JPS63312688A - Semiconductor laser and application thereof - Google Patents

Semiconductor laser and application thereof

Info

Publication number
JPS63312688A
JPS63312688A JP14864287A JP14864287A JPS63312688A JP S63312688 A JPS63312688 A JP S63312688A JP 14864287 A JP14864287 A JP 14864287A JP 14864287 A JP14864287 A JP 14864287A JP S63312688 A JPS63312688 A JP S63312688A
Authority
JP
Japan
Prior art keywords
semiconductor laser
quantum well
active layer
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14864287A
Other languages
Japanese (ja)
Inventor
Teruhito Matsui
松井 輝仁
Yasuki Tokuda
徳田 安紀
Noriaki Tsukada
塚田 紀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14864287A priority Critical patent/JPS63312688A/en
Publication of JPS63312688A publication Critical patent/JPS63312688A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3428Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer orientation perpendicular to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain laser beams having different wavelengths with a semiconductor laser by composing active layers of the semiconductor laser with a plurality of quantum well layers having different energy levels and by providing the control part of light absorption in a resonator and further, by mounting electrodes for applying currents so as to control active layer parts and the control part of light absorption independently, thereby controlling oscillation wavelengths through controlling light absorption. CONSTITUTION:This device is equipped with; active layers 4a and 4b which are composed of a plurality of quantum well active layers where their discrete energy levels are different one another; a control part B of light absorption which is mounted in a resonator; and electrodes for applying currents 12a and 12b which are independently prepared at the above control part B and at the active layer A other than the control part B. Since the device is able to emit laser beams having specific wavelengths by controlling respective electrodes independently, the laser lights oscillate at a number of wavelengths which have short intervals of light-emitting and are satisfactorily controlled. Then, multi-wavelength oscillation type semiconductor laser beams not only make it possible to perform switching but also are applicable to wide fields as light amplifiers, sensors, and the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、発振波長を制御することが可能な半導体レ
ーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser whose oscillation wavelength can be controlled.

〔従来の技術〕[Conventional technology]

第9図は例えば、アプライド フィジックス レターズ
、39巻、134頁〜137頁(Appl、 Phys
Figure 9 is, for example, published in Applied Physics Letters, Vol. 39, pp. 134-137 (Appl, Phys.
.

Lett、、 Vol、 39. pp134−137
 )に示された従来の量子井戸型半導体レーザを示す断
面図であり、図において、lはn” −G a A s
基板、2はn−Af2Gaz−、Asクラフト層、3は
n−,6,f2Qaz−+As放物型屈折率分布層(2
は徐々にyに変化)、4はp  Alx Gat−x 
As’!子井戸油井戸活性層p−AN、Gat−y A
s放物型屈折率分布層(yは徐々に2に変化)、7はp
−A12G a +−z A Sクラッド層、8はp”
 −GaAsキャップ層である。
Lett, Vol. 39. pp134-137
) is a cross-sectional view showing the conventional quantum well semiconductor laser shown in FIG.
Substrate, 2 is n-Af2Gaz-, As kraft layer, 3 is n-, 6, f2Qaz-+As parabolic gradient index layer (2
gradually changes to y), 4 is p Alx Gat-x
As'! Koido oil well active layer p-AN, Gat-y A
s parabolic gradient index layer (y gradually changes to 2), 7 is p
-A12G a +-z A S cladding layer, 8 is p”
-GaAs cap layer.

次に動作について説明する。Next, the operation will be explained.

第7図のように薄い半導体層をバンドギャップの大きい
半導体バリヤ層ではさんでやると、この−薄い半導体層
はポテンシャルの井戸層を形成し、この井戸に閉じ込め
られた電子(または正孔)はその固有エネルギーEn(
伝導帯の底から測った場合)はSchrodinger
方程式よりn=1.2,3+ ・・・(1) となり、離散的なエネルギー準位を形成する。ここでm
e”は電子の有効質量:イはブランク定数を2πで割っ
たもの、Lzは量子井戸層の厚さである。
When a thin semiconductor layer is sandwiched between semiconductor barrier layers with a large bandgap as shown in Figure 7, this thin semiconductor layer forms a potential well layer, and the electrons (or holes) confined in this well are Its specific energy En(
(when measured from the bottom of the conduction band) is Schrodinger
From the equation, n=1.2, 3+ (1), and discrete energy levels are formed. Here m
e'' is the effective mass of the electron; i is the blank constant divided by 2π; Lz is the thickness of the quantum well layer.

このように電子は量子化されたエネルギーEnを持ち、
電子の状態密度ρ(F、)は第8図に示すようにバルク
結晶では破線で示す放物線型であったものが、量子井戸
中では実線で示すように階段型となる。
In this way, the electron has quantized energy En,
As shown in FIG. 8, the electron state density ρ(F,) is parabolic in the bulk crystal as shown by the broken line, but becomes step-like in the quantum well as shown in the solid line.

従って、量子井戸層を活性層とし、両側をバンドギャッ
プの大きいp型半導体層、n型半導体層とすると、キャ
リア(電子及び正孔)と光を閉じ込めることができ、量
子井戸型半導体レーザを作ることができる。
Therefore, if a quantum well layer is used as an active layer and a p-type semiconductor layer and an n-type semiconductor layer with a large band gap are used on both sides, carriers (electrons and holes) and light can be confined, creating a quantum well semiconductor laser. be able to.

このようにして作られた半導体レーザは通常のダブルへ
テロ接合により構成された半導体レーザに比べ活性層の
バンドギャップ(禁制帯幅)が同じ材料で作られていれ
ば、量子井戸型半導体レーザの場合はn−1のエネルギ
ー準位が伝導帯の底よりも高いため(第8図の実線)、
伝導帯の底と価電子帯の天井のエネルギー差で発振する
通常のダブルへテロ接合半導体レーザに比べて、エネル
ギー差が大きいため、より短波長で発振する。また量子
井戸型半導体レーザでは、エネルギー準位が離散的であ
るため、そのスペクトル線幅も狭く単色性の良いレーザ
光が得られるといった特長を持っている。
If the semiconductor laser made in this way is made of the same material as the active layer bandgap (forbidden band width) compared to a semiconductor laser constructed with a normal double heterojunction, it will be comparable to a quantum well semiconductor laser. In this case, since the energy level of n-1 is higher than the bottom of the conduction band (solid line in Figure 8),
Compared to a normal double heterojunction semiconductor laser, which oscillates due to the energy difference between the bottom of the conduction band and the ceiling of the valence band, the laser oscillates at a shorter wavelength because the energy difference is larger. Furthermore, since the energy levels of the quantum well semiconductor laser are discrete, the spectral linewidth is narrow and a laser beam with good monochromaticity can be obtained.

第6図の従来例について説明する。The conventional example shown in FIG. 6 will be explained.

まずn” −GaAs基板l上にクラッド層となるn−
A1.Gaz−1As 2を成長させ、続いて放物線屈
折率分布層n−Ajtz Gag−I As (zは徐
々にyに変化する)3、量子井戸型活性層p−AI、G
at−XAs 4、放物型屈折率分布層p−A’y c
a、−、As (yは徐々に2に変化する)6、p−A
lz Gat−z Asクラフト層7、p゛−GaAs
キャップ層8を成長させる(ただし、z>y>xである
。) このようにして作られた半導体レーザのクラッド層、屈
折率分布層、活性層のエネルギーバンド構造図を第6図
(b)に示す。
First, an n-
A1. Gaz-1As 2 is grown, followed by a parabolic index gradient layer n-Ajtz Gag-I As (z gradually changes to y) 3, a quantum well type active layer p-AI, G
at-XAs 4, parabolic graded index layer p-A'y c
a, -, As (y gradually changes to 2) 6, p-A
lz Gat-z As craft layer 7, p゛-GaAs
The cap layer 8 is grown (z>y>x.) The energy band structure diagram of the cladding layer, graded index layer, and active layer of the semiconductor laser thus produced is shown in FIG. 6(b). Shown below.

本従来例装置においては活性層の両側にはA1の組成比
を活性層から離れる程徐々に高めている領域があるので
、バンド構造と同様に屈折率も活性層4の外側は放物型
に屈折率が減少する形になり、活性層4で発光した光は
、この放物型屈折率分布層で閉じ込められ、活性層4と
垂直な端面を反射面として形成し、横閉じ込めをしてや
ればレーザ発振させることが可能になる。この型のレー
ザは放物型の屈折率分布導波路とキャリアと光の閉じ込
めを分離した構造からGRIN−SCH(gradcd
 −1ndex waveguide and 5ep
arate carrier and opt−ica
l confine+5ents)レーザと呼ばれてい
る。
In this conventional device, there are regions on both sides of the active layer where the composition ratio of A1 is gradually increased as the distance from the active layer increases, so the refractive index as well as the band structure has a parabolic shape on the outside of the active layer 4. The refractive index decreases, and the light emitted from the active layer 4 is confined by this parabolic index gradient layer.If the end face perpendicular to the active layer 4 is formed as a reflective surface and lateral confinement is performed, a laser beam is generated. It becomes possible to oscillate. This type of laser uses a parabolic graded index waveguide and a structure that separates carrier and light confinement.
-1ndex waveguide and 5ep
arate carrier and opt-ica
l confine+5ents) laser.

上述のような本従来例装置において、これを順方向にバ
イアスしてキャリア(電子、正孔)を注入すると、キャ
リアは量子井戸活性層4に閉じ込められ、離散的なエネ
ルギー準位間で電子と正孔が再結合し、発光する。この
際、エネルギ一単位に応じた鋭い発光波長ピークが得ら
れる。そして−iにはまずnwlでの利得が共振器損失
より大きくなりn=1の量子準位での発振が起こるが、
注入電流を大きく増加させてゆくと、伝導帯9の量子エ
ネルギー準位n=1のみならず、n=2の準位と価電子
帯10の対応する準位との間でのキャリアの結合が可能
となり、n=2の発振を起すことができる。このn=2
の発振波長はn−1の場合よりもエネルギーが高いため
、n=1の発振波長より短い波長を持つことになる。
In this conventional device as described above, when carriers (electrons, holes) are injected by biasing it in the forward direction, the carriers are confined in the quantum well active layer 4, and electrons and holes are exchanged between discrete energy levels. The holes recombine and emit light. At this time, a sharp emission wavelength peak corresponding to one unit of energy is obtained. Then, at -i, the gain at nwl becomes larger than the resonator loss, and oscillation occurs at the quantum level of n=1, but
As the injection current is greatly increased, carriers will combine not only between the quantum energy level n=1 of the conduction band 9 but also between the n=2 level and the corresponding level of the valence band 10. This makes it possible to generate n=2 oscillations. This n=2
Since the oscillation wavelength of is higher in energy than that of n-1, it has a shorter wavelength than the oscillation wavelength of n=1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の量子井戸型半導体レーザは以上のように構成され
ているので、量子エネルギー準位n=1とn−’lのエ
ネルギー差ΔE+zに相当する発振波長差が例えば量子
井戸活性層が厚さ100人のGaAs層の場合はΔE、
tが約110meV、波長差が570人となり、大きい
、またn=1の発振からn=2の発振への切り替えには
注入電流差を大きくとる必要があるなどの問題があった
Since the conventional quantum well type semiconductor laser is constructed as described above, the oscillation wavelength difference corresponding to the energy difference ΔE+z between the quantum energy levels n=1 and n-'l is, for example, when the quantum well active layer has a thickness of 100 mm. In the case of human GaAs layer, ΔE,
There were problems in that t was about 110 meV and the wavelength difference was 570, which was large, and it was necessary to make a large injection current difference in switching from n=1 oscillation to n=2 oscillation.

この発明は上記のような問題点を解消するためになされ
たもので、レーザ発振する複数の波長間隔を小さくする
とともに少しの注入電流差で発振する波長を変えること
ができ、高い制御性をもつ半導体レーザを得るこを目的
とする。
This invention was made to solve the above-mentioned problems, and it is possible to reduce the interval between multiple wavelengths of laser oscillation, and to change the oscillation wavelength with a small difference in injection current, resulting in high controllability. The purpose is to obtain a semiconductor laser.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体レーザは量子井戸構造の活性層を
有する半導体レーザにおいて、活性層となる量子井戸を
複数にし、それぞれの量子井戸の離散的エネルギー準位
が互いに異なるようにするとともに共振内に光吸収量を
制御する部分を設け、活性層部と該制御部の各々に独立
の電流注入用電極を設けたものである。
A semiconductor laser according to the present invention is a semiconductor laser having an active layer with a quantum well structure, in which a plurality of quantum wells are used as the active layer, and the discrete energy levels of the respective quantum wells are different from each other, and light is transmitted within resonance. A portion for controlling the amount of absorption is provided, and an independent current injection electrode is provided for each of the active layer portion and the control portion.

またこの発明に係る半導体レーザの使用方法は、障壁層
を介して量子化された異なるエネルギー準位構造を有す
る複数の量子井戸層を近接させてなる活性層と、レーザ
発振を起こさせる共振器内に設けられた上記活性層の一
部を含む光吸収量制御部と、上記残りの活性層部と、光
吸収量制御部に別個に設けられた電流注入用電極とを備
えた半導体レーザの使用方法であって、上記活性層の複
数の量子井戸層のすくなくとも1つのレーザ発振が起こ
るしきい値未満の電流を注入しておき、外部から共振器
の一端面を介して光を入射結合させ、特定の波長のレー
ザ光を出射させるものである。
Further, the method of using the semiconductor laser according to the present invention includes an active layer formed by placing a plurality of quantum well layers having different quantized energy level structures in close proximity to each other via a barrier layer, and a resonator inside which causes laser oscillation. Use of a semiconductor laser comprising a light absorption amount control section including a part of the active layer provided in the above, the remaining active layer section, and a current injection electrode provided separately in the light absorption amount control section. The method comprises injecting a current below a threshold value at which laser oscillation occurs in at least one of the plurality of quantum well layers of the active layer, and coupling light from the outside through one end face of the resonator. It emits laser light of a specific wavelength.

〔作用〕[Effect]

この発明においては、離散的エネルギー準位が互いに異
なる複数の量子井戸活性層で構成した活性層と、共振器
内に設けられた光吸収量制御部と、該光吸収量制御部と
これ以外の活性層の各々に独立して設けられた電流注入
用電極とを備え、上記電極を各々独立に制御して特定の
波長のレーザ光を出射できる構成としたから、制御性良
く発光波長間隔の小さい多数の波長で発振する。
In this invention, an active layer composed of a plurality of quantum well active layers having different discrete energy levels, a light absorption amount control section provided in a resonator, and a light absorption amount control section and other components are provided. Each of the active layers is equipped with a current injection electrode provided independently, and each of the electrodes is independently controlled to emit a laser beam of a specific wavelength, so the controllability is good and the emission wavelength interval is small. It oscillates at multiple wavelengths.

また、この発明の半導体レーザの使用方法においては、
上述の構成の半導体レーザの複数の量子井戸の少なくと
も1つにレーザ発振が起こるしきい値未満の電流を注入
しておき、外部から共振器の一端面の介して光を入射結
合させ、光吸収量制御部で制御される特定の波長のレー
ザ光を出射するようにしたから、外部からの光による増
幅、スイッチングが行える。
Furthermore, in the method of using the semiconductor laser of the present invention,
A current below the threshold value at which laser oscillation occurs is injected into at least one of the plurality of quantum wells of the semiconductor laser configured as described above, and light is incident and coupled from the outside through one end face of the resonator to absorb light. Since laser light of a specific wavelength controlled by the amount control section is emitted, amplification and switching can be performed using external light.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1はn”−GaAs基板、2はn−A
t1□Gaz−、Asクラッド層、3はn−Alz G
a2−I As放物型屈折率分布N(zは徐々にyに変
化)、4aは第1のAj!、lGa+−x AS活性層
、4bは第2のA IXG a l−X A s活性層
、5はAI、Ga、−、Asバリア層、6はp−Al、
Ga、−、As放物型屈折率分布層(yは徐々に2に変
化)、7はp−Alz Ga1−2 Asクラッド層、
8a、8bはp” −GaAsキー1−7ブ層、11は
n側電極、12a、12bはp側電極である。
In Fig. 1, 1 is an n''-GaAs substrate, 2 is an n-A
t1□Gaz-, As cladding layer, 3 is n-Alz G
a2-I As parabolic refractive index distribution N (z gradually changes to y), 4a is the first Aj! , lGa+-x AS active layer, 4b is the second AIXGal-XAs active layer, 5 is AI, Ga, -, As barrier layer, 6 is p-Al,
Ga, -, As parabolic graded refractive index layer (y gradually changes to 2), 7 is p-Alz Ga1-2 As cladding layer,
8a and 8b are p''-GaAs key 1-7 layers, 11 is an n-side electrode, and 12a and 12b are p-side electrodes.

次に本実施例の製造について説明する。まず、n”−G
aAs基板1上に、クラッドNn −A 1zGa、−
2As層2、放物型屈折率分布層n−AIZGaI−7
A3 (zは徐々にyに変化する)3゜第1の活性]’
iA IX G a r−* A sll子井戸N 4
 a、バリア層AJ、Ga、−,As 5、第2の活性
層A11XGa、−xAs量子井戸Ji14b、放物型
屈折率分布層p−A lyG a +−y A 3 (
yは徐々に2に変化する)6、クラッドNp  Alz
 Ga1−z AS層7、p” −GaAsキャンプ層
8を順次成長させる。さらにn′″−GaAs基板l側
にn側電極11を、p” −Ga八へキャップ層側にp
型電極12a、12bを形成し、活性層4a、4bと垂
直にレーザ共振器ミラーをへき開等で形成すれば複数の
量子井戸活性層を持った量子井戸型半導体レーザができ
あがる。
Next, manufacturing of this example will be explained. First, n”-G
On the aAs substrate 1, cladding Nn-A 1zGa,-
2As layer 2, parabolic index gradient layer n-AIZGaI-7
A3 (z gradually changes to y) 3゜first activity]'
iA IX G a r-* A sll child well N 4
a, barrier layer AJ, Ga, -, As 5, second active layer A11XGa, -xAs quantum well Ji14b, parabolic graded refractive index layer p-A lyG a +-y A 3 (
y gradually changes to 2) 6, cladding Np Alz
A Ga1-z AS layer 7 and a p"-GaAs camp layer 8 are sequentially grown. Furthermore, an n-side electrode 11 is grown on the n'"-GaAs substrate l side, and a p"-GaAs layer 8 is grown on the cap layer side.
By forming the type electrodes 12a and 12b and forming a laser resonator mirror by cleaving or the like perpendicular to the active layers 4a and 4b, a quantum well type semiconductor laser having a plurality of quantum well active layers is completed.

第2図はバリア層5を挟んで2つの量子井戸活性層4a
、4bを配置した場合のバンド構造を示すゆこの活性層
4a、4bはL 2 + +  L 2 tと異殊る厚
みをもつ。ここで、離散的なエネルギー準位はTl1式
によってLzが小さくなると伝導帯の底からの測ったエ
ネルギーは大きくなる。従って、Lz、、LzgO値を
うまく設計すると、活性層4aのn=1とnx 2のエ
ネルギー準位の間に活性1’i4bのn=1のエネルギ
ー準位を設定することができる(Lz、>Lzt )。
FIG. 2 shows two quantum well active layers 4a with a barrier layer 5 in between.
, 4b, which shows the band structure when arranging the active layers 4a and 4b, have a thickness different from that of L 2 + + L 2 t. Here, according to the Tl1 equation, when Lz becomes smaller, the energy measured from the bottom of the conduction band becomes larger at the discrete energy level. Therefore, if the Lz, , LzgO values are well designed, the n=1 energy level of the active layer 4a can be set between the n=1 and nx2 energy levels of the active layer 4a (Lz, >Lzt).

次に動作について説明する。まず上述のような活性層を
持つ半導体レーザの部分Aを順方向にバイアスしてキャ
リア(電子、正孔)を注入してやるとまず活性N4aの
伝導帯9のn=l準位と価電子帯間で電子と正孔の結合
が起こり、λ1の波長で発生し、さらにキャリアを注入
してやると活性FJ4bの伝導帯9のn=1準位と価電
子帯間で結合が起こり、λ、の波長で発光する。次に活
性層4aの伝導帯9のn=2準位と価電子帯間で結合が
起こり、λ、の波長で発光する。このように、注入電流
を増加させてゆくと、λ、からλ2.λ3とだんだん波
長の短いレーザを得ることができる。
Next, the operation will be explained. First, when the part A of the semiconductor laser having the active layer as described above is biased in the forward direction and carriers (electrons, holes) are injected, firstly, between the n=l level of the conduction band 9 of the active N4a and the valence band. Coupling of electrons and holes occurs at a wavelength of λ1, and when carriers are further injected, coupling occurs between the n=1 level of the conduction band 9 of active FJ4b and the valence band, and at a wavelength of λ. Emits light. Next, coupling occurs between the n=2 level of the conduction band 9 of the active layer 4a and the valence band, and light is emitted at a wavelength of λ. In this way, when the injection current is increased, from λ to λ2. It is possible to obtain a laser whose wavelength is gradually shorter than λ3.

次に光吸収量を制御する部分Bに電極11,12bを使
って電界を印加することによって発振波長を制御する場
合について説明する。
Next, a case will be described in which the oscillation wavelength is controlled by applying an electric field using the electrodes 11 and 12b to the portion B where the amount of light absorption is controlled.

量子井戸活性層部Aにある値の電流を印加した場合の各
々の量子準位における利得を第6図(a)に示す、n−
1,n′=1.n=2はそれぞれ電子と正孔の43の最
低量子単位、4bの最低量子準位、4aの高次量子準位
間の遷移に対応するピーりである。
Figure 6(a) shows the gain at each quantum level when a certain value of current is applied to the quantum well active layer part A, n-
1, n'=1. n=2 is a peak corresponding to the transition between the 43 lowest quantum units of electrons and holes, the lowest quantum level of 4b, and the higher quantum level of 4a, respectively.

一方、逆バイアスを印加していないときの光吸収スペク
トルのエキシトンピークは第3図(C)に示すようにそ
れぞれに対応するレーザ発振波長に比べてやや高エネル
ギー側(即ち短波長側)にある。
On the other hand, the exciton peaks in the optical absorption spectrum when no reverse bias is applied are on the slightly higher energy side (i.e., shorter wavelength side) than the corresponding laser oscillation wavelengths, as shown in Figure 3 (C). .

部分Bに逆バイアスしていない時状態ではn=1の準位
の利得が光吸収を含めた共振器損失を上まわり、この準
位でのレーザ発振が生ずる。第3図(b)はこの様子を
示している。
When part B is not reverse biased, the gain at the n=1 level exceeds the resonator loss including optical absorption, and laser oscillation occurs at this level. FIG. 3(b) shows this situation.

半導体に電界を印加するとFranz−Keldysh
効果と呼ばれる半導体の吸収スペクトルが長波長側にシ
フトする現象が生じる。この場合、より高次エネルギー
側のエキシトンピークのシフト量は低エネルギー側のエ
キシトンピークのシフト量より小さい。
When an electric field is applied to a semiconductor, Franz-Keldysh
A phenomenon called "effect" occurs in which the absorption spectrum of a semiconductor shifts toward longer wavelengths. In this case, the amount of shift of the exciton peak on the higher energy side is smaller than the amount of shift of the exciton peak on the lower energy side.

このため、部分Bに逆バイアスすることにより、光吸収
スペクトルが第3図(C)の破線に示すように長波長側
にシフトしく破線)、n”−1のエネルギー準位間での
光吸収の方がn−1のエネルギー準位巻での光吸収に比
し小さくなる。光吸収が大きくなることによる損失の増
大によりn−1の準位での発振が制御される。これによ
り誘導放出によるポピユレーションの消費がなくなり、
キャリアはn′=1の準位を占めるようになり、第3図
(C)に示すようにn′=1での光吸収損失は比較的小
さいため第3図(d)に示すようにn′=1の準位間に
相当する波長でのレーザ発振が可能になる。
Therefore, by applying a reverse bias to part B, the optical absorption spectrum shifts to the longer wavelength side as shown by the broken line in Figure 3 (C). is smaller than the light absorption at the n-1 energy level.The increase in loss due to the increase in light absorption controls the oscillation at the n-1 level.This causes stimulated emission. Population consumption by
The carriers come to occupy the n'=1 level, and as shown in FIG. 3(C), the light absorption loss at n'=1 is relatively small, so as shown in FIG. 3(d), the n' Laser oscillation at a wavelength corresponding to the level between '=1 becomes possible.

このように部分Bに逆バイアスすることにより部分Aに
印加する電流量を変えることなくレーザ波長のスイッチ
ングが可能となる。
By applying a reverse bias to portion B in this manner, the laser wavelength can be switched without changing the amount of current applied to portion A.

以上のように本実施例では活性層を複数のエネルギー準
位の異なる量子井戸層で構成し、かつ光吸収量制御を設
けて、部分Aに印加する電流を大きく変えることなく複
数の波長によるレーザ発振をおこなえるばかりでなく、
部分Bに逆バイアスすることによっても発振波長の切換
を行なえるように構成したから、制御性が高(かつ波長
差の小さい多波長発振レーザを安価に得ることができる
As described above, in this example, the active layer is composed of a plurality of quantum well layers with different energy levels, and light absorption amount control is provided, so that a laser beam with a plurality of wavelengths can be generated without greatly changing the current applied to the portion A. Not only can it oscillate, but
Since the configuration is such that the oscillation wavelength can be switched by applying a reverse bias to portion B, a multi-wavelength oscillation laser with high controllability (and small wavelength difference) can be obtained at low cost.

なお、上記実施例では、量子井戸間のエネルギー準位を
変えるため、量子井戸の厚みを変えたものを示したが、
第4図に示すように、量子井戸の厚みを変えず(L2+
 =LZz )に、材料組成(Xz >x、)を変えて
も同様の効果がある。
In addition, in the above example, the thickness of the quantum wells was changed in order to change the energy level between the quantum wells, but
As shown in Figure 4, without changing the thickness of the quantum well (L2+
= LZz ), the same effect can be obtained by changing the material composition (Xz >x,).

また、上記実施例では、レーザ光の閉じ込めにGRIN
−SCH構造を用いた場合について述べたが、他の閉じ
込め法についても適用できる。
In addition, in the above embodiment, GRIN is used to confine the laser light.
Although the case using the -SCH structure has been described, other confinement methods can also be applied.

また、上記実施例ではGaAs系の材料を用いた場合に
ついて述べたが、これはInP系や他の材料系であって
もよく上記実施例と同様の効果が期待できる。
Further, in the above embodiment, a case was described in which a GaAs-based material was used, but it may also be an InP-based material or another material, and the same effects as in the above embodiment can be expected.

また、上記実施例では活性層の量子井戸層の数が2つの
場合について説明したが、3つ以上であってもよ(、ま
た一番低い最低次のエネルギー準位をもつ量子井戸の数
をそれよりも高い最低次のエネルギー準位をもつ量子井
戸の数よりも多くして低いエネルギー準位での発振をさ
せやすいようにしてもよく、量子井戸の厚みの異なるも
のと材料組成の異なるもの、あるいは障壁層のエネルギ
ーの高さの異なるものを組み合わせてもよい。
Further, in the above embodiment, the case where the number of quantum well layers in the active layer is two is explained, but it may be three or more (also, the number of quantum wells having the lowest energy level is The number of quantum wells with a higher lowest energy level may be increased to facilitate oscillation at a lower energy level, and quantum wells with different thicknesses and material compositions may be used. Alternatively, barrier layers having different energy levels may be combined.

また、上記実施例では複数の量子井戸層間のエネルギー
準位が重なり合わない場合について述べたが、第5図の
ように障壁層の厚さdを薄くして互いにエネルギー準位
が重なり合うようにしてもよい。
Furthermore, in the above embodiment, a case was described in which the energy levels between multiple quantum well layers do not overlap, but as shown in FIG. 5, the thickness d of the barrier layer is made thin so that the energy levels overlap with each other. Good too.

また、この発明の半導体レーザの特殊な使用方法として
、異なる発光波長を持つ複数の量子井戸活性層4a、4
bの少なくとも一方にレーザ発振を起こすしきい値近傍
まで順バイアスしておき、共振器端面を介して複数の波
長の混じった光を外部から入射結合させれば、光吸収量
制御部である部分Bにおいて制御される特定の波長の光
のみを選択的に増幅してレーザ光として取り出すことが
可能であり、このように使用することよって光によるス
イッチング、直接的な増幅等を行うことができる。
Further, as a special method of using the semiconductor laser of the present invention, a plurality of quantum well active layers 4a, 4 having different emission wavelengths may be used.
If at least one of b is forward biased to the vicinity of the threshold value that causes laser oscillation, and light with a mixture of multiple wavelengths is incident and coupled from the outside through the cavity end face, the part that is the light absorption amount control section can be It is possible to selectively amplify only the light of a specific wavelength controlled in B and take it out as a laser beam, and by using it in this way, switching by light, direct amplification, etc. can be performed.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば半導体レーザの活性層
をエネルギー準位の異なる複数の量子井戸層で構成し、
かつ共振器内に光吸収量を制御部を設け、さらに活性層
部と光吸収量制御部の各々を独立に制御する電流注入用
電極を設は光吸収量を制御して発振波長をコントロール
する構成としたから簡単な構造で波長の異なるレーザ光
を1個の半導体レーザで得ることができ、安価で、精度
の高いものが得られる効果がある。
As described above, according to the present invention, the active layer of a semiconductor laser is composed of a plurality of quantum well layers having different energy levels,
In addition, a light absorption amount control section is provided in the resonator, and a current injection electrode is provided to independently control each of the active layer section and the light absorption amount control section to control the light absorption amount and control the oscillation wavelength. Because of this configuration, laser beams with different wavelengths can be obtained with a single semiconductor laser with a simple structure, and it is possible to obtain a product with high precision at low cost.

また、この発明の半導体レーザの使用方法は以上のよう
に、障壁層を介して量子化された異なるエネルギー準位
構造を有する複数の量子井戸層を近接させてなる活性層
と、レーザ発振を起こさせる共振器内に設けられた上記
活性層の一部を含む光吸収量制御部と、上記残りの活性
層部と、光吸収量制御部に別個に設けられた電流注入用
電極とを備えた半導体レーザの上記活性層の複数の量子
井戸間のすくなくとも1つのレーザ発振が起こるしきい
値未満の電流を注入しておき、外部から共振器の一端面
を介して光を入射結合させ、特定の波長のレーザ光を出
射させるから多波長発振型の半導体レーザの光によるス
イッチングが可能になるほか、光増幅器、センサ等とし
て広い範囲に応用することができる効果がある。
In addition, as described above, the method of using the semiconductor laser of the present invention is to generate laser oscillation with an active layer formed by placing a plurality of quantum well layers having different quantized energy level structures in close proximity to each other via a barrier layer. a light absorption amount control section including a part of the active layer provided in the resonator, the remaining active layer section, and a current injection electrode provided separately in the light absorption amount control section. A current below the threshold value at which at least one laser oscillation occurs is injected between the plurality of quantum wells in the active layer of the semiconductor laser, and light is incident and coupled from the outside through one end surface of the resonator to generate a specific Since it emits laser light of different wavelengths, it not only enables light-based switching of multi-wavelength oscillation type semiconductor lasers, but also has the effect of being able to be applied to a wide range of applications such as optical amplifiers and sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による量子井戸型半導体レ
ーザの構造図、第2図は第1図の実施例の動作を説明す
るための量子井戸エネルギーバンド構造図、第3図は第
1図の実施例の動作を説明するための図、第4図はこの
発明の他の実施例を示すエネルギーバンド構造図、第5
図はこの発明のさらに他の実施例を示すエネルギーバン
ド構造図、第6図は従来の実施例を示す半導体レーザ構
造図、第7図はこの従来例の動作を説明するための量子
井戸構造図、第8図は量子井戸の状態密度とエネルギー
準位を示す図である。 図において、lは基板、4 a、  4 b、  20
 a。 20bは量子井戸活性層、5.25はバリヤ層、11は
n−電極、12a、12bはp−電極、である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a structural diagram of a quantum well type semiconductor laser according to an embodiment of the present invention, FIG. 2 is a quantum well energy band structure diagram for explaining the operation of the embodiment of FIG. 4 is an energy band structure diagram showing another embodiment of the present invention. FIG. 5 is a diagram for explaining the operation of the embodiment shown in FIG.
The figure is an energy band structure diagram showing still another embodiment of the present invention, FIG. 6 is a semiconductor laser structure diagram showing a conventional embodiment, and FIG. 7 is a quantum well structure diagram to explain the operation of this conventional example. , FIG. 8 is a diagram showing the density of states and energy levels of a quantum well. In the figure, l is the substrate, 4 a, 4 b, 20
a. 20b is a quantum well active layer, 5.25 is a barrier layer, 11 is an n-electrode, and 12a and 12b are p-electrodes. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (8)

【特許請求の範囲】[Claims] (1)量子井戸構造を有する半導体レーザにおいて、 障壁層を介して量子化された異なるエネルギー準位構造
を有する複数の量子井戸層を近接させてなる活性層と、 レーザ発振を起こさせる共振器内の一部に設けられた上
記活性層の一部を含む光吸収量を制御部と、 上記残りの活性層部と光吸収量制御部に別個に設けられ
た電流注入用電極とを備えたことを特徴とする半導体レ
ーザ。
(1) In a semiconductor laser having a quantum well structure, there is an active layer made up of a plurality of quantum well layers having different quantized energy level structures placed in close proximity to each other via a barrier layer, and a cavity inside which causes laser oscillation. and a current injection electrode provided separately in the remaining active layer portion and the light absorption amount control portion. A semiconductor laser featuring:
(2)上記複数の量子井戸層は同じ組成の材料により作
られ、その層厚が各々異なることを特徴とする特許請求
の範囲第1項記載の半導体レーザ。
(2) The semiconductor laser according to claim 1, wherein the plurality of quantum well layers are made of materials having the same composition and have different layer thicknesses.
(3)上記複数の量子井戸層はその層厚が同じで、各々
異なる組成の材料により構成されていることを特徴とす
る特許請求の範囲第1項記載の半導体レーザ。
(3) The semiconductor laser according to claim 1, wherein the plurality of quantum well layers have the same thickness and are made of materials with different compositions.
(4)上記複数の量子井戸層は材料、層厚が各々異なる
か、あるいは障壁層のエネルギーの高さを変えたものを
組み合わせて構成されていることを特徴とする特許請求
の範囲第1項記載の半導体レーザ。
(4) The plurality of quantum well layers have different materials and layer thicknesses, or are constructed by combining barrier layers with different energy heights. The semiconductor laser described.
(5)上記複数の量子井戸層のエネルギー準位が互いに
重なり合う程度に障壁の厚さが薄いことを特徴とする特
許請求の範囲第1項ないし第4項のいずれかに記載の半
導体レーザ。
(5) The semiconductor laser according to any one of claims 1 to 4, wherein the thickness of the barrier is so thin that the energy levels of the plurality of quantum well layers overlap each other.
(6)一番低い最低次のエネルギー準位をもつ量子井戸
の数をそれよりも高い最低次のエネルギー準位をもつ量
子井戸の数よりも多くしたことを特徴とする特許請求の
範囲第1項ないし第5項のいずれかに記載の半導体レー
ザ。
(6) Claim 1 characterized in that the number of quantum wells having the lowest lowest energy level is greater than the number of quantum wells having a higher lowest energy level. 6. The semiconductor laser according to any one of items 5 to 5.
(7)上記光吸収量を制御する部分を活性層の量子井戸
層の禁制帯幅よりも大きい禁制帯幅を持つ光導波路層で
構成し、逆電界を印加することにより、光導波路層の光
吸収量を制御するようにしたことを特徴とする特許請求
の範囲第1項ないし第6項のいずれかに記載の半導体レ
ーザ。
(7) The part that controls the amount of light absorption is formed of an optical waveguide layer having a forbidden band width larger than that of the quantum well layer of the active layer, and by applying a reverse electric field, the light of the optical waveguide layer is 7. The semiconductor laser according to claim 1, wherein the amount of absorption is controlled.
(8)障壁を介して量子化された異なるエネルギー準位
構造を有する複数の量子井戸層を近接させてなる活性層
の一部を含む光吸収量制御部と、上記残りの活性層部と
光吸収量制御部に別個に設けられた電流注入用電極とを
備えた半導体レーザの使用方法において、 上記活性層の複数の量子井戸層の少なくとも1つにレー
ザ発振が起こるしきい値未満の電流を注入しておき、外
部から共振器の一端面を介して光を入射結合させ、特定
の波長のレーザ光を出射させることを特徴とする半導体
レーザの使用方法。
(8) A light absorption amount control section including a part of the active layer formed by adjoining a plurality of quantum well layers having different quantized energy level structures via a barrier, and the remaining active layer section and the light absorption amount control section. In a method of using a semiconductor laser including a current injection electrode provided separately in an absorption amount control section, a current below a threshold value at which laser oscillation occurs is applied to at least one of the plurality of quantum well layers of the active layer. 1. A method of using a semiconductor laser, which comprises injecting light into the resonator, coupling light from the outside through one end face of a resonator, and emitting laser light of a specific wavelength.
JP14864287A 1987-06-15 1987-06-15 Semiconductor laser and application thereof Pending JPS63312688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14864287A JPS63312688A (en) 1987-06-15 1987-06-15 Semiconductor laser and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14864287A JPS63312688A (en) 1987-06-15 1987-06-15 Semiconductor laser and application thereof

Publications (1)

Publication Number Publication Date
JPS63312688A true JPS63312688A (en) 1988-12-21

Family

ID=15457360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14864287A Pending JPS63312688A (en) 1987-06-15 1987-06-15 Semiconductor laser and application thereof

Country Status (1)

Country Link
JP (1) JPS63312688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390200A2 (en) * 1989-03-31 1990-10-03 Canon Kabushiki Kaisha Semiconductor laser element selectively emitting lights of different wavelengths
JPH02260489A (en) * 1989-03-30 1990-10-23 Canon Inc Semiconductor laser element and driving method thereof
US5161164A (en) * 1990-08-28 1992-11-03 Mitsubishi Deni Kabushiki Kaisha Semiconductor laser device
JP2009124009A (en) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242093A (en) * 1985-03-14 1986-10-28 マツクス‐プランク‐ゲゼルシヤフト ツール フオエルデルングデール ヴイセンシヤフテン エー.フアオ Improved simiconductor laser device
JPS61271887A (en) * 1985-05-27 1986-12-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JPS61296783A (en) * 1985-06-26 1986-12-27 Hitachi Ltd Semiconductor laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242093A (en) * 1985-03-14 1986-10-28 マツクス‐プランク‐ゲゼルシヤフト ツール フオエルデルングデール ヴイセンシヤフテン エー.フアオ Improved simiconductor laser device
JPS61271887A (en) * 1985-05-27 1986-12-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JPS61296783A (en) * 1985-06-26 1986-12-27 Hitachi Ltd Semiconductor laser device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260489A (en) * 1989-03-30 1990-10-23 Canon Inc Semiconductor laser element and driving method thereof
EP0390200A2 (en) * 1989-03-31 1990-10-03 Canon Kabushiki Kaisha Semiconductor laser element selectively emitting lights of different wavelengths
EP0390200A3 (en) * 1989-03-31 1991-07-31 Canon Kabushiki Kaisha Semiconductor laser element selectively emitting lights of different wavelengths
US5060235A (en) * 1989-03-31 1991-10-22 Canon Kabushiki Kaisha Semiconductor laser element selectively emitting lights of different wavelengths
US5161164A (en) * 1990-08-28 1992-11-03 Mitsubishi Deni Kabushiki Kaisha Semiconductor laser device
US5177749A (en) * 1990-08-28 1993-01-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2009124009A (en) * 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device

Similar Documents

Publication Publication Date Title
EP0547043B1 (en) A semiconductor laser device
Sweeney et al. Optoelectronic devices and materials
US5200969A (en) Switchable multiple wavelength semiconductor laser
US6798804B2 (en) Laser apparatus including surface-emitting semiconductor excited with semiconductor laser element, and directly modulated
EP0390167A2 (en) Semiconductor laser device having plurality of layers for emitting lights of different wavelengths and method of driving the same
JPH05218576A (en) Multiple wavelength semiconductor laser
US5319659A (en) Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching
JP2018060974A (en) Semiconductor optical integrated element
US5657157A (en) Semiconductor optical amplifying media with reduced self-focusing
US4132960A (en) Single longitudinal mode gaas/gaalas double heterostructure laser
JPS63312688A (en) Semiconductor laser and application thereof
RU2540233C1 (en) Injection laser having multiwave modulated emission
JPS6332982A (en) Semiconductor laser
US6738404B1 (en) Method for controlling a unipolar semiconductor laser
JPH0233991A (en) Semiconductor laser
JPH0563301A (en) Semiconductor optical element and optical communication system
JPH0587035B2 (en)
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
JP2606838B2 (en) Distributed feedback semiconductor laser
JPH04245493A (en) Multiwavelength semiconductor laser element and driving method of that element
JPH0821758B2 (en) Semiconductor laser and method of using the same
Fang et al. Fundamentals of Semiconductor Lasers
JPS6332979A (en) Semiconductor laser
JPH0514435B2 (en)
JP2683092B2 (en) Semiconductor laser device