JPS61296783A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS61296783A
JPS61296783A JP13772285A JP13772285A JPS61296783A JP S61296783 A JPS61296783 A JP S61296783A JP 13772285 A JP13772285 A JP 13772285A JP 13772285 A JP13772285 A JP 13772285A JP S61296783 A JPS61296783 A JP S61296783A
Authority
JP
Japan
Prior art keywords
layer
electrode
gaas
quantum well
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13772285A
Other languages
Japanese (ja)
Inventor
So Otoshi
創 大歳
Kazuhisa Uomi
魚見 和久
Shinichi Nakatsuka
慎一 中塚
Naoki Kayane
茅根 直樹
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13772285A priority Critical patent/JPS61296783A/en
Publication of JPS61296783A publication Critical patent/JPS61296783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the change of the intensity of light of the title laser device by a method wherein two kinds of regions having different forbidden band width or the thickness of a quantum well layer are formed, thereby enabling to emit the light spot having two different wavelength with the controlled lateral mode of oscillation. CONSTITUTION:First, an active layer 3 of quantum well structure, an n-GaAlAs clad layer 4, and an n-GaAs layer are successively formed on an n-GaAs substrate 1 using an organic metal thermal decomposition vapor-phase growing method (MOCVD method). Then, a p-GaAs cap layer 6 and a Zn diffusion region 7 are formed by diffusion Zn on the n-GaAs layer and the clad layer 2 by performing a selective diffusion method. Subsequently, an n-electrode 8 is formed using a vapor-deposition method, and after an n-electrode is formed on the whole surface on the cap side, a stripe-like n-electrode 10 is formed by performing an etching. A p-electrode is formed on both sides of the electrode 10 using a vapor-deposition method and a lift-of method. Lastly, a groove 11 is provided by applying an etching to the p-electrode and the GaAs layer located on both sides of the n-electrode, and electrodes 9 and 10 are formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、横モードが制御された2つの異なる波長の発
光をする半導体レーザに係り、特に該2つの発光の強度
を独立に変化し得るものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor laser that emits light at two different wavelengths with controlled transverse modes, and particularly to a semiconductor laser that can independently change the intensity of the two light emissions. Regarding.

〔発明の背景〕[Background of the invention]

1つの半導体レーザで、発光波長が異なる2ケ以主の光
スポットで発光するレーザは、ダブル・ティー・ツアン
“連続発振する多波長レーザアップライド・フィジック
ス・レター第36巻(6)。
A single semiconductor laser that emits light from two or more main light spots with different emission wavelengths is a laser that emits light at two or more main light spots with different emission wavelengths.

1980年3月15日 第441項(W−T−Tsan
g”” CW +multivavalength t
ranseverse−junction−strip
e 1asers grown by molecul
ar beamapitaxy  operating
  predominantly  in  ’sin
gle−1ongitudinal modes”A 
ppl Phys 1ett 。
March 15, 1980 Section 441 (W-T-Tsan
g”” CW +multivalength t
ranseverse-junction-strip
e 1asers grown by molecule
ar beamapitaxy operating
predominantly in 'sin
gle-1ongitudinal modes”A
ppl Phys 1ett.

Vo136 C6) 、 15March1980.P
、 441)に記載されている。しかし、各光スポット
の光強度を独立に変化させることができないので、その
用途は必然的に限定される。
Vo136 C6), 15March1980. P
, 441). However, since the light intensity of each light spot cannot be changed independently, its use is inevitably limited.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、発振の横モードが制御された2つの異
なる波長の光スポットを発し、その各々の光強度を可変
し得る半導体レーザの構造を提供することにある。
An object of the present invention is to provide a semiconductor laser structure that emits light spots of two different wavelengths in which the transverse mode of oscillation is controlled and can vary the light intensity of each spot.

〔発明の橿要〕[Keystone of the invention]

半導体レーザの発振波長は、通常のダブルへテロ型では
活性層の禁制帯幅で決まり、また、量子井戸型レーザの
場合は禁制帯幅の他に井戸層の厚みにも依存する(第2
図参照)。そこで、2つの波長の発光番する半導体レー
ザを得るには禁制帯幅もしくは量子井戸層の厚みが異な
る2種類の領域を形成しなければならない。
The oscillation wavelength of a semiconductor laser is determined by the forbidden band width of the active layer in a normal double hetero type laser, and in the case of a quantum well type laser, it also depends on the thickness of the well layer in addition to the forbidden band width.
(see figure). Therefore, in order to obtain a semiconductor laser that emits light at two wavelengths, it is necessary to form two types of regions with different forbidden band widths or quantum well layer thicknesses.

本発明の構成の一例を第1図に示し、これを用いて説明
する。第1図における活性層3の拡大図を第3図に示す
、第3図に示すように、活性層3は活性領域A、障壁層
および性性領域Bで構成されており、活性領域AとBと
では禁制帯幅および/もしくは量子井戸層の厚みが異な
っている。活性領域AとBの間には障壁層が設けである
ので、第2図に示す電極9と10の間に通電した時には
活性領域Aが発光し、電極8と9の間に通電した時には
活性領域が発光する。この時通電電流を各各変化させれ
ば、活性領域AとBの発光強度をそれぞれ独立に変化さ
せることができる。
An example of the configuration of the present invention is shown in FIG. 1, and will be explained using this. FIG. 3 shows an enlarged view of the active layer 3 in FIG. 1. As shown in FIG. The forbidden band width and/or the thickness of the quantum well layer are different from B. Since a barrier layer is provided between active regions A and B, active region A emits light when electricity is applied between electrodes 9 and 10 shown in FIG. 2, and becomes active when electricity is applied between electrodes 8 and 9. The area glows. At this time, by varying the applied current, the light emission intensities of active regions A and B can be varied independently.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1および3図を用いて説明する。Example 1 This will be explained using FIGS. 1 and 3.

第1図を用いて本発明の半導体レーザの作製方法の一例
を述べる。
An example of a method for manufacturing a semiconductor laser of the present invention will be described with reference to FIG.

まず、n −G a A s基板1上にn −GaA 
Q Asクラッド層2、量子井戸構造の活性層3、n 
−G sA Q Asクラッド層4、n−GaAs層を
順次有機金属熱分解気相成長法(MOCVD法)を用い
て形成する。次に、Znを選択拡散法により、n−G 
a A s層からクラッド層2に至るまで拡散せしめて
、p−GaAsキャップ層6およびZn拡散領域7を形
成する。続いて蒸着法を用いて、n電極8を形成し、さ
らにキャップ側にもn電極を全面に形成した後エツチン
グによりストライプ状のn電極10を形成する。そして
、電極10の両側に蒸着法およびリフトオフ法を用いて
p電極を形成し、最後にn電極の両側のp電極とG a
 A s層キャップ層をエツチングして溝11を設けて
電極9および 10を形成する。
First, n -GaA is deposited on the n -GaAs substrate 1.
Q As cladding layer 2, quantum well structure active layer 3, n
-G sA Q As cladding layer 4 and n-GaAs layer are sequentially formed using a metal organic pyrolysis vapor deposition method (MOCVD method). Next, Zn was converted into n-G by selective diffusion method.
The p-GaAs cap layer 6 and Zn diffusion region 7 are formed by diffusing from the aAs layer to the cladding layer 2. Subsequently, an n-electrode 8 is formed using a vapor deposition method, and an n-electrode is also formed on the entire surface of the cap side, and then a striped n-electrode 10 is formed by etching. Then, p electrodes are formed on both sides of the electrode 10 using a vapor deposition method and a lift-off method, and finally p electrodes on both sides of the n electrode and Ga
The As layer cap layer is etched to provide grooves 11 to form electrodes 9 and 10.

この実施例においては、第3図に示すように、活性層は
量子井戸構造となっている。すなわち、各層の厚さは、
活性領域Aにおいては、井戸層が3nm、障壁層を4n
mとし、活性領域Bにおいては、井戸層が6nm、障壁
層を4nmとし、活性領域AとBの間のG a、、、、
A Qa、4sA s障壁層の厚さを8nmとした。
In this embodiment, as shown in FIG. 3, the active layer has a quantum well structure. That is, the thickness of each layer is
In active region A, the well layer is 3 nm thick and the barrier layer is 4 nm thick.
m, and in active region B, the well layer is 6 nm thick, the barrier layer is 4 nm thick, and Ga between active regions A and B is...
The thickness of the A Qa, 4sA s barrier layer was 8 nm.

実施例2 第4および5図を用いて説明する。Example 2 This will be explained using FIGS. 4 and 5.

第4図は本実施例の半導体レーザ製造過程を示す。FIG. 4 shows the manufacturing process of the semiconductor laser of this embodiment.

まず、n−GaAs基板1の上にn−GaAsAsクラ
ッド層2、量子井戸構造による活性層3およびn”Ga
AsAsクラッド層4を分子線エピタキシー(MBE)
法により順次形成する(第4図(a))。次にZnイオ
ンを選択的に打ち込み(第4図(b))、その上にn 
−G a A Q A sクラッド層4を形成する(第
4図(C))。続いて再びZnイオン打込み(第4図(
d ) ) 、 n −G a A Q A sクラッ
ド層4′およびn−GaA3キャップ層5を形成する(
第4図(e))。次に、またZnイオンを選択的に打込
みn−GaAsの一部をp −G a A sキャップ
層6′とする。最後に実施例1と同様に電極8゜9およ
び10を形成する。
First, on an n-GaAs substrate 1, an n-GaAsAs cladding layer 2, an active layer 3 having a quantum well structure, and an n"Ga
Molecular beam epitaxy (MBE) for AsAs cladding layer 4
(FIG. 4(a)). Next, Zn ions are selectively implanted (Fig. 4(b)), and n
- Form a GaAQAs cladding layer 4 (FIG. 4(C)). Next, Zn ion implantation was performed again (Fig. 4 (
d) ), forming the n-GaAQAs cladding layer 4' and the n-GaA3 cap layer 5 (
Figure 4(e)). Next, Zn ions are selectively implanted again to form a part of the n-GaAs into a p-GaAs cap layer 6'. Finally, electrodes 8.9 and 10 are formed in the same manner as in Example 1.

実施例3 第6図を用いて説明する。Example 3 This will be explained using FIG.

第1図と同じ構造であるが、活性M3およびクラッド層
2および4の活性層3の近傍の構造を第6図に示すよう
にした。すなわち、活性層は厚さ3nmの量子井戸層と
厚さ6nmの量子井戸層の間に厚さ6nmのG aa、
ssA Qa、4sA s障壁層を設けた構造にし、ク
ラッド層のA Q A s混晶比が活性層に近い程小さ
くなっている。このA Q A s混晶比の変化は、ク
ラッド層の屈折率分布n (r)が次式で示されるよう
にした。
Although the structure is the same as that shown in FIG. 1, the structure of the active M3 and the cladding layers 2 and 4 in the vicinity of the active layer 3 is shown in FIG. That is, the active layer has a 6 nm thick Gaa layer between a 3 nm thick quantum well layer and a 6 nm thick quantum well layer.
The structure includes ssA Qa and 4sA s barrier layers, and the A Q As mixed crystal ratio of the cladding layer becomes smaller as it approaches the active layer. This change in the A Q A s mixed crystal ratio causes the refractive index distribution n (r) of the cladding layer to be expressed by the following equation.

(ただしO< r < t ) n (r) =n、   (だだしr :> t )こ
こで、7勺(n x−n * ) ’ / n tで、
nlはA n A s混晶比Xが0.20の時の屈折率
(約3.452)、n2はA Q A s混晶比Xが0
.45 の時の屈折率(約3.289)  である。ま
た、rは量子井戸層の壁とクラッド層がなす境界を原点
としたクラッド側方向の座標である。またtはAuAs
混晶比が変化しているクラッド層領域の厚さである。勾
配を決めるαは5とした。
(However, O < r < t) n (r) = n, (r:> t) Here, 7 t (n x - n *) ' / nt,
nl is the refractive index (approximately 3.452) when the A n A s mixed crystal ratio X is 0.20, and n2 is the refractive index when the A Q A s mixed crystal ratio X is 0.
.. 45 (approximately 3.289). Further, r is a coordinate in the cladding side direction with the origin being the boundary between the wall of the quantum well layer and the cladding layer. Also, t is AuAs
This is the thickness of the cladding layer region where the mixed crystal ratio is changing. α, which determines the slope, was set to 5.

以上の実施例1,2および3の半導体レーザは。The semiconductor lasers of Examples 1, 2 and 3 above are as follows.

ともに電極9と10の間に順バイアスを印加した時に波
長0.78μmのレーザ光を放射し、電極8と9の間に
順バイアスを印加した時に波長0.83μmのレーザ光
を放射した。また、それぞれバイアス電流を制御してそ
れぞれの放射光強度を調整することができた。しきい電
流値は50〜80mAで、放射光出力が30mWまで横
はモードが単一であった。
When a forward bias was applied between electrodes 9 and 10, a laser beam with a wavelength of 0.78 μm was emitted, and when a forward bias was applied between electrodes 8 and 9, a laser beam with a wavelength of 0.83 μm was emitted. Furthermore, it was possible to adjust the intensity of each emitted light by controlling the bias current. The threshold current value was 50 to 80 mA, and the horizontal mode was single until the emitted light output was 30 mW.

以上の説明においてはGaA Q As系材料を用いた
場合であったが、InGaAs P系I n G a 
P系等の化合物半導体材料を用いても同様の結果が得ら
れることは云うまでもない。
In the above explanation, GaAQAs-based material was used, but InGaAsP-based InGa
It goes without saying that similar results can be obtained even if a P-based compound semiconductor material or the like is used.

また量子井戸層の厚さは2〜λOnm、障壁層の厚さは
2〜jonm、また2つの活性領域が狭む障て°   
 を 壁層の厚さは2〜10θnmの範囲を本発明の実施でき
た。
In addition, the thickness of the quantum well layer is 2 to λ Onm, the thickness of the barrier layer is 2 to 10 nm, and there is a problem that the two active regions are narrowed.
The thickness of the wall layer was within the range of 2 to 10 [theta]nm in order to implement the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、異なる波長のレーザ光放射をする2つ
の活性領域を有し、それぞれの領域へのキャリア注入量
を独立に制御でき、2つの放射光量を独立に可変とする
ことができる半導体を提供できるので、新規で高度の光
応用装置が開発される効果がある。
According to the present invention, a semiconductor has two active regions that emit laser light of different wavelengths, the amount of carrier injection into each region can be independently controlled, and the amount of emitted light of the two can be independently varied. This has the effect of allowing new and advanced optical application devices to be developed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概要および実施例を説明するための図
、第2図は本発明の詳細な説明に用いる図、第3図は実
施例1の説明に用いる図、第4および5図は実施例2の
説明に用いる図、第6図は実施例3を説明するための図
である。 1・・・基板、2,4.4’・・・クラッド層、5,6
゜6′・・・キャップ層、3・・・活性層、7・・・Z
拡散層、7′・・・Znイオン打込み層、8,9および
10・・・31  図 ¥J 2 図 井7アi  (Δ−ノ ヤヤツ7¥A到 Z=ρ    ρ、2   θ、45 」(才及剰 t 5 図 劣 6 図 χ;ρ  /、2    /、45 基褪側
Fig. 1 is a diagram for explaining the outline and embodiments of the present invention, Fig. 2 is a diagram used for detailed explanation of the present invention, Fig. 3 is a diagram used for explaining Embodiment 1, and Figs. 4 and 5. 6 is a diagram used to explain the second embodiment, and FIG. 6 is a diagram used to explain the third embodiment. 1...Substrate, 2,4.4'...Clad layer, 5,6
゜6'...Cap layer, 3...Active layer, 7...Z
Diffusion layer, 7'...Zn ion implantation layer, 8, 9 and 10...31 Surplus talent t 5 Inadequacy 6 Figure χ;ρ /, 2 /, 45 Basic side

Claims (1)

【特許請求の範囲】 1、障壁を狭んだ2つの活性領域を含む活性層を有する
半導体レーザにおいて、該活性領域を構成する半導体層
の禁制帯幅もしくは厚さ、または該禁制帯幅および厚さ
が異なり、2対の電極を有して該2つの活性領域を独立
に制御できるようにしたことを特徴とする半導体レーザ
装置。 2、上記活性領域を電流狭窄構造としたことを特徴とす
る特許請求の範囲第1項記載の半導体レーザ装置。
[Claims] 1. In a semiconductor laser having an active layer including two active regions with a narrow barrier, the forbidden band width or thickness of the semiconductor layer constituting the active region, or the forbidden band width and thickness 1. A semiconductor laser device characterized in that it has two pairs of electrodes having different characteristics, so that the two active regions can be controlled independently. 2. The semiconductor laser device according to claim 1, wherein the active region has a current confinement structure.
JP13772285A 1985-06-26 1985-06-26 Semiconductor laser device Pending JPS61296783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13772285A JPS61296783A (en) 1985-06-26 1985-06-26 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13772285A JPS61296783A (en) 1985-06-26 1985-06-26 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS61296783A true JPS61296783A (en) 1986-12-27

Family

ID=15205297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13772285A Pending JPS61296783A (en) 1985-06-26 1985-06-26 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS61296783A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156383A (en) * 1986-12-19 1988-06-29 Sanyo Electric Co Ltd Semiconductor laser
JPS63312688A (en) * 1987-06-15 1988-12-21 Mitsubishi Electric Corp Semiconductor laser and application thereof
JPH02285690A (en) * 1989-04-26 1990-11-22 Nec Corp Semiconductor laser and optical disc device
US5031185A (en) * 1988-11-17 1991-07-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a disordered superlattice
US5138626A (en) * 1990-09-12 1992-08-11 Hughes Aircraft Company Ridge-waveguide buried-heterostructure laser and method of fabrication
US5151913A (en) * 1990-01-09 1992-09-29 Nec Corporation Semiconductor laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156383A (en) * 1986-12-19 1988-06-29 Sanyo Electric Co Ltd Semiconductor laser
JPS63312688A (en) * 1987-06-15 1988-12-21 Mitsubishi Electric Corp Semiconductor laser and application thereof
US5031185A (en) * 1988-11-17 1991-07-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a disordered superlattice
JPH02285690A (en) * 1989-04-26 1990-11-22 Nec Corp Semiconductor laser and optical disc device
US5151913A (en) * 1990-01-09 1992-09-29 Nec Corporation Semiconductor laser
US5138626A (en) * 1990-09-12 1992-08-11 Hughes Aircraft Company Ridge-waveguide buried-heterostructure laser and method of fabrication

Similar Documents

Publication Publication Date Title
JPH0750448A (en) Semiconductor laser and manufacture thereof
US5541950A (en) Semiconductor laser including groove having variable dimensions
JP2002076514A (en) Laser diode and production method therefor
Wada et al. A high‐power, single‐mode laser with twin‐ridge‐substrate structure
US5786234A (en) Method of fabricating semiconductor laser
JPH0629621A (en) Semiconductor laser device
JPS61296783A (en) Semiconductor laser device
US5173913A (en) Semiconductor laser
JP2001057459A (en) Semiconductor laser
JPH06196809A (en) Semiconductor optical device and manufacture thereof
JPH0376288A (en) Buried type semiconductor laser
US5376581A (en) Fabrication of semiconductor laser elements
JP2680015B2 (en) Semiconductor laser device
JPH0936479A (en) Semiconductor laser and fabrication thereof
JP2679057B2 (en) Manufacturing method of semiconductor laser
JP3022351B2 (en) Optical semiconductor device and method of manufacturing the same
JP3185239B2 (en) Semiconductor laser device
JPH0831652B2 (en) Semiconductor laser
JPH08316566A (en) Semiconductor laser device
JPH0125238B2 (en)
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JPH05343791A (en) Laser diode element
JP2558767B2 (en) Semiconductor laser device
JPH0558594B2 (en)
JP2839337B2 (en) Visible light semiconductor laser