具合が生
ずる。そこで、型成形材料にアルミニュウム粉や鉄粉等
の熱伝導性の良い金属粉を混入することが行われて来た
。 又、カーボン繊維布等の伸縮性を有しないシート状電気
ヒーターを複雑な立体形状を備えた型壁に埋設する場合
には、型の凹凸面に倣わせる為に、このヒーターを細か
く切り分けて、夫々の切分片毎に給電配線を行っていた
[Prior Art] For example, bathtubs, boats, etc. made of glass fiber reinforced polyester resin (FRP) are prepared by hand lay-up method, spray-up method, or resin transfer method.
In the case of molding by a molding (RTM) method or the like, a mold heating means is generally attached to the mold in order to accelerate the curing reaction of the polyester resin raw material having reactive curability. This mold is also often made of FRP. As the above-mentioned heating means, pipes for passing steam or hot water, sheet-like electric heaters made of braided conductive fibers such as carbon fibers, etc. are used, and these are generally buried or attached to the mold wall. I came. and,
When burying the above-mentioned pipes, it is necessary to use pipes with a diameter of at least 8 mm to avoid increasing the flow resistance of steam or hot water, so the spacing between adjacent pipes will inevitably widen and the mold wall A problem occurs in which the heating temperature distribution becomes uneven. Therefore, metal powder with good thermal conductivity, such as aluminum powder or iron powder, has been mixed into the molding material. In addition, when embedding a non-stretchable sheet-like electric heater such as carbon fiber cloth in a mold wall with a complex three-dimensional shape, the heater must be cut into small pieces to follow the uneven surface of the mold. , power supply wiring was performed for each segment.

【0003】0003

【発明が解決しようとする課題】然し乍ら、パイプを型
壁に埋設する方法は、型の製作費が嵩む上に、金属粉の
混入による重量増も含めて型が著しく重くなって、成形
時の作業性が悪くなり、然も、スチームや熱水の発生装
置を要すると言う大きな欠点があった。そして、型壁の
温度分布が不均等であれば、成形型内での原料樹脂の硬
化状態にむらが生じて、成形製品の応力分布がバラツキ
、所要の製品強度が得られないという結果を招来する。 その上、温度分布が不均等な状態で加熱と冷却を繰り返
された成形型は、不均等な熱変形による応力歪の反復発
生によって型材の疲労が加速され、型寿命が大幅に短縮
されてしまう。一方、シート状電気ヒーターを埋設した
型は、電源コンセントさえあれば手軽に使えるし、型も
軽く作れるので作業性の良さも含めて生産コストの低減
に有利である。然しその反面、従来の伸縮性を有しない
シート状電気ヒーターを、複雑な凹凸形状をした型面に
添わせて型壁に埋設乃至添着させるには、このヒーター
を細かく切り分ける手間が掛かる上に、大きさの異る各
ヒーター片は夫々の電気抵抗値も異るので、型壁の全面
を一様に加熱する為には、給電配線の本数が著しく増え
るだけに止どまらず、各ヒーター片への印加電圧も夫々
変える必要が生じて、その給電配線は極めて厄介になる
。又、従来の伸縮性のないシート状電気ヒーターを無理
に凹凸面に添わせてしまうと、埋設状態でシート状のヒ
ーターはひだ状に重なり合ってショートする可能性が高
かった。然し、若し、伸縮性のあるシート状電気ヒータ
ーが開発れされば、上述の細かく切り分ける手間と、そ
れに伴う厄介な給電配線の手間は大幅に省けることにな
る。そこで、本発明の目的は、例えば、上記合成樹脂成
形型の加熱手段として使えば、複雑な立体形状を備えた
施工面に対して、細かく切り分けなくても密着させられ
て施工性が優れ、且つ、複雑な電気配線をしなくても被
加熱面の全面を均等に加熱することが出来、然も、発熱
温度の調節も簡単に行えて、合成樹脂成形型以外の様々
な分野にも活用し得る、電熱式のシート状発熱体及び発
熱体埋設物品を提供するにある。
[Problems to be Solved by the Invention] However, the method of embedding the pipe in the mold wall not only increases the production cost of the mold, but also makes the mold extremely heavy due to the increase in weight due to the inclusion of metal powder, which makes it difficult to perform molding. This method had major drawbacks, such as poor workability and the need for a steam or hot water generator. If the temperature distribution on the mold wall is uneven, the curing state of the raw material resin within the mold will be uneven, resulting in uneven stress distribution in the molded product and failure to obtain the required product strength. do. Furthermore, if a mold is repeatedly heated and cooled with uneven temperature distribution, stress and strain due to uneven thermal deformation will occur repeatedly, accelerating the fatigue of the mold material and significantly shortening the mold life. . On the other hand, molds with embedded sheet electric heaters are easy to use as long as you have a power outlet, and the molds are lightweight, making them easy to work with and advantageous in reducing production costs. However, on the other hand, in order to embed or attach a conventional non-stretchable sheet-shaped electric heater to the mold wall along the mold surface with a complex uneven shape, it takes time and effort to cut the heater into small pieces. Each heater piece of different size has a different electrical resistance value, so in order to uniformly heat the entire mold wall, the number of power supply wires not only increases significantly, but also the electric resistance of each heater piece. It becomes necessary to change the voltage applied to each piece, and the power supply wiring becomes extremely complicated. Furthermore, if a conventional non-stretchable sheet-shaped electric heater is forced to fit onto an uneven surface, there is a high possibility that the sheet-shaped heaters will overlap in pleats and short-circuit when buried. However, if a stretchable sheet-shaped electric heater were developed, the above-mentioned trouble of cutting into small pieces and the associated troublesome power supply wiring would be greatly saved. Therefore, an object of the present invention is, for example, when used as a heating means for the above-mentioned synthetic resin mold, it can be brought into close contact with a construction surface having a complex three-dimensional shape without having to be cut into small pieces, and has excellent workability. The entire surface to be heated can be heated evenly without complicated electrical wiring, and the heating temperature can be easily adjusted, making it suitable for use in various fields other than synthetic resin molds. An object of the present invention is to provide an electric heating type sheet-like heating element and a heating element embedded article.

【0004】0004

【課題を解決するための手段】上記の目的を達成する為
に、本発明によるシート状発熱体は、非導電性繊維から
なり縮れ加工した伸縮性繊維糸6に螺旋状乃至波打状に
屈曲させた導電性糸状体7を交絡させた伸縮性を有する
導電性横糸1と、導電性を有しない縦糸2とを、絡み織
等して作られた伸縮性編織布3の、横幅方向の両縁部に
、前記導電性横糸1の各一端側同志を互いに導通させる
電極4,5を設けた構成とした。前記導電性糸状体7の
長さは、前記伸縮性繊維糸6が伸び切った時の長さより
長く設定する。前記電極4,5は、前記伸縮性編織布3
の縁端部に金属製糸状体8を織り込んで形成させると良
い。又、本発明による発熱体埋設物品は、任意の立体形
状乃至平面形状を有して、その躯体に前記シート状発熱
体を埋設乃至は添着させた構成とした。
[Means for Solving the Problems] In order to achieve the above object, a sheet-like heating element according to the present invention is provided by bending elastic fiber yarn 6 made of non-conductive fibers into a crimped form in a spiral or wavy form. Both sides in the width direction of a stretchable knitted fabric 3 made by weaving a stretchable conductive weft 1 intertwined with a conductive thread-like body 7 and a non-conductive warp 2 by means of a twining weave or the like. The structure is such that electrodes 4 and 5 are provided at the edges to connect the ends of each of the conductive weft threads 1 to each other. The length of the conductive filament 7 is set to be longer than the length when the stretchable fiber yarn 6 is fully stretched. The electrodes 4 and 5 are connected to the stretchable knitted fabric 3.
It is preferable to form the metal thread-like body 8 by weaving it into the edge portion of the plate. Further, the heating element embedded article according to the present invention has an arbitrary three-dimensional shape or planar shape, and has a structure in which the sheet-like heating element is embedded or attached to the body.

【0005】[0005]

【作用】非導電性繊維を縮れ加工した伸縮性繊維糸6に
螺旋状乃至波打状に屈曲させた導電性糸状体7を交絡さ
せた、伸縮性を有する導電性横糸1と、導電性を有しな
い縦糸2とを、絡み織等して作られた伸縮性編織布3は
、施工面の凹突形状に倣う様に容易に添わせることが出
来るので、従来の伸縮性を有しないシート状発熱体とは
異なって細かく切り分ける必要がなく、給電配線を簡易
に行える。又、シート状発熱体は、その横方向の両縁部
に設けた電極4,5間の電気抵抗値が一定なので、その
縦方向に任意の長さに切り分けても、各切分片の単位面
積当たりの発熱量は、両電極間4,5への印加電圧を等
しくする限り同一となって、給電配線が著しく簡略化さ
れると共に、各切分片を並列接続することによって、給
電電圧を上下させるだけで、被加熱面全面が一様に加熱
された状態のもとに、加熱温度を自在に調節出来る。
[Function] A conductive weft yarn 1 with elasticity, in which a conductive thread body 7 bent in a spiral or wavy manner is intertwined with an elastic fiber yarn 6 made of crimped non-conductive fibers; The stretchable knitted fabric 3 made by twining or weaving the warp threads 2 that do not have any elasticity can be easily attached to follow the concave shape of the construction surface, so it does not have the conventional sheet-like shape that does not have stretchability. Unlike heating elements, there is no need to cut it into small pieces, and power supply wiring can be easily done. In addition, since the electric resistance value between the electrodes 4 and 5 provided on both horizontal edges of the sheet-like heating element is constant, even if the sheet-like heating element is cut into arbitrary lengths in the vertical direction, the unit of each section is The amount of heat generated per area is the same as long as the voltages applied between the two electrodes 4 and 5 are equal, and the power supply wiring is significantly simplified. By connecting each segment in parallel, the power supply voltage can be increased. By simply moving it up and down, you can freely adjust the heating temperature while keeping the entire surface to be heated uniformly heated.

【0006】[0006]

【実施例】以下に、図面を参照し乍ら本発明の一実施例
を説明する。図1に示した本発明によるシート状発熱体
Aは、伸縮性繊維糸6に螺旋状乃至波打状に屈曲させた
導電性繊維糸7を交絡させて作られてヒータ線となる横
糸1と、導電性を有しない縦糸2とを、絡み織等の織り
方で織り上げた伸縮性編織布3の幅方向の両縁部に、夫
々縁部の全長に亙って電極4及び5を設けた形態を備え
ており、この実施例のものは、横幅30cmの長尺材に
織り上げられている。導電性横糸1は、図2に拡大して
示した様に、ポリエステル繊維糸(撚糸)に周知の縮れ
加工を施して作られた、縮んだ状態で長さ30cmの伸
縮性繊維糸6に、太さ20ミクロンで、長さ50cmの
ステンレススチール製の導電性糸状体7を螺旋状に巻き
付けた構成を備えている。導電性糸状体7の長さは、伸
縮性繊維糸6が完全に伸び切った時の長さより長い寸法
に設定している。縦糸2は、ポリエステル繊維製の撚糸
等からなり、伸縮性編織布3の構成素材として、又、相
隣る導電性横糸1の相互を所定間隔に隔てるスペーサー
としての役割を果たす。電極4,5は、この実施例では
、複数本の金属製糸状体、例えば極細銅線8を、シート
状発熱体Aの横幅方向の両縁部に約5mmの幅を以て縦
糸状に密に織り込むことによって、ベルト状に形成され
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The sheet-like heating element A according to the present invention shown in FIG. 1 is made by intertwining conductive fiber yarns 7 bent in a spiral or wavy manner with elastic fiber yarns 6, and weft yarns 1 that serve as heater wires. Electrodes 4 and 5 are provided at both edges in the width direction of a stretchable knitted fabric 3 woven with non-conductive warp threads 2 using a weaving method such as a leno weave, extending over the entire length of the edges. The material in this example is woven into a long material with a width of 30 cm. As shown in an enlarged view in FIG. 2, the conductive weft thread 1 is made of an elastic fiber thread 6 having a length of 30 cm in a shrunken state, which is made by subjecting a polyester fiber thread (twisted thread) to a well-known crimp process. It has a structure in which a conductive filament 7 made of stainless steel and having a thickness of 20 microns and a length of 50 cm is wound helically. The length of the conductive filament 7 is set to be longer than the length of the elastic fiber thread 6 when it is completely stretched. The warp yarns 2 are made of twisted yarns made of polyester fiber, and serve as a constituent material of the stretchable knitted fabric 3 and as a spacer that separates adjacent conductive weft yarns 1 from each other at a predetermined interval. In this embodiment, the electrodes 4 and 5 are made by densely weaving a plurality of metal thread-like bodies, for example, ultra-fine copper wires 8, into warp-like threads with a width of about 5 mm at both edges in the width direction of the sheet-like heating element A. As a result, it is formed into a belt shape.

【0007】この実施例では、縦糸2の長さ10cm当
たり84本の導電性横糸1が織り込まれており、幅30
cmのシート状発熱体Aは、長さ10cm当たり約8オ
ームの電気抵抗値を示した。このシート状発熱体Aを、
厚さ10mmのFRP製板の表面から深さ3mmの位置
に埋設した試験片に就いて、20℃の室温下で、両電極
4、5間に任意のレベルの電圧を30秒間印加した後の
表面温度を測ったところ、表1のデータが得られた。
In this embodiment, 84 conductive weft threads 1 are woven per 10 cm of warp thread 2, and the width is 30 cm.
The sheet-like heating element A having a length of 10 cm exhibited an electrical resistance value of about 8 ohms per 10 cm of length. This sheet-like heating element A,
After applying an arbitrary level of voltage between both electrodes 4 and 5 for 30 seconds at room temperature of 20 ° C. on a test piece buried at a depth of 3 mm from the surface of a 10 mm thick FRP board. When the surface temperature was measured, the data shown in Table 1 was obtained.

【表1】 上記のデータにより、FRPを成形する為のFRP製の
成形型は、一般に、成形時型温を60〜90℃に保たせ
るので、上記シート状発熱体Aは、FRP成形型の加熱
用ヒーターとして好適していることが確かめられた。
[Table 1] According to the above data, the FRP mold for molding FRP generally maintains the mold temperature at 60 to 90°C during molding, so the above sheet-shaped heating element A is suitable for the FRP mold. It was confirmed that it is suitable as a heating heater.

【0008】次に、シート状発熱体Aを組み込んだ、発
熱体埋設物品の一実施例に就き、図4及び図5を参照し
乍ら説明する。この実施例の発熱体埋設物品は、FRP
製の工具箱をRTM法によって成形する為の、同じくF
RP製のヒータ埋込式成形型Bである。ヒーター埋込式
成形型Bの製作の手順は、従来のカーボン繊維製のシー
ト状電気ヒーターを埋設して作られるものの場合と略同
じである。図4,5には、内外二分割式のヒーター埋込
式成形型Bの外型を示している。このヒーター埋込式成
形型Bを、ハンドレイアップ法乃至スプレーアップ法に
よって作成するには、図示しない母型の表面にポリエス
テル樹脂のゲルコート層を施した後、その表面に図4に
示した様に合計4枚の編み目の有るシート状発熱体Aを
、母型の周壁及び底壁の全面を覆う様に添着させたうえ
、その外側にFRP層を積層状に形成させればよい。 この添着を行う際に、図5から理解される様に、母型の
表面が単純な丸み付け角部を備える場合は勿論、より複
雑な凹凸曲面を備える場合でも、シート状発熱体Aはか
なりの伸縮性を有するので、従来のカーボン繊維糸を編
組したシート状電気ヒーターの様に、凹凸曲面に馴染み
易くする為に細かく切り分けなくても、ゲルコート層の
複雑な凹凸面に密着させることが出来る。その為、図5
に示した様に、ヒータ埋込式成形型Bの型壁全面に亙っ
て、その内壁表面に近い均等な深さ位置に、シート発熱
体Aを埋設させることが出来る。
[0008] Next, an embodiment of a heating element embedded article incorporating the sheet-like heating element A will be described with reference to FIGS. 4 and 5. The heating element embedded article of this example is made of FRP
The same F
This is a heater-embedded mold B made by RP. The procedure for manufacturing the heater-embedded mold B is substantially the same as that for a mold made by embedding a conventional sheet-shaped electric heater made of carbon fiber. 4 and 5 show the outer mold of a heater-embedded molding mold B that is divided into two parts: the inner and outer parts. To create this heater-embedded mold B by the hand lay-up method or spray-up method, a gel coat layer of polyester resin is applied to the surface of the mother mold (not shown), and then the surface is coated as shown in FIG. A sheet-like heating element A having a total of four meshes may be attached to cover the entire surface of the peripheral wall and bottom wall of the matrix, and an FRP layer may be formed in a laminated manner on the outside thereof. When performing this attachment, as can be understood from FIG. 5, the sheet-like heating element A is considerably Because of its elasticity, it can be attached to the complex uneven surface of the gel coat layer without having to cut it into small pieces to make it easier to adapt to the uneven curved surface, unlike conventional sheet electric heaters made of braided carbon fiber threads. . Therefore, Figure 5
As shown in FIG. 2, the sheet heating element A can be embedded over the entire surface of the mold wall of the heater-embedded mold B at a uniform depth close to the inner wall surface.

【0009】そして、図5に示した様に、4枚のシート
状発熱体Aの夫々の電極4,5に接続したリード線9を
、電源コード10に互いに並列接続すれば、各シート状
発熱体Aの電極4及び5間の印加電圧は夫々同一になり
、又、各導電性横糸1の電気抵抗値は同一である処から
して、各シート状発熱体Aは、縦方向の長さ寸法の如何
に拘わらず、単位面積当たりの発熱量が同一となる。 然も、導電性横糸1は、1mm以下の極く狭い間隔を隔
てて互いに平行状に密に配列されているので、各シート
状発熱体Aはその全面に亙って均等に発熱する。更に、
各シート状発熱体Aは、上述の様にゲルコート層に密着
状態で添着させ易いので、ヒータ埋込式成形型Bの内壁
面近くの一様な深さ位置に埋設させることが出来て、型
壁全面を極めて均等に加熱すことが出来る。その上、電
源コード10が接続される電源の電圧を、スライド可変
式トランス等によって上下させれば、シート状発熱体A
の発熱温度、従ってヒータ埋込式成形型Bの型温を極め
て簡単に調節することが出来る。
As shown in FIG. 5, if the lead wires 9 connected to the respective electrodes 4 and 5 of the four sheet-like heating elements A are connected in parallel to the power cord 10, each sheet-like heating element Since the voltages applied between the electrodes 4 and 5 of body A are the same, and the electrical resistance values of each conductive weft 1 are the same, each sheet-like heating element A has a length in the longitudinal direction. Regardless of the size, the amount of heat generated per unit area is the same. However, since the conductive weft threads 1 are closely arranged parallel to each other with extremely narrow intervals of 1 mm or less, each sheet-like heating element A generates heat evenly over its entire surface. Furthermore,
Each sheet-like heating element A can be easily attached to the gel coat layer in close contact with the gel coat layer as described above, so it can be embedded at a uniform depth near the inner wall surface of the heater-embedded mold B. The entire wall can be heated extremely evenly. Moreover, if the voltage of the power source to which the power cord 10 is connected is raised or lowered by a variable slide transformer, etc., the sheet-like heating element A
The heat generation temperature of the heater-embedded mold B, and hence the mold temperature of the heater-embedded mold B, can be adjusted very easily.

【0010】尚、上記構成に於いて、導電性糸状体7の
素材としては、勿論ステンレススチール以外の金属等の
別の導電性材料を選んでも良いし、電極4,5の形成方
法も、例えば、導電性コーティング剤の塗布層を設ける
等、適宜に変更出来るし、縦糸2、伸縮性繊維糸6等の
各構成部材の材質、太さ、長さ、或いは伸縮性編織布3
の織り方等も、シート状発熱体Aの使途に応じて適宜に
選定すれば良い。又、本発明によるシート状発熱体Aは
、FRP等の合成樹脂を成形する成形型の加熱手段とし
て用いる他に、例えば、建物や各種機器の構成部材とし
ての平坦なパネル状体や、複雑な凹凸形状を備えたハウ
ジング類等の物品に埋設乃至添着させる面発熱体として
も、その良好な施工性と使い勝手とを十分に発揮する。
In the above structure, the material of the conductive filament 7 may of course be selected from other conductive materials such as metals other than stainless steel, and the method for forming the electrodes 4 and 5 may also be changed, for example. , the material, thickness, and length of each component such as the warp 2 and the stretchable fiber yarn 6, or the stretchable knitted fabric 3 can be changed as appropriate, such as by providing a coating layer of a conductive coating agent.
The method of weaving, etc. may be appropriately selected depending on the use of the sheet-like heating element A. In addition to being used as a heating means for molds for molding synthetic resins such as FRP, the sheet-like heating element A according to the present invention can also be used, for example, as a flat panel-like body as a component of buildings or various equipment, or as a complex heating element. The surface heating element can also be used as a surface heating element to be embedded or attached to articles such as housings having an uneven shape, and its good workability and usability are fully exhibited.

【0011】[0011]

【発明の効果】以上の説明によって明らかな様に、本発
明による伸縮性を備えたシート状発熱体、及びこのシー
ト状発熱体を組み込んだ発熱体埋設物品は、以下に列挙
した如き実用上の優れた効果を奏する。 (a)  伸縮性に富んでいるので、複雑な凹凸形状を
備えた施工面に対しても、従来のカーボン繊維製のシー
ト状電気ヒーターの様に、曲面形状に合わせて細かく切
り分けなくても、この凹凸施工面に密接状態で能率的に
添わせることが出来る。 (b)  その為、従来のシート状電気ヒーターに比べ
ては、その給電配線を遥かに簡易に行える。 (c)  シート状発熱体の横幅方向の電気抵抗値は、
その伸縮状態の如何に拘わらず一定なので、その縦方向
に任意の長さの切片に切り分けても、各切分片の両電極
を電源コードに夫々並列接続する限り、各切分片の単位
面積当たりの発熱量は一定となって、施工面全面を均等
に加熱する為の給電配線を極めて簡素化出来る。 (d)  然も、電源コードの電源電圧をスライド可変
式トランス等で昇降させるだけで、被加熱面の温度を自
在に上下させられる。 (e)  本発明のシート状発熱体を用いれば、例えば
、加熱手段を付設した合成樹脂成形型等の発熱体埋設物
品を、軽量、且つ安価に製作出来、然も、型温の調節を
簡易、且つ自在に行なえる。
Effects of the Invention As is clear from the above explanation, the stretchable sheet-like heating element according to the present invention and the heating element-embedded article incorporating this sheet-like heating element have practical advantages as listed below. It has excellent effects. (a) Because it is highly elastic, it can be used on construction surfaces with complex uneven shapes, without having to be cut into pieces to match the curved surface shape, unlike conventional carbon fiber sheet electric heaters. It can be applied efficiently to this uneven construction surface in close contact. (b) Therefore, compared to conventional sheet-shaped electric heaters, the power supply wiring can be done much more easily. (c) The electrical resistance value in the width direction of the sheet-like heating element is:
It is constant regardless of its expansion/contraction state, so even if it is cut into sections of arbitrary length in the longitudinal direction, as long as both electrodes of each section are connected in parallel to the power cord, the unit area of each section is The amount of heat generated per unit is constant, and the power supply wiring to uniformly heat the entire construction surface can be extremely simplified. (d) Of course, the temperature of the heated surface can be raised or lowered by simply raising or lowering the power supply voltage of the power cord using a variable slide transformer or the like. (e) By using the sheet-like heating element of the present invention, it is possible to manufacture a heating element-embedded article, such as a synthetic resin mold equipped with a heating means, lightweight and at low cost, and the temperature of the mold can be easily adjusted. , and can be done freely.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による一実施例のシート状発熱体を示し
た、部分斜視図である。
FIG. 1 is a partial perspective view showing a sheet-like heating element according to an embodiment of the present invention.

【図2】同上、導電性横糸の部分拡大図である。FIG. 2 is a partially enlarged view of the conductive weft yarn of the same as above.

【図3】同上、伸縮性編織布の部分拡大平面図である。FIG. 3 is a partially enlarged plan view of the same stretchable knitted fabric.

【図4】本発明によるシート状発熱体埋設物品の一例を
示した、部分破断斜視図である。
FIG. 4 is a partially cutaway perspective view showing an example of a sheet-shaped heating element embedded article according to the present invention.

【図5】図4の、X−X線に沿う縦断面図で、給電用配
線も示している。
FIG. 5 is a longitudinal cross-sectional view taken along line XX in FIG. 4, also showing power supply wiring.

【符号の説明】[Explanation of symbols]

A  シート状発熱体 B  ヒータ埋込式成形型(発熱体埋設物品)1  導
電性横糸 2  縦糸 3  伸縮性編織布 4,5  電極 6  伸縮製繊維糸 7  導電性糸状体 8  極細銅線(金属製糸状体) 9  リード線 10  電源コード
A Sheet-like heating element B Heater embedded mold (heating element embedded article) 1 Conductive weft 2 Warp 3 Stretchable knitted fabric 4, 5 Electrode 6 Stretch fiber thread 7 Conductive thread 8 Ultra-fine copper wire (metal) filament) 9 Lead wire 10 Power cord

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  非導電性繊維からなり縮れ加工した伸
縮性繊維糸6に螺旋状乃至波打状に屈曲させた導電性糸
状体7を交絡させた伸縮性を有する導電性横糸1と、導
電性を有しない縦糸2とを、絡み織等して作られた伸縮
性編織布3の、横幅方向の両縁部に、前記導電性横糸1
の各一端側同志を互いに導通させる電極4,5を設けた
ことを特徴とするシート状発熱体。
1. A conductive weft yarn 1 having elasticity, in which a conductive filament body 7 bent in a spiral or wavy manner is intertwined with a crimp elastic fiber yarn 6 made of non-conductive fibers; The electrically conductive weft threads 1 are attached to both edges in the width direction of a stretchable knitted fabric 3 made by twining the non-conductive warp threads 2.
1. A sheet-like heating element characterized in that electrodes 4 and 5 are provided to make each one end side of the element conductive to each other.
【請求項2】  前記電極4,5は、前記伸縮性編織布
3の縁端部に金属製糸状体8を織り込んで形成させたこ
とを特徴とする請求項1項記載のシート状発熱体。
2. The sheet-like heating element according to claim 1, wherein the electrodes 4 and 5 are formed by weaving metal threads 8 into the edge portions of the stretchable knitted fabric 3.
【請求項3】  前記導電性糸状体7の長さを、前記伸
縮性繊維糸6が伸び切った時の長さより長く設定したこ
とを特徴とする請求項1項又は2項記載のシート状発熱
体。
3. The sheet-like heating device according to claim 1, wherein the length of the conductive filament 7 is set to be longer than the length when the stretchable fiber yarn 6 is fully stretched. body.
【請求項4】任意の立体形状乃至平面形状を有して、請
求項1項乃至3項のいずれかに記載のシート状発熱体が
、その躯体に埋設乃至添着されていることを特徴とする
発熱体埋設物品。
4. The sheet-like heating element according to any one of claims 1 to 3, having an arbitrary three-dimensional shape or planar shape, is embedded or attached to the body of the heating element. Items with buried heating elements.
JP2295891A 1991-01-22 1991-01-22 Sheet-shaped heating element and heating element-buried object Pending JPH04237987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2295891A JPH04237987A (en) 1991-01-22 1991-01-22 Sheet-shaped heating element and heating element-buried object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295891A JPH04237987A (en) 1991-01-22 1991-01-22 Sheet-shaped heating element and heating element-buried object

Publications (1)

Publication Number Publication Date
JPH04237987A true JPH04237987A (en) 1992-08-26

Family

ID=12097114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295891A Pending JPH04237987A (en) 1991-01-22 1991-01-22 Sheet-shaped heating element and heating element-buried object

Country Status (1)

Country Link
JP (1) JPH04237987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011000A1 (en) * 2001-07-05 2003-02-06 King's Metal Fiber Technologies Co., Ltd. Heating apparatus having heating line combined with soft matrix
WO2023051064A1 (en) * 2021-09-04 2023-04-06 卞广山 New electric blanket

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011000A1 (en) * 2001-07-05 2003-02-06 King's Metal Fiber Technologies Co., Ltd. Heating apparatus having heating line combined with soft matrix
WO2023051064A1 (en) * 2021-09-04 2023-04-06 卞广山 New electric blanket

Similar Documents

Publication Publication Date Title
US4063069A (en) Electrically heatable floor carpet
US2862097A (en) Electrically heated fabrics
US20090095735A1 (en) Flexible heating weave
GB2141010A (en) Net type heating equipment
KR20140099476A (en) Fabric heater
CN109661049A (en) A kind of active flexible heating element and its preparation method and application
US2379580A (en) Electrically heated fabric
CN201080531Y (en) Electrothermal fabric structure
CN104470004A (en) Active flexible heating body and preparing method and application of active flexible heating body
JPH04237987A (en) Sheet-shaped heating element and heating element-buried object
KR100689990B1 (en) Net-type line surface heater
KR20060111228A (en) Weave type heating element
KR20160118849A (en) Resistance adjustable carbon fiber heating element
CA1055094A (en) Electrically heatable wall covering, more particularly an electrically heatable carpet
CN108495391A (en) Ultra-thin polymer temp auto-controlled electrothermal cloth and the preparation method and application thereof
KR101937373B1 (en) A method for manufacturing a heat-generating fabric using high-elasticity, high-strength monofilament and heat-generating fibers and a heat-generating fabric
KR100750874B1 (en) Manufacturing method for planar resistance heating element
JP2960843B2 (en) Fever sheet
KR101393264B1 (en) electro-conductive textile for low voltage
JP5845038B2 (en) Planar heating element
KR20130026275A (en) Planar heating element and manufacturing method thereof
KR200389288Y1 (en) weave type heating element
RU55782U1 (en) ELECTRIC HEATING FABRIC
CN110621091A (en) Woven graphene filament electric heating cloth
CN218352754U (en) Carbon fiber heating device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000425