JPH04237182A - Manufacture of distorted quantum well laser - Google Patents

Manufacture of distorted quantum well laser

Info

Publication number
JPH04237182A
JPH04237182A JP580891A JP580891A JPH04237182A JP H04237182 A JPH04237182 A JP H04237182A JP 580891 A JP580891 A JP 580891A JP 580891 A JP580891 A JP 580891A JP H04237182 A JPH04237182 A JP H04237182A
Authority
JP
Japan
Prior art keywords
quantum well
layer
strained quantum
active layer
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP580891A
Other languages
Japanese (ja)
Inventor
Toshiaki Fukunaga
敏明 福永
Kenji Watanabe
賢司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP580891A priority Critical patent/JPH04237182A/en
Publication of JPH04237182A publication Critical patent/JPH04237182A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable a distorted quantum well laser to be sharply shortened in manufacturing time and lessened in oscillation threshold current, temperature dependence, and emission beam width by a method wherein the distorted quan tum well laser structure provided with a current constriction mechanism and a refractive index waveguide mechanism is formed through the growth of crys tal. CONSTITUTION:An N-AlGaAs clad layer 12 and a GaAs light guide layer are formed on an N-GaAs substrate 11 through a molecular beam epitaxial growth method, and a process through which a stripe-like mask 14 is set above the substrate and another process through which the diffusion of atoms is controlled in the growth of a distorted quantum well which serves as an active layer to form a GaAs buried layer 16 where an InGaAs quantum well active layer 15 is buried are provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、化合物半導体の光・電
子デバイスの高性能化に大きく寄与する歪み量子井戸レ
ーザの製造方法に関するものである。即ち、2種類のバ
ンドギャップの違う半導体から構成され、エネルギーギ
ャップが大きい半導体によって他方の半導体が包み込ま
れ、活性層となる量子井戸が基板と格子定数が異なり歪
むことを特徴とした歪み量子井戸レーザの製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a strained quantum well laser, which greatly contributes to improving the performance of compound semiconductor opto-electronic devices. In other words, it is a strained quantum well laser that is composed of two types of semiconductors with different band gaps, in which the other semiconductor is surrounded by the semiconductor with a large energy gap, and the quantum well serving as the active layer has a different lattice constant from the substrate and is distorted. The present invention relates to a manufacturing method.

【0002】0002

【従来の技術】従来、このような分野の技術としては、
例えば A.Lasson,S.Forouhar,J.Cod
y  and  R.J.Lang:「980nmで発
振する高信頼性狭ストライプ・プッシュドモーフィック
・単一量子井戸レーザの高出力動作」(High−Po
wer  Operation  of  Highl
y  Reliable  Narrow  Stri
pePseudomorphic  Single  
Quantum  WellLasers  Emit
ting  at  980  nm)IEEE  P
HOTONICS  TECHNOLOGY  LET
TERS  VOL.2,No.5,MAY,1990
年  P.307−309に記載されるものがあった。
[Prior Art] Conventionally, technologies in this field include:
For example, A. Lasson, S. Forouhar, J. Cod
y and R. J. Lang: "High-power operation of a highly reliable narrow stripe pushed morphic single quantum well laser oscillating at 980 nm" (High-Po
Were Operation of High
y Reliable Narrow Stri
pePseudomorphic Single
Quantum Well Lasers Emit
ting at 980 nm) IEEE P
HOTONICS TECHNOLOGY LET
TERS VOL. 2, No. 5, MAY, 1990
Year P. There was one described in 307-309.

【0003】図3はかかる従来の分子線エピタキシャル
成長InGaAs/GaAs/AlGaAs  GRI
N−SCH  SQWの組成プロファイル及び層厚を示
す図、図4はかかる歪み量子井戸レーザの断面図である
。 これらの図に示すように、この種の歪み量子井戸レーザ
の製造方法としては、分子線エピタキシャル成長によっ
て、n−GaAs基板1上にn−AlGaAsクラッド
層2、AlGaAs  GRIN−SCH(Grate
d  IndexSeparate  Confine
ment  Heterostracture)+In
GaAs  SQW(Single  Quantum
  Well)層3、p−AlGaAsクラッド層4、
p−GaAsコンタクト層5を積層した後、3μm程度
のストライプの領域を残し、屈折率導波機構を形成する
ため、活性層近傍までドライエッチングあるいは化学エ
ッチングでp−GaAsコンタクト層5、p−AlGa
Asクラッド層4の大部分を除去し、リッジ構造を形成
し、その後、絶縁膜6を用い電流狭窄を行っていた。
FIG. 3 shows such conventional molecular beam epitaxial growth InGaAs/GaAs/AlGaAs GRI.
FIG. 4, which is a diagram showing the composition profile and layer thickness of N-SCH SQW, is a cross-sectional view of such a strained quantum well laser. As shown in these figures, the method for manufacturing this type of strained quantum well laser is to form an n-AlGaAs cladding layer 2 and an AlGaAs GRIN-SCH (Grate) on an n-GaAs substrate 1 by molecular beam epitaxial growth.
dIndexSeparate Confine
ment Heterostructure)+In
GaAs SQW (Single Quantum
Well) layer 3, p-AlGaAs cladding layer 4,
After laminating the p-GaAs contact layer 5, the p-GaAs contact layer 5 and the p-AlGa are deposited by dry etching or chemical etching to the vicinity of the active layer, leaving a stripe region of about 3 μm and forming a refractive index waveguide mechanism.
Most of the As cladding layer 4 was removed to form a ridge structure, and then an insulating film 6 was used to perform current confinement.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記の
歪み量子井戸レーザの製造方法では、基本横モード発振
させるためのリッジ構造を、精度良く作製するのが化学
エッチングでは困難であり、ドライエッチングでは、活
性層に損傷が入るという欠点があった。また、基板と格
子整合しないInGaAsを全面に成長しているので、
高出力発振時にストレスに起因する欠陥が生じ、レーザ
素子が劣化するという欠点があった。
[Problems to be Solved by the Invention] However, in the above-mentioned method for manufacturing a strained quantum well laser, it is difficult to precisely produce the ridge structure for fundamental transverse mode oscillation by chemical etching, and by dry etching, There was a drawback that the active layer was damaged. In addition, since InGaAs, which is not lattice matched to the substrate, is grown on the entire surface,
There is a drawback that defects occur due to stress during high-output oscillation, and the laser element deteriorates.

【0005】本発明は、以上に述べたリッジ構造をエッ
チングによって作製する時の問題点とストレスが基板全
面にかかるという問題点を除去し、特性が向上し、信頼
性の高い歪み量子井戸レーザの製造方法を提供すること
を目的としている。
The present invention eliminates the above-mentioned problems when fabricating a ridge structure by etching and stress applied to the entire surface of the substrate, and creates a strained quantum well laser with improved characteristics and high reliability. The purpose is to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明によれば、上記目
的を達成するために、基板上に分子線エピタキシャル成
長によりクラッド層及び光導波層が形成される基板部を
形成する工程と、該基板部上方にストライプ状のマスク
をセットする工程と、分子線エピタキシャル成長法を用
いて活性層となる歪み量子井戸を成長中の原子の拡散を
制御し、歪み量子井戸活性層を埋め込む埋め込み層を形
成する工程とを施すようにしたものである。
[Means for Solving the Problems] According to the present invention, in order to achieve the above object, a step of forming a substrate portion on which a cladding layer and an optical waveguide layer are formed by molecular beam epitaxial growth on a substrate; A step in which a striped mask is set above the active layer and a molecular beam epitaxial growth method is used to control the diffusion of atoms during growth of the strained quantum well that will become the active layer, forming a buried layer that buries the strained quantum well active layer. The process is as follows.

【0007】また、前記歪み量子井戸活性層を埋め込む
工程は、微小領域に歪み量子井戸活性層を成長させ、I
II ,V族原料を交互及び同時に供給することによっ
て行う。更に、前記歪み量子井戸活性層は、InGaA
sからなり、前記埋め込み層はGaAsからなる。
[0007] Furthermore, the step of embedding the strained quantum well active layer involves growing the strained quantum well active layer in a minute region,
This is done by feeding Group II and V raw materials alternately and simultaneously. Furthermore, the strained quantum well active layer is made of InGaA
The buried layer is made of GaAs.

【0008】[0008]

【作用】本発明によれば、上記したように、分子線エピ
タキシャル成長により、ストライプ状のマスクを用いて
、微小領域に歪み量子井戸活性層を成長させ、III 
,V族原料を交互及び同時に供給し、活性層を埋め込む
。 従って、結晶成長によって電流狭窄機構と屈折率導波機
構を持つ歪み量子井戸レーザ構造が形成できるので、レ
ーザ素子作製時間を大幅に短縮できる。
[Operation] According to the present invention, as described above, a strained quantum well active layer is grown in a minute region by molecular beam epitaxial growth using a striped mask, and
, V group raw materials are supplied alternately and simultaneously to embed the active layer. Therefore, since a strained quantum well laser structure having a current confinement mechanism and a refractive index waveguide mechanism can be formed by crystal growth, the time for manufacturing a laser device can be significantly shortened.

【0009】また、このように、作製ストライプ領域だ
けに形成された歪み量子井戸を活性層とする半導体レー
ザを作製することにより、発振閾値電流の低減と温度依
存性の低減、発光線幅の低減、変調周波数の増大および
信頼性の高いレーザを得ることができる。
Furthermore, by manufacturing a semiconductor laser in which the active layer is a strained quantum well formed only in the fabrication stripe region, it is possible to reduce the oscillation threshold current, temperature dependence, and emission line width. , it is possible to obtain an increased modulation frequency and a highly reliable laser.

【0010】0010

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。図1は本発明の実施例を示す歪み量子井戸レ
ーザの製造工程断面図である。まず、図1(a)に示す
ように、分子線エピタキシャル成長により、n−GaA
s(001)基板11上に、n−AlGaAsクラッド
層12(約1μm)、GaAs光導波層13(約20n
m)を積層する。つまり、基板部を形成する。
Embodiments Hereinafter, embodiments of the present invention will be explained in detail with reference to the drawings. FIG. 1 is a sectional view showing the manufacturing process of a strained quantum well laser according to an embodiment of the present invention. First, as shown in Figure 1(a), n-GaA
On the s(001) substrate 11, an n-AlGaAs cladding layer 12 (approximately 1 μm) and a GaAs optical waveguide layer 13 (approximately 20 nm) are formed.
m) is laminated. In other words, a substrate portion is formed.

【0011】次に、図1(b)に示すように、幅3μm
程度のストライプ状のマスク14をかぶせる。そこで、
図2に示すように、数秒間シャッタを閉め、全原料供給
を停止し、Gaのシャッタを開き(t1 )1原子層程
度のGaビームを照射後、シャッタを閉じ、数秒間Ga
原子の表面拡散を促進する。次に、Asのシャッタを開
き(t2 )、これに引き続き、Inのシャッタを開き
(t3 )、1原子層以下のInビームを照射後に、I
nシャッタを閉じてから、Asのシャッタを閉じ、In
原子の表面拡散を抑制する。数秒間の後にGaシャッタ
を開け(t4 )、1原子層程度のGaを照射すること
を繰り返し、InGaAs量子井戸活性層15とGaA
s埋め込み層16を同時にストライプ領域に形成する。 Inビームの供給量は、1原子層以下で、発振波長と閾
値電流が最小になるようにする。InGaAs量子井戸
活性層15の厚みもこの条件によって決まる。更に、G
aAs光導波層17(約20nm)もGaとAsビーム
の1原子層程度の交互供給の成長手法で形成する。
Next, as shown in FIG. 1(b), the width is 3 μm.
Cover with a striped mask 14 of about 100 mL. Therefore,
As shown in Figure 2, the shutter is closed for a few seconds, all raw material supply is stopped, and the Ga shutter is opened (t1). After irradiating a Ga beam of approximately one atomic layer, the shutter is closed and the Ga beam is
Facilitates surface diffusion of atoms. Next, the As shutter is opened (t2), followed by the In shutter (t3), and after irradiating the In beam of one atomic layer or less, the I
Close the n shutter, then close the As shutter, and then
Suppresses surface diffusion of atoms. After a few seconds, the Ga shutter is opened (t4) and irradiation with about one atomic layer of Ga is repeated until the InGaAs quantum well active layer 15 and the GaA
An s-buried layer 16 is simultaneously formed in the stripe region. The amount of In beam supplied is set to be one atomic layer or less so that the oscillation wavelength and threshold current are minimized. The thickness of the InGaAs quantum well active layer 15 is also determined by this condition. Furthermore, G
The aAs optical waveguide layer 17 (about 20 nm) is also formed by a growth method in which Ga and As beams are alternately supplied in layers of about one atomic layer.

【0012】次いで、通常の成長法で、p−AlGaA
sクラッド層18(約1μm)、p−GaAsコンタク
ト層19(約0.5μm)をストライプ領域に形成する
。マスク14上には、InGaAs多結晶23、GaA
s多結晶24、AlGaAs多結晶25、GaAs多結
晶26が積層される。次いで、図1(c)に示すように
、絶縁膜20を形成し、通常のリソグラフィ技術を用い
て、p−GaAsコンタクト層19上の絶縁膜を取り除
き、p側電極21を形成する。次に、裏面にn側電極2
2を形成し、ドライエッチングあるいはへき開によって
、レーザ端面を形成する。
[0012] Next, p-AlGaA is grown using a normal growth method.
An s-cladding layer 18 (approximately 1 μm) and a p-GaAs contact layer 19 (approximately 0.5 μm) are formed in the stripe region. On the mask 14, InGaAs polycrystal 23, GaA
S polycrystal 24, AlGaAs polycrystal 25, and GaAs polycrystal 26 are stacked. Next, as shown in FIG. 1C, an insulating film 20 is formed, and the insulating film on the p-GaAs contact layer 19 is removed using a normal lithography technique to form a p-side electrode 21. Next, the n-side electrode 2 is placed on the back side.
2 is formed, and a laser end face is formed by dry etching or cleavage.

【0013】上記した実施例では、n−GaAs基板上
での成長について説明を行ったが、不純物の選択によっ
て、p−GaAs基板上でもかまわない。更に、GaS
b基板上へのInGaSb量子井戸レーザ、GaP基板
上へのGaInP量子井戸レーザの形成等についても応
用できる。なお、本発明は上記実施例に限定されるもの
ではなく、本発明の趣旨に基づいて種々の変形が可能で
あり、これらを本発明の範囲から排除するものではない
In the above embodiments, growth on an n-GaAs substrate was explained, but growth on a p-GaAs substrate may be used depending on the selection of impurities. Furthermore, GaS
It can also be applied to the formation of an InGaSb quantum well laser on a b substrate, a GaInP quantum well laser on a GaP substrate, etc. Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0014】[0014]

【発明の効果】以上詳細に説明したように、本発明によ
れば、結晶成長によって電流狭窄機構と屈折率導波機構
を持つ歪み量子井戸レーザ構造を形成できるので、レー
ザ素子作製時間を大幅に短縮できる。また、このように
、作製ストライプ領域だけに形成された歪み量子井戸を
活性層とする半導体レーザを作製することにより、発振
閾値電流の低減と温度依存性の低減、発光線幅の低減、
変調周波数の増大および信頼性の高いレーザを得るこき
ができる。そして、本発明は、超高速の光情報処理及び
通信等の広い分野に適用することができる。
[Effects of the Invention] As explained in detail above, according to the present invention, a strained quantum well laser structure having a current confinement mechanism and a refractive index waveguide mechanism can be formed by crystal growth, so that the manufacturing time of a laser device can be significantly reduced. Can be shortened. In addition, by manufacturing a semiconductor laser in which the active layer is a strained quantum well formed only in the fabricated stripe region, it is possible to reduce the oscillation threshold current, reduce temperature dependence, and reduce the emission line width.
It is possible to increase the modulation frequency and obtain a highly reliable laser. The present invention can be applied to a wide range of fields such as ultra-high speed optical information processing and communication.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す歪み量子井戸レーザの製
造工程断面図である。
FIG. 1 is a cross-sectional view showing the manufacturing process of a strained quantum well laser according to an embodiment of the present invention.

【図2】本発明の歪み量子井戸作製時のGa,In,A
sシャッタの開閉フローチャートである。
[Figure 2] Ga, In, A during fabrication of strained quantum wells of the present invention
5 is a flowchart for opening and closing the s-shutter.

【図3】従来の分子線エピタキシャル成長InGaAs
/GaAs/AlGaAs  GRIN−SCH  S
QWの組成プロファイル及び層厚を示す図である。
[Figure 3] Conventional molecular beam epitaxial growth InGaAs
/GaAs/AlGaAs GRIN-SCH S
It is a figure which shows the composition profile and layer thickness of QW.

【図4】従来の歪み量子井戸レーザの断面図である。FIG. 4 is a cross-sectional view of a conventional strained quantum well laser.

【符号の説明】[Explanation of symbols]

11    n−GaAs(001)基板12    
n−AlGaAsクラッド層13    GaAs光導
波層 14    マスク 15    InGaAs量子井戸活性層16    
GaAs埋め込み層 17    GaAs光導波層 18    p−AlGaAsクラッド層19    
p−GaAsコンタクト層20    絶縁膜 21    p側電極 22    n側電極 23    InGaAs多結晶 24    GaAs多結晶 25    AlGaAs多結晶 26    GaAs多結晶
11 n-GaAs (001) substrate 12
n-AlGaAs cladding layer 13 GaAs optical waveguide layer 14 mask 15 InGaAs quantum well active layer 16
GaAs buried layer 17 GaAs optical waveguide layer 18 p-AlGaAs cladding layer 19
p-GaAs contact layer 20 insulating film 21 p-side electrode 22 n-side electrode 23 InGaAs polycrystal 24 GaAs polycrystal 25 AlGaAs polycrystal 26 GaAs polycrystal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)基板上に分子線エピタキシャル成長
によりクラッド層及び光導波層が形成される基板部を形
成する工程と、 (b)該基板部上方にストライプ状のマスクをセットす
る工程と、 (c)分子線エピタキシャル成長法を用いて活性層とな
る歪み量子井戸を成長中の原子の拡散を制御し、歪み量
子井戸活性層を埋め込む埋め込み層を形成する工程とを
施すことを特徴とする歪み量子井戸レーザの製造方法。
1. (a) forming a substrate portion on which a cladding layer and an optical waveguide layer are formed by molecular beam epitaxial growth, and (b) setting a striped mask above the substrate portion. (c) controlling the diffusion of atoms during growth of the strained quantum well that will become the active layer using a molecular beam epitaxial growth method to form a buried layer that buries the strained quantum well active layer. A method for manufacturing strained quantum well lasers.
【請求項2】  前記歪み量子井戸活性層を埋め込む工
程は、微小領域に歪み量子井戸活性層を成長させ、II
I ,V族原料を交互及び同時に供給することを特徴と
する請求項1記載の歪み量子井戸レーザの製造方法。
2. In the step of embedding the strained quantum well active layer, the strained quantum well active layer is grown in a micro region, and
2. The method of manufacturing a strained quantum well laser according to claim 1, wherein the I and V group raw materials are supplied alternately and simultaneously.
【請求項3】  前記歪み量子井戸活性層はInGaA
sからなり、前記埋め込み層はGaAsからなる請求項
1記載の歪み量子井戸レーザの製造方法。
3. The strained quantum well active layer is made of InGaA.
2. The method of manufacturing a strained quantum well laser according to claim 1, wherein the buried layer is made of GaAs.
JP580891A 1991-01-22 1991-01-22 Manufacture of distorted quantum well laser Withdrawn JPH04237182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP580891A JPH04237182A (en) 1991-01-22 1991-01-22 Manufacture of distorted quantum well laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP580891A JPH04237182A (en) 1991-01-22 1991-01-22 Manufacture of distorted quantum well laser

Publications (1)

Publication Number Publication Date
JPH04237182A true JPH04237182A (en) 1992-08-25

Family

ID=11621387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP580891A Withdrawn JPH04237182A (en) 1991-01-22 1991-01-22 Manufacture of distorted quantum well laser

Country Status (1)

Country Link
JP (1) JPH04237182A (en)

Similar Documents

Publication Publication Date Title
US5506170A (en) Method of making a semiconductor laser with a self-sustained pulsation
US5757835A (en) Semiconductor laser device
US5737351A (en) Semiconductor laser including ridge structure extending between window regions
KR980012751A (en) GaN-based compound semiconductor laser and manufacturing method thereof
US5541950A (en) Semiconductor laser including groove having variable dimensions
JPH08148757A (en) Manufacture of semiconductor laser
JP3786054B2 (en) Semiconductor optical device and semiconductor laser
JPH1093198A (en) Gallium nitride compound semiconductor laser and its manufacture thereof
JPH04237182A (en) Manufacture of distorted quantum well laser
JPS61296783A (en) Semiconductor laser device
JP2751699B2 (en) Semiconductor laser
JP3196831B2 (en) Method for manufacturing semiconductor laser device
JPH10209562A (en) Manufacture of semiconductor laser element
JP3022351B2 (en) Optical semiconductor device and method of manufacturing the same
JP2000058969A (en) Semiconductor laser device
KR100261243B1 (en) Laser diode and its manufacturing method
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JP2973215B2 (en) Semiconductor laser device
JPH11112075A (en) Semiconductor laser device and its manufacture
JPH0537070A (en) Manufacture of distributed feedback type semiconductor laser element
JPH06112586A (en) Semiconductor laser diode
JPS62134986A (en) Manufacture of semiconductor laser
JPH04237183A (en) Distorted quantum well laser
JPH0637390A (en) Semiconductor laser and its manufacture
JPH06252508A (en) Semiconductor laser

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514