JPH0423649A - Discrimination signal generating circuit - Google Patents

Discrimination signal generating circuit

Info

Publication number
JPH0423649A
JPH0423649A JP2129582A JP12958290A JPH0423649A JP H0423649 A JPH0423649 A JP H0423649A JP 2129582 A JP2129582 A JP 2129582A JP 12958290 A JP12958290 A JP 12958290A JP H0423649 A JPH0423649 A JP H0423649A
Authority
JP
Japan
Prior art keywords
signal
point
valid area
signals
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129582A
Other languages
Japanese (ja)
Inventor
Takuya Kamakura
鎌倉 拓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2129582A priority Critical patent/JPH0423649A/en
Publication of JPH0423649A publication Critical patent/JPH0423649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To reduce the time for signal interruption for a demodulator by applying A/D conversion to each base band signal of P and Q channels in orthogonal relation and outputting a valid area discrimination signal when an outside of outermost shell signal point and four corners in a signal point arrangement on a phase plane is represented. CONSTITUTION:Six-value signals being P and Q channel input base band signals are converted into 4-bit binary digital signals comprising 3-bit data signals D1, D2, D3 and a 1-bit error signal El according to the conversion rule and outputted to a valid area discrimination circuit 13. Then the valid area discrimination circuit 13 detects logic state of digital signals D1P-D3P, E1P, and D1Q-D3Q, E1Q at the outside of the sampling point, brings its output signal to logical 1 when the logic state represents the position at the outside of an outer circumference line of an outermost signal position, brings it to logical 0 when the logic state indicates a void part where 32 signal points exist in other cases and outputs logical 1 or 0 signal to an output terminal 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はディジタル無線通信システムにおける判定信号
発生回路に関し、特に32値直交振幅変調(以下32Q
AMという)方式を採用する復調装置において、復調さ
れた信号点位置が有効領域にあるかどうかを判定する判
定信号発生回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a determination signal generation circuit in a digital wireless communication system, and particularly to a 32-value quadrature amplitude modulation (hereinafter referred to as 32Q
The present invention relates to a determination signal generation circuit that determines whether or not a demodulated signal point position is in a valid region in a demodulation device that employs an AM method.

〔従来の技術〕[Conventional technology]

近年、ディジタル無線通信システムにおける無線周波数
帯の利用効率を高めるために直交振幅変調方式の多値化
が進められており、32QAM方式がすでに実用化され
ている。
In recent years, in order to increase the efficiency of use of radio frequency bands in digital wireless communication systems, multilevel quadrature amplitude modulation methods have been promoted, and 32QAM methods have already been put into practical use.

従来の32QAM方式の信号点配置は、一般的な信号点
配置を示す第7図に示すように、P軸Q軸の両側にそれ
ぞれ+1〜+3および−1〜−3の6値の信号点を有し
ている。この信号点の理想位置は、復調装置の回路で発
生する歪および伝搬路で発生するフェージング等による
伝搬歪により、理想位置からのずれを表す誤差を生ずる
。ここで前述の歪を補正するために、通常トランスバー
サル形等化器が使用され、理想位置からのずれを表す誤
差信号をもとにトランスバーサル形等化器のタップ制御
信号を生成して等化している。
The signal point arrangement of the conventional 32QAM system has six signal points of +1 to +3 and -1 to -3 on both sides of the P axis and Q axis, respectively, as shown in Figure 7, which shows a general signal point arrangement. have. This ideal position of the signal point causes an error representing a deviation from the ideal position due to distortion generated in the circuit of the demodulator and propagation distortion due to fading and the like occurring in the propagation path. In order to correct the above-mentioned distortion, a transversal equalizer is usually used, and a tap control signal for the transversal equalizer is generated based on an error signal representing the deviation from the ideal position. It has become

今、各信号点の誤差信号の判定方法につき、第8図に示
す理想位置の信号点A、Bの2点に着目して説明する。
Now, the method for determining the error signal of each signal point will be explained by focusing on two signal points A and B at ideal positions shown in FIG.

誤差信号は、第8図に示す如く、各信号点の理想値から
の上方向く外側方向)へのずれを“1”とし、下方向く
内側方向)へのずれを“0”として表現するが、本来信
号点位置Bで受かるべき信号が信号点位7A、Bの中央
のしきい値Wを超えて信号点位置A側に寄った信号点位
置のX点で受信された場合に、誤差信号は信号点Aの誤
差範囲である“0”となる。すなわち、この誤差信号(
X点)は信号点位置Aで受かるべき信号が下方にずれて
受信されたと誤認され、誤った誤差信号となる。トラン
スバーサル形等化器がこの誤った誤差信号に基づいて生
成した制御信号で制御されると、トランスバーサル形等
化器を含めた復調系全体が発散してしまうので、このよ
うな場合には、従来では各制御信号を一旦初期値にリセ
ットするようにし、そのリセット期間中、各制御信号の
発生回路の動作を中止するようにしている。
As shown in Figure 8, the error signal is expressed as "1" for deviations from the ideal value of each signal point in the upward and outward directions, and as "0" for deviations in the downward and inward directions. However, if the signal that should originally be received at signal point position B is received at point The signal becomes "0", which is within the error range of signal point A. That is, this error signal (
At point X), it is mistakenly recognized that the signal that should be received at signal point position A has been received with a downward shift, resulting in an incorrect error signal. If the transversal equalizer is controlled by a control signal generated based on this erroneous error signal, the entire demodulation system including the transversal equalizer will diverge, so in such a case, Conventionally, each control signal is once reset to its initial value, and during the reset period, the operation of each control signal generating circuit is stopped.

以上説明した信号点A、Hの誤差信号の判定方法は第7
図に示す32QAM方式の信号点すべてに適用される。
The method for determining the error signal of signal points A and H described above is described in the seventh
This is applied to all signal points of the 32QAM system shown in the figure.

したがって、信号点の最外殻にある信号点のずれが第7
図の斜線の部分に誤差信号点として受信されても、外側
方向へのずれを表す“1”の誤差信号を出力してリセッ
トをかけていた。
Therefore, the shift of the signal point in the outermost shell of the signal points is the 7th
Even if an error signal point was received in the shaded area in the diagram, an error signal of "1" representing an outward shift was output and a reset was applied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の判定信号発生回路は、32QAM方式に
おける最外殼信号点の誤差信号点が第7図の斜線に示す
外側に位置した場合でもリセットをかけていたので、リ
セット期間中はトランスバーサル系等化器の等化動作を
中止することになる欠点がある。したがってフェージン
グ等によって一旦同期外れを生じた場合には、フェージ
ング歪が十分に減少するまで復調系は信号断の状態を継
続する欠点があった。
The conventional determination signal generation circuit described above is reset even when the error signal point of the outermost signal point in the 32QAM system is located outside the diagonal line in FIG. 7, so during the reset period, the transversal system, etc. There is a drawback that the equalization operation of the equalizer is stopped. Therefore, once loss of synchronization occurs due to fading or the like, the demodulation system remains in a signal-off state until the fading distortion is sufficiently reduced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の判定信号発生回路は、32値直交振幅変調方式
を使用した復調装置の信号点位置の誤差信号位置を判定
する判定信号発生回路において、直交関係にあるPチャ
ネルおよびQチャネルベースバンド信号をそれぞれ入力
し3個のデータビットと1個のエラービットとからなる
4ビット2値ディジタル信号を出力するA−D変換器と
、32個の信号点のうちの最外殼信号点の誤差信号点が
前記最外殼信号点の配置点を結んだ外周線の外側領域で
ある有効領域に存在する場合に判定信号を出力する有効
領域判定手段とを有し、前記判定信号が出力された場合
に前記復調装置に含まれるトランスバーサル型等化器の
リセットを行わない。
The determination signal generation circuit of the present invention detects P channel and Q channel baseband signals having an orthogonal relationship in the determination signal generation circuit that determines the error signal position of the signal point position of a demodulator using the 32-value orthogonal amplitude modulation method. An A-D converter that inputs and outputs a 4-bit binary digital signal consisting of 3 data bits and 1 error bit, and an error signal point of the outermost signal point among 32 signal points. effective area determining means for outputting a determination signal when the signal exists in an effective area that is an outer area of an outer peripheral line connecting arrangement points of the outermost shell signal points, and when the determination signal is output, the demodulating Do not reset the transversal equalizer included in the device.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の構成図である。第1図の実
施例は、入力端子1のPチャネルベースバンド信号をデ
ィジタル信号に変換するA/D変換器11.入力端子2
のQチャネルベースバンド信号をディジタル信号に変換
するA/D変換器12、このA/D変換器11.12の
ディジタル信号の各信号点の有効領域にあるかどうかを
判定する有効領域判定回路13.クロック信号を入力す
る入力端子3.有効領域判定回路13の判定基準となる
情報を格納しているROMで形成される記憶回路14か
ら精成される。さらに補足すると、復調装置(図示せず
)で取得された互いに直交関係にあるPチャネルおよび
Qチャネルの多値ベースバンド信号はそれぞれ入力端子
1.2を介してA/D変換器11.12へ入力される。
FIG. 1 is a block diagram of an embodiment of the present invention. The embodiment shown in FIG. 1 includes an A/D converter 11. which converts a P channel baseband signal at an input terminal 1 into a digital signal. Input terminal 2
an A/D converter 12 that converts the Q-channel baseband signal of the A/D converter 11. .. Input terminal for inputting a clock signal 3. The information is refined from a storage circuit 14 formed of a ROM that stores information that serves as a criterion for the valid area determination circuit 13. As a further supplement, the P channel and Q channel multilevel baseband signals, which are orthogonal to each other, obtained by a demodulator (not shown) are sent to the A/D converter 11.12 via the input terminal 1.2, respectively. is input.

また入力端子3に印加されるクロック信号はA/D変換
器11.12および有効領域判定回路13の識別りイミ
ング等を決定するクロックとして与えられる。また、記
憶回路14のROMはA/D変換器11.12の各出力
ディジタル信号の標本点位置における論理状態をアドレ
ス情報とするものであるが、このROMには、そのアド
レス情報と信号点配置とを関連づけるテーブルをあらか
じめ格納しである。
Further, the clock signal applied to the input terminal 3 is given as a clock for determining the identification timing, etc. of the A/D converters 11 and 12 and the effective area determination circuit 13. Further, the ROM of the storage circuit 14 uses the logic state at the sampling point position of each output digital signal of the A/D converters 11 and 12 as address information, and this ROM contains the address information and the signal point arrangement. A table is stored in advance to associate the information.

次に各回路の動作を説明する。A/D変換器11.12
は第2図の説明図に示すように、入力信号であるPチャ
ネルおよびQチャネルベースバンド信号の6値の信号を
変換則により3ビットのデータ信号DI、D2.D3と
1ビットの誤差信号E1からなる4ビットの2値ディジ
タル信号に変換し、有効領域判定回路13へ出力する。
Next, the operation of each circuit will be explained. A/D converter 11.12
As shown in the explanatory diagram of FIG. 2, 6-value signals of input signals P-channel and Q-channel baseband signals are converted into 3-bit data signals DI, D2 . It is converted into a 4-bit binary digital signal consisting of D3 and the 1-bit error signal E1, and output to the valid area determination circuit 13.

第1図に示すようにA/D変換器11の出力信号は3ビ
ットのデータ信号D zp、 D 2p、 D 3pお
よび1ビットの誤差信号E、Pとし、A/D変換器12
の出力信号は3ビットのデータ信号D IQI D 2
QI D 3csおよび1ビットの誤差信号Elqとな
る。
As shown in FIG. 1, the output signals of the A/D converter 11 are 3-bit data signals Dzp, D2p, D3p and 1-bit error signals E and P.
The output signal is a 3-bit data signal D IQI D 2
This results in QI D 3cs and a 1-bit error signal Elq.

次に、有効領域判定回路13の動作はディジタル信号り
、P〜D、P、E□2およびDIQ〜D5.、E□9の
標本点位置における論理状態を検出し、その論理状態が
第7図に示す信号点配置において最外殼信号点位置の外
周線の外側である斜線部分を示す場合に出力信号を“1
“とじ、他の場合の32信号点のある白抜き部であれば
“Oパとじ、その“1”又は“0”の信号を出力端子4
へ出力する。今、この斜線部分を有効領域と称し、白抜
き部を無効領域と称する。さらに、この動作原理を第3
図の説明図により説明する。第3図において信号点位置
Cが最外殼信号点位置とすると、この信号点位置Cの外
側の位置Yで実際の信号受信があったとすれば、信号点
位置Cの情報には信号点配置は存在しないから、位置Y
で受信された信号はこれに最も近い信号点位置Cで受信
されるべき信号がずれて受信された確率が極めて高いと
いえる。つまり位置Yでの受信信号についての誤差信号
EIPまたはEIQは“1゛′であるが、これは正しい
誤差信号を与えているということができる。
Next, the operation of the valid area determination circuit 13 is based on digital signals P to D, P, E□2 and DIQ to D5. , E□9 is detected, and when the logic state indicates the shaded area outside the outer circumferential line of the outermost signal point position in the signal point arrangement shown in FIG. 7, the output signal is " 1
In other cases, if it is a white area with 32 signal points, it will be "O" binding, and the "1" or "0" signal will be output to the output terminal 4.
Output to. The shaded area will be referred to as an effective area, and the white area will be referred to as an invalid area. Furthermore, this operating principle can be explained in a third way.
This will be explained with reference to the explanatory diagram of the figure. In Fig. 3, if the signal point position C is the outermost signal point position, and if a signal is actually received at a position Y outside of this signal point position C, the signal point arrangement will not be included in the information of the signal point position C. Since it does not exist, position Y
It can be said that there is an extremely high probability that the signal received at the signal point position C that should have been received at the closest signal point position C was received with a shift. In other words, the error signal EIP or EIQ for the received signal at position Y is "1", which can be said to provide a correct error signal.

また、最外殼信号点が4隅(第7図のA1−A4部)に
ある場合について第4図を参照して説明する。領域Zの
中の位置Hで信号点受信があったとすれば、最外殼信号
点Eから、位置Hまでの距離!と、内部信号点Gから位
置Hまでの距離mとでは、jのほうが短いために信号点
位置Eで受信されるべき信号がずれて受信された確率が
極めて高いといえる。つまり、第4図において、領域Z
の中に信号が受信された場合、内部信号点Gがずれるよ
り、最外殼信号点Eまたは信号点Fがずれて受信された
確率が極めて高いといえるため、領域Zにて受信された
信号についての誤差信号は正しいと判断できる。
Further, a case where the outermost signal points are located at the four corners (sections A1-A4 in FIG. 7) will be described with reference to FIG. 4. If a signal point is received at position H in area Z, then the distance from the outermost signal point E to position H! Since j is shorter than the distance m from the internal signal point G to the position H, it can be said that the probability that the signal to be received at the signal point position E is received with a shift is extremely high. In other words, in Fig. 4, the area Z
If a signal is received in the area, it is much more likely that the outermost signal point E or signal point F is shifted than the internal signal point G is shifted. The error signal can be judged to be correct.

次に記憶回路14であるROMは前述したように有効領
域判定回路13の判定基準である情報を格納しているが
、この情報テーブルの設定手順を第5図(a>、(b)
、(c)の第1象限の信号点配置と有効領域の関係を示
す説明図と、第6図のROMのメモリ内容の説明図によ
り説明する。
Next, the ROM, which is the storage circuit 14, stores information that is the criterion for valid area determination circuit 13 as described above, and the setting procedure for this information table is shown in FIGS.
, (c) showing the relationship between the signal point arrangement and the effective area in the first quadrant, and the explanatory diagram of the memory contents of the ROM in FIG. 6.

第5図における第1象限について考えると3つの領域に
分解できる。すなわち第1の領域の第5図(a)は、Q
軸上の信号レベルの値が3以上(D 2−= 1 、 
E 1−= 1 )である。第2の領域の第5図(b)
は、P軸上の信号レベルの値が3以上(D 2P= 1
 、 E tp= 1 )である。第3の領域の第5図
(c)は、Q軸上の信号レベルが値2,5以上(D2−
=1.D3q=O,Et−=O)で、かつ、P軸上の信
号レベルが値2.5以上(D2P= 1 、 D3PO
,Etp=O)である。第6図に示すROMのメモリ内
容で「×」印は“0”または1”のいずれでも良いこと
を示す。今、第6図の入力信号DIP〜D 3P、  
E tp、  D 1q〜D3Q、EIQの8ビットの
ディジタル信号のビットパターンが第5図(a)〜(c
)に示す第1〜第3の領域を示すときは、出力信号Sは
°“1パとなり、有効領域判定信号を発生できることに
なる。そしてS=1のとき得られるデータ信号および誤
差信号のみを確からしい信号として各制御に用い、無効
領域のデータは従来通りの誤差信号として扱うことにな
る。
Considering the first quadrant in FIG. 5, it can be divided into three regions. In other words, in FIG. 5(a) of the first region, Q
The value of the signal level on the axis is 3 or more (D2-=1,
E1-=1). Figure 5(b) of the second area
, the value of the signal level on the P axis is 3 or more (D 2P = 1
, E tp = 1). FIG. 5(c) in the third region shows that the signal level on the Q axis is 2.5 or more (D2-
=1. D3q=O, Et-=O), and the signal level on the P axis is 2.5 or more (D2P=1, D3PO
, Etp=O). In the memory contents of the ROM shown in Fig. 6, the "x" mark indicates that it can be either "0" or 1. Now, the input signals DIP to D 3P in Fig. 6,
The bit patterns of the 8-bit digital signals of E tp, D 1q to D3Q, and EIQ are shown in FIGS.
), the output signal S becomes "1", and a valid region determination signal can be generated. Then, only the data signal and error signal obtained when S=1 are generated. It is used as a probable signal for each control, and the data in the invalid area is treated as an error signal as before.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は復調装置において取得さ
れた互いに直交関係にあるPチャネルとQチャネルの各
ベースバンド信号のそれぞれについてA/D変換を行い
、その各ディジタル信号の標本点位置における論理状態
が位相平面上の信号点配置において、最外殼信号点位置
の外側および四隅(第4図の斜線部)を示すときに有効
領域判定信号を出力するようにしたので、復調系が同期
外れを起こしていてもトランスバーサル型等化器をリセ
ットせず正しい誤差信号をはやく捕そくできる確率が高
くなる効果がある。したがってトランスバーサル形等化
器等の制御系を速やかに収束させることができるので、
復調装置の信号断の時間を短縮できる効果がある。
As explained above, the present invention performs A/D conversion on each of the mutually orthogonal P channel and Q channel baseband signals acquired in the demodulator, and converts the logic at the sampling point position of each digital signal. Since the valid area determination signal is output when the state indicates the outside and four corners of the outermost signal point position (shaded area in Figure 4) in the signal point arrangement on the phase plane, the demodulation system is prevented from losing synchronization. This has the effect of increasing the probability that a correct error signal can be quickly captured without resetting the transversal equalizer even if the transversal equalizer has occurred. Therefore, control systems such as transversal equalizers can be quickly converged.
This has the effect of shortening the signal interruption time of the demodulator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は本実施例
のA/D変換器の入力信号と出力信号の説明図、第3図
、第4図は本実施例の有効領域判定の原理説明図、第5
図(a)、(b)、(c)は本実施例の第1象限におけ
る有効領域を示す説明図、第6図は本実施例のROMの
説明図、第7図は一般的な32QAM方式の信号点配置
図、第8図は従来例の判定信号発生回路の動作の説明図
である。 1.2.3・・・入力端子、11.12・・・A/D変
換器、13・・・有効領域判定回路、14・・・記憶回
路。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of input signals and output signals of the A/D converter of this embodiment, and Figs. 3 and 4 are diagrams showing the effectiveness of this embodiment. Diagram explaining the principle of area determination, Part 5
Figures (a), (b), and (c) are explanatory diagrams showing the effective area in the first quadrant of this embodiment, Figure 6 is an explanatory diagram of the ROM of this embodiment, and Figure 7 is a general 32QAM system. FIG. 8 is an explanatory diagram of the operation of a conventional determination signal generation circuit. 1.2.3...Input terminal, 11.12...A/D converter, 13...Valid area determination circuit, 14...Storage circuit.

Claims (1)

【特許請求の範囲】 1、32値直交振幅変調方式を使用した復調装置の信号
点位置の誤差信号位置を判定する判定信号発生回路にお
いて、直交関係にあるPチャネルおよびQチャネルベー
スバンド信号をそれぞれ入力し3個のデータビットと1
個のエラービットとからなる4ビット2値ディジタル信
号を出力するA−D変換器と、32個の信号点のうちの
最外殼信号点の誤差信号点が前記最外殼信号点の配置点
を結んだ外周線の外側領域である有効領域に存在する場
合に判定信号を出力する有効領域判定手段とを有し、前
記判定信号が出力された場合に前記復調装置に含まれる
トランスバーサル型等化器のリセットを行わないことを
特徴とする判定信号発生回路。 2、前記有効領域判定手段が入力される前記4ビット2
値ディジタル信号の標本点位置のアドレス情報と3領域
に分割した前記有効領域との比較テーブルを格納した記
憶回路を有することを特徴とする請求項1記載の判定信
号発生回路。
[Claims] In a determination signal generation circuit for determining an error signal position of a signal point position of a demodulator using a 1-, 32-value orthogonal amplitude modulation method, P-channel and Q-channel baseband signals having an orthogonal relationship are each Input 3 data bits and 1
An A-D converter that outputs a 4-bit binary digital signal consisting of 32 error bits, and an error signal point of the outermost signal point among the 32 signal points connect the arrangement point of the outermost signal point. a transversal type equalizer included in the demodulator, the transversal type equalizer having a valid area determining means for outputting a determination signal when the signal exists in an effective area that is an outside area of the outer circumferential line; A determination signal generation circuit characterized in that it does not reset. 2. The 4 bits 2 to which the valid area determination means is input
2. The determination signal generation circuit according to claim 1, further comprising a storage circuit that stores a comparison table between address information of sample point positions of the value digital signal and the valid area divided into three areas.
JP2129582A 1990-05-18 1990-05-18 Discrimination signal generating circuit Pending JPH0423649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129582A JPH0423649A (en) 1990-05-18 1990-05-18 Discrimination signal generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129582A JPH0423649A (en) 1990-05-18 1990-05-18 Discrimination signal generating circuit

Publications (1)

Publication Number Publication Date
JPH0423649A true JPH0423649A (en) 1992-01-28

Family

ID=15013022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129582A Pending JPH0423649A (en) 1990-05-18 1990-05-18 Discrimination signal generating circuit

Country Status (1)

Country Link
JP (1) JPH0423649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298142A (en) * 1991-03-26 1992-10-21 Nec Corp Clock synchronization circuit
US5872812A (en) * 1996-01-30 1999-02-16 Fujitsu Limited Carrier reproducing circuit including region deciding circuitry

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169255A (en) * 1983-03-16 1984-09-25 Fujitsu Ltd Distribution system for signal point of 32-value amplitude phase modulation
JPH02100548A (en) * 1988-10-07 1990-04-12 Nec Corp Effective area decision signal generating circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169255A (en) * 1983-03-16 1984-09-25 Fujitsu Ltd Distribution system for signal point of 32-value amplitude phase modulation
JPH02100548A (en) * 1988-10-07 1990-04-12 Nec Corp Effective area decision signal generating circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298142A (en) * 1991-03-26 1992-10-21 Nec Corp Clock synchronization circuit
US5872812A (en) * 1996-01-30 1999-02-16 Fujitsu Limited Carrier reproducing circuit including region deciding circuitry

Similar Documents

Publication Publication Date Title
AU712195B2 (en) Spread spectrum communications system
JPH09214578A (en) Carrier reproduction circuit
JPH0420523B2 (en)
KR100429938B1 (en) Data Decoding Device
US4835483A (en) QAM demodulator with rapid resynchronization function
JPS6341264B2 (en)
JP3691936B2 (en) Multilevel quadrature amplitude modulation apparatus and multilevel quadrature amplitude modulation method
JP2794964B2 (en) Control signal generation circuit
US6304136B1 (en) Reduced noise sensitivity, high performance FM demodulator circuit and method
JP5214990B2 (en) Differential phase shift keying (Differential Phase Shift Keying) signal demodulating circuit and radio equipment using the same
JPH0423649A (en) Discrimination signal generating circuit
IE69762B1 (en) Digital gmsk modulator with non-integer bit interval handling
JP3610356B2 (en) Wireless communication apparatus and quadrature amplitude demodulation circuit thereof
JP2000244591A (en) Circuit and method for demodulation and modulation
JP2795761B2 (en) MSK signal demodulation circuit
CA2037090C (en) Modem comprising saw filters having opposite passband delay characteristics
JP3167341B2 (en) Continuous phase modulation signal demodulation circuit
JPH02100548A (en) Effective area decision signal generating circuit
JP2701280B2 (en) Effective area judgment signal generation circuit
JPS62133842A (en) Multi-value orthogonal amplitude modulation system
JPH05304542A (en) Demodulation method and demodulator
JPS63219252A (en) Multilevel qam communication system
JPH0748677B2 (en) Equalizer
JP2587432B2 (en) Effective area judgment signal detection circuit
JP2000196688A (en) Signal transmitting method with clock information