JPH0423401A - Manufacture of positive temperature coefficient thermistor - Google Patents

Manufacture of positive temperature coefficient thermistor

Info

Publication number
JPH0423401A
JPH0423401A JP2129495A JP12949590A JPH0423401A JP H0423401 A JPH0423401 A JP H0423401A JP 2129495 A JP2129495 A JP 2129495A JP 12949590 A JP12949590 A JP 12949590A JP H0423401 A JPH0423401 A JP H0423401A
Authority
JP
Japan
Prior art keywords
mol
grain
oxidation treatment
grain growth
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129495A
Other languages
Japanese (ja)
Inventor
Toshishige Yamamoto
利重 山本
Satoru Takao
高尾 哲
Hiroki Tanimae
谷前 太基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2129495A priority Critical patent/JPH0423401A/en
Publication of JPH0423401A publication Critical patent/JPH0423401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To suppress the abnormal grain growth inside a semiconductor so as to facilitate homogeneous grain growth by adding respectively specified amounts of TiO2 and SiO2 as sintering assistants to the main material consisting of BaTiO3 and SrTiO3. CONSTITUTION:To 100mol of the main material 100mol consisting of BaTiO3 and SrTiO3, 0.1-2.0mol of TiO2 and 0.1-5.0mol of SiO2 are added as sintering assistants. Hereby, abnormal grain growth inside a substrate is suppressed and facilitates homogeneous grain growth, and also decreases the dispersion in the number of grain boundaries electrodes is decreased, whereby breakdown strength can be improved, and further these sintering assistants have the function of an acceptor source being segregated by the gain boundary, and improve the acceptor density of the gain boundary, so oxidation treatment can be done at low temperature, and the selectivity of grain boundary oxidation improves, and the inside of the grain is not oxidated into an insulator, and further it ceases to raise the room temperature resistance value.

Description

【発明の詳細な説明】 倉鼠上二U里公1 本発明はPTCサーミスタの製造方法、より詳細にはB
aTiOs系のPTCサーミスタの製造方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a PTC thermistor, more specifically, B.
The present invention relates to a method of manufacturing an aTiOs-based PTC thermistor.

従冴四J支術 PTCサーミスタは、半導体特性を有する粒内とポテン
シャル障壁のある粒界とから成り立っている。粒内の抵
抗は温度に対しては不感であり、キュリー点以上の温度
において、ポテンシャル障壁が温度の上昇に伴い高くな
るので、それに従って粒界抵抗が指数関数的に増大し、
PTC効果が発現する。粒界抵抗pは次式で表わされる
The PTC thermistor consists of grains with semiconductor properties and grain boundaries with potential barriers. Resistance within grains is insensitive to temperature, and at temperatures above the Curie point, the potential barrier increases as temperature rises, so grain boundary resistance increases exponentially accordingly.
PTC effect is expressed. Grain boundary resistance p is expressed by the following formula.

p= poeXl) (6)      ・・・・・・
(1)φcc ]。
p= poeXl) (6) ・・・・・・
(1)φcc].

ε ただし、ρ。、k、定数 φ:ポテンシャル障壁高さ T:絶対温度 ε:誘電率 をそれぞれ表わしている。ε However, ρ. ,k, constant φ: Potential barrier height T: Absolute temperature ε: Represents dielectric constant.

いま、上2(1)式を簡単にして、 p=Aexp(φ)   と表わし、キュリ点ての障壁
高さ、φ=Xの場合とφ=1+xとの場合を考えると、 φ=Xの場合   ρ=A−eX φ=1+xの場合 p = 2.72A・eX  とな
る。
Now, simplifying equation 2 (1) above, we express it as p=Aexp(φ), and considering the barrier height at the Curie point, φ=X and φ=1+x, we get φ=X. In the case ρ=A-eX In the case φ=1+x, p = 2.72A・eX.

ここで、キュリー点以上て障壁高さφが、キュリー・ワ
イスの法則に従う誘電率εの減少によって、同じ割合で
変化し、それぞれの高さが2倍になったとすると、 φ=2xの場合     p=A、e2・φ=2(1+
X l の場合 ρ= 7.39A−e2Xとなり、抵
抗の変化率はそれぞれeX倍、2.72 xeゝ倍とな
る。これより、キュリー点での障壁高さφが大きいほど
抵抗変化幅は大きいことがわかるが、キュリー点以下の
温度域での抵抗も大きくなってしまう。
Here, if the barrier height φ above the Curie point changes at the same rate due to the decrease in permittivity ε according to the Curie-Weiss law, and each height doubles, then when φ = 2x p =A, e2・φ=2(1+
In the case of X l, ρ=7.39A-e2X, and the rate of change in resistance becomes eX times and 2.72 xeゝ times, respectively. From this, it can be seen that the larger the barrier height φ at the Curie point, the larger the resistance change width, but the resistance also increases in the temperature range below the Curie point.

従って、抵抗変化幅が大きく、かつ低抵抗であるPTC
サーミスタを得るためには、粒界の数を減らし、すなわ
ち粒径を大きくして、粒界−つ一つの障壁高さを大きく
してやると良いと考えられる。
Therefore, PTC has a large resistance change range and low resistance.
In order to obtain a thermistor, it is thought that it is better to reduce the number of grain boundaries, that is, to increase the grain size, and to increase the barrier height of each grain boundary.

従来、低抵抗のPTCサーミスタの製造方法として希土
類等の半導体化剤を0.5 mo1%以上加え、900
〜1800’Cの酸化性雰囲気下で仮焼後、成形し、還
元性雰囲気下において1300〜1450℃で焼結させ
、さらに、1000〜1800℃で数分間酸化処理する
方法が提案されている(特開昭48−37693号公報
)。
Conventionally, as a manufacturing method for low-resistance PTC thermistors, 900
A method has been proposed in which the material is calcined in an oxidizing atmosphere at ~1800'C, then shaped, sintered at 1300-1450°C in a reducing atmosphere, and then subjected to oxidation treatment at 1000-1800°C for several minutes ( (Japanese Unexamined Patent Publication No. 48-37693).

この方法によると、酸化性雰囲気下で焼結させると絶縁
化するような、0.5 mo1%以上の半導体化剤を添
加し、還元性雰囲気下で焼結させることにより、半導体
化剤を固溶させて、ドナーを供給し、粒内の抵抗率を1
0−1〜1O−2Ω・cm程度に下げている。その後、
酸化性雰囲気下において高温で短時間酸化処理を行なう
ことによって、粒界を酸化して、アクセプタを供給し、
粒界にポテンシャル障壁を形成している。
According to this method, 0.5 mo1% or more of a semiconducting agent that becomes insulating when sintered in an oxidizing atmosphere is added, and the semiconducting agent is solidified by sintering in a reducing atmosphere. melt, supply a donor, and increase the resistivity within the grain to 1.
It is lowered to about 0-1 to 1O-2 Ω·cm. after that,
By performing oxidation treatment at high temperature for a short time in an oxidizing atmosphere, grain boundaries are oxidized and acceptors are supplied.
Potential barriers are formed at grain boundaries.

明が解?しようとする課題 上記したPTCサーミスタの製造方法においでは、適切
な焼結助材が添加されていないために、焼結時に異常粒
成長を起こし、耐圧が悪くなるという課題があった。
Ming is the answer? Problems to be Solved In the above-described method for manufacturing a PTC thermistor, there was a problem in that since an appropriate sintering aid was not added, abnormal grain growth occurred during sintering, resulting in poor pressure resistance.

また、アクセプタ供給源が添加されていないため、アク
セプタ生成効率が悪く、高温で酸化処理を行なわなけれ
ば十分なPTC効果を表わさないという課題があった。
Further, since no acceptor supply source is added, the acceptor generation efficiency is poor, and there is a problem that a sufficient PTC effect cannot be exhibited unless oxidation treatment is performed at a high temperature.

さらに、これらの欠点のため、大電流、大電力回路では
使用できないという課題があった。
Furthermore, due to these drawbacks, there was a problem that it could not be used in large current and large power circuits.

本発明は上記した課題に鑑みなされたものであって、低
抵抗でありながら、抵抗変化幅が大きく、しかも耐圧が
高く、大電力回路で使用できるようなPTCサーミスタ
の製造方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a PTC thermistor that has a low resistance, a large resistance change range, a high breakdown voltage, and can be used in a high power circuit. The purpose is

課0を解?するための P 上記した目的を達成するために本発明に係るBaTiO
3系のPTCサーミスクの製造方法においては、BaT
103及び5rTx(hからなる主原料1(10mol
に対し、希土類元素、Nb及びTaからなる群から選ば
れた少なくとも1種の元素を0.1mol以上、Ti0
aを0.1〜2.0 mol 、 5if1.を0.1
〜5.0 mol、Mn、 Cr、 Mg等の元素のう
ち少なくとも1種の元素を0.01〜0.12mol添
加し、これらの混合物を還元性あるいは中性雰囲気下に
おいて焼結させ、この後酸素を含有する雰囲気下におい
て1150℃以上の温度範囲で酸化処理することを特徴
としている。
Solved lesson 0? In order to achieve the above-mentioned purpose, BaTiO according to the present invention
In the method for manufacturing PTC thermistors of type 3, BaT
Main raw material 1 (10 mol
0.1 mol or more of at least one element selected from the group consisting of rare earth elements, Nb and Ta, Ti0
0.1 to 2.0 mol of a, 5if1. 0.1
~5.0 mol, 0.01 to 0.12 mol of at least one element among elements such as Mn, Cr, and Mg are added, and the mixture is sintered in a reducing or neutral atmosphere, and then It is characterized by performing oxidation treatment at a temperature range of 1150° C. or higher in an atmosphere containing oxygen.

毘−囲 上記した製造方法によれば、BaTi0z系のPTCサ
ーミスクの製造方法において、BaTiO3及びSrT
iO3からなる主原料100 molに対し、焼結助材
としてTiO2を0.1〜2.0 mol 、 SiO
2を01〜50mol含むことにより、半導体内の異常
粒成長が抑えられ、均質な粒成長が促される。また、こ
れら焼結助材は、アクセプタ供給源を粒界に偏析させる
働きがあり、粒界のアクセプタ密度を向上させるので、
酸化処理を低温で行なうことができ、これによって、粒
界酸化の選択性が向上し、粒内な酸化絶縁体化させるこ
とがなく、従って、室温抵抗値を上昇させることがない
According to the manufacturing method described above, in the manufacturing method of BaTiOz-based PTC thermistor, BaTiO3 and SrT
For 100 mol of the main raw material consisting of iO3, 0.1 to 2.0 mol of TiO2 as a sintering aid, SiO
By containing 01 to 50 mol of 2, abnormal grain growth within the semiconductor is suppressed and homogeneous grain growth is promoted. In addition, these sintering aids have the function of segregating the acceptor supply source at the grain boundaries, improving the acceptor density at the grain boundaries.
The oxidation treatment can be carried out at a low temperature, which improves the selectivity of grain boundary oxidation and prevents formation of oxidized insulators within the grains, thereby preventing an increase in room temperature resistance.

また、アクセプタ供給源としてMn、 Cr、 Mg等
の元素のうち少なくとも1種の元素を0.O1〜0.1
2mol添加することにより、アクセプタ密度が向上し
、アクセプタ生成効率が良好になり、前記と同様の作用
が得られる。
Furthermore, at least one element among elements such as Mn, Cr, and Mg is added as an acceptor supply source. O1~0.1
By adding 2 mol, the acceptor density is improved, the acceptor production efficiency is improved, and the same effect as described above can be obtained.

なお、Mn、 Cr、 Mg等の元素は、これらの元素
の化合物、例えば塩化物、炭酸化物、酸化物等によって
添加するのがよい。
Note that elements such as Mn, Cr, and Mg are preferably added in the form of compounds of these elements, such as chlorides, carbonates, and oxides.

さらに、PTCサーミスタの抵抗は殆どが粒界抵抗であ
るが、半導体化剤として希土類元素、Nb及びTaから
なる群から選ばれた少なくとも1種の元素を0.1 m
o1以上含むことにより、粒内の抵抗が調節されて室温
抵抗値の小さい半導体磁器が得られる。
Furthermore, although most of the resistance of PTC thermistors is grain boundary resistance, at least one element selected from the group consisting of rare earth elements, Nb, and Ta is added as a semiconductor agent to 0.1 m
By containing o1 or more, the resistance inside the grains is adjusted and a semiconductor porcelain with a small room temperature resistance value can be obtained.

そして、これらの混合物を還元性あるいは中性雰囲気下
において焼結させ、この後酸素を含有する雰囲気下にお
いて1150℃以上の温度範囲で酸化処理することによ
り、粒界にポテンシャル障壁が形成され、抵抗変化幅が
大きくなり、PTC効果を十分に有するサーミスタが得
られる。
Then, by sintering these mixtures in a reducing or neutral atmosphere, and then oxidizing them in an oxygen-containing atmosphere at a temperature range of 1150°C or higher, potential barriers are formed at grain boundaries, increasing the resistance. The variation range becomes large, and a thermistor having a sufficient PTC effect can be obtained.

1嵐且反グ比藍舅 以下、本発明に係るPTCサーミスクの製造方法の一実
施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for manufacturing a PTC thermistor according to the present invention will be described below.

原料として、BaTiO3及び5rTiOaからなる主
原料100 molに対し、希土類元素、Nb及びTa
のうち少なくとも1種の元素を0.1 mo1以上、T
iO□を01〜2.0 mol 、 SiO2を0.1
〜5.0 mol、Mn、 Gr、 Mg等の元素のう
ち少なくとも1種の元素を0.01〜0.12mol添
加し、これらを混合した後、大気中で仮焼する。
As raw materials, rare earth elements, Nb and Ta were added to 100 mol of the main raw material consisting of BaTiO3 and 5rTiOa.
At least one element of 0.1 mo1 or more, T
iO□ 01-2.0 mol, SiO2 0.1
~5.0 mol, 0.01 to 0.12 mol of at least one element among elements such as Mn, Gr, and Mg are added, and after mixing these, calcining is performed in the atmosphere.

次いで前記仮焼粉末をポットミル等を用いて粉砕した後
、バイングーを加えて攪拌混合し、成形した後、この成
形体を還元性あるいは中性雰囲気下において焼結させ、
その後、酸素を含有する雰囲気下において1150℃以
上の温度範囲で酸化処理する。
Next, the calcined powder is pulverized using a pot mill or the like, and banhgu is added thereto and mixed with stirring. After molding, the molded body is sintered in a reducing or neutral atmosphere,
Thereafter, oxidation treatment is performed at a temperature range of 1150° C. or higher in an atmosphere containing oxygen.

さらに、この基板にAg電極を形成してPTCサーミス
クを作成する。
Further, an Ag electrode is formed on this substrate to create a PTC thermistork.

第1表に示した組成において、種々の焼結条件及び酸化
処理条件で作成されたPTCサーミスタの特性として室
温抵抗率、抵抗変化幅及び耐圧を測定した。焼結条件及
び酸化処理条件ならびに特性の測定結果を第2表に示し
た。
With the compositions shown in Table 1, the room temperature resistivity, resistance change range, and breakdown voltage were measured as characteristics of PTC thermistors created under various sintering conditions and oxidation treatment conditions. Table 2 shows the sintering conditions, oxidation treatment conditions, and measurement results of properties.

(以下余白) 第1表中*印は本発明の範囲外の組成のものを示し、そ
れ以外はすべて本発明の範囲内の組成のものである。ま
た、第2表中*印は本発明の範囲外の組成のもの、ある
いは焼結条件及び酸化処理条件が本発明の範囲外のもの
を示しており、それ以外はすべて本発明の範囲内の組成
であり、かつ焼結条件及び酸化処理条件も本発明の範囲
内のものである。
(The following is a blank space) In Table 1, the * mark indicates a composition outside the scope of the present invention, and all other compositions are within the scope of the present invention. In addition, the * mark in Table 2 indicates those with compositions outside the scope of the present invention, or those with sintering conditions and oxidation treatment conditions outside the scope of the present invention, and all other items are within the scope of the present invention. The composition, sintering conditions, and oxidation treatment conditions are also within the scope of the present invention.

第2表から明らかなように、組成が本発明の範囲内であ
る組成番号1においては、還元性雰囲気下で焼結しても
、酸化処理条件が適切でなければ室温抵抗率ρ25が高
くなってしまう。一方、中性雰囲気下で焼成しても、酸
化処理が適切であれば還元性雰囲気下で焼結した場合と
同様に低い室温抵抗率ρ25及び大きな抵抗変化幅ψが
得られる。
As is clear from Table 2, in composition number 1, which is within the scope of the present invention, even if sintered in a reducing atmosphere, the room temperature resistivity ρ25 will increase unless the oxidation treatment conditions are appropriate. It ends up. On the other hand, even when sintered in a neutral atmosphere, if the oxidation treatment is appropriate, a low room temperature resistivity ρ25 and a large resistance change width ψ can be obtained, as in the case of sintering in a reducing atmosphere.

また、組成が本発明の範囲内である組成番号2では、大
気中で焼結し、酸化処理を行なわなかったものは、室温
抵抗率ρ25が非常に高く、還元性雰囲気下で焼結し、
適切な酸化処理を施したものは室温抵抗率/)25が低
くなることが示されている。ただし、酸化処理温度が低
過ぎると室温抵抗率/)25は小さいが、抵抗変化幅ψ
も小さ(なってしまう。
In addition, composition number 2, whose composition is within the scope of the present invention, has a very high room temperature resistivity ρ25 when sintered in the air and not subjected to oxidation treatment, and when sintered in a reducing atmosphere,
It has been shown that those subjected to appropriate oxidation treatment have a lower room temperature resistivity/)25. However, if the oxidation treatment temperature is too low, the room temperature resistivity /)25 will be small, but the resistance change width ψ
It also becomes small.

組成が本発明の範囲内である組成番号3ては、還元性雰
囲気下において焼結したものを酸化処理することで室温
抵抗率ρ25を小さく、抵抗変化幅ψを大きくすること
ができる。しかし、大気中で焼結すると、組成が本発明
の範囲内であっても、室温抵抗率p26は非常に大きな
値となる。
Composition number 3, whose composition is within the scope of the present invention, can be sintered in a reducing atmosphere and subjected to oxidation treatment to reduce the room temperature resistivity ρ25 and increase the resistance change width ψ. However, when sintered in the atmosphere, the room temperature resistivity p26 becomes a very large value even if the composition is within the range of the present invention.

また、比較例としてあげた組成番号4ては、還元性雰囲
気下で焼成し、適切な酸化処理を行なっても室温抵抗率
ρ25が大きい。これは第1表で示されているように、
TiO□及び5102といった焼結助材が加えられてい
ないためてあり、しかも抵抗変化幅ψが小さいのは、ア
クセプタ供給源となるMnが加えらていないことによる
Furthermore, composition No. 4 given as a comparative example has a large room temperature resistivity ρ25 even if it is fired in a reducing atmosphere and subjected to appropriate oxidation treatment. As shown in Table 1, this
The reason why sintering aids such as TiO□ and 5102 are not added and the resistance change width ψ is small is because Mn, which serves as an acceptor supply source, is not added.

比較例としてあげた組成番号5も、TlO2が多ずぎる
ために室温抵抗率ρ25が高く、抵抗変化幅ψが小さ(
なっている。
Composition No. 5 given as a comparative example also has a high room temperature resistivity ρ25 due to too much TlO2, and a small resistance change width ψ (
It has become.

組成番号6及び8では、組成が本発明の範囲内てあり、
焼成雰囲気及び酸化処理条件も適切であるので、室温抵
抗率ρ25が小さく、抵抗変化幅ψが大きいものが得ら
れている。
In composition numbers 6 and 8, the composition is within the scope of the present invention,
Since the firing atmosphere and oxidation treatment conditions were also appropriate, a product with a small room temperature resistivity ρ25 and a large resistance change width ψ was obtained.

比較例としてあげた組成番号7で示したように、SiO
□が多すぎても室温抵抗率p25は高くなり、抵抗変化
幅ψが小さくなる。
As shown in composition number 7 given as a comparative example, SiO
If □ is too large, the room temperature resistivity p25 becomes high and the resistance change width ψ becomes small.

また組成番号9のようにMnが多すぎると還元雰囲気下
で焼結してもわれが生じ、また、半導体化しない。
Furthermore, if there is too much Mn as in composition number 9, sintering will cause cracking in a reducing atmosphere, and the material will not become a semiconductor.

更に耐圧については、PTCサーミスクを、その室温抵
抗値が0.5Ωとなるように作成して、比較した。比較
例としてあげたものの中にだけ耐圧の低いものがみられ
たが、本発明の範囲内のものについてはすべて耐圧の高
いものが得られた。
Furthermore, with regard to withstand voltage, PTC thermistors were prepared so that their resistance at room temperature was 0.5Ω, and compared. Although some of the samples listed as comparative examples had low breakdown voltages, all of the samples within the scope of the present invention had high breakdown voltages.

このように、焼結助材及びアクセプタ供給源を適量添加
し、還元性あるいは中性雰囲気中で焼結し、十分均一に
粒成長させた後、酸化雰囲気下で、粒界だけを選択的に
酸化処理することにより高耐圧で、抵抗変化幅ψが大き
く、低抵抗なPTCサーミスタを作成することができる
In this way, after adding appropriate amounts of sintering aids and acceptor sources and sintering in a reducing or neutral atmosphere to achieve sufficiently uniform grain growth, grain boundaries are selectively grown in an oxidizing atmosphere. By performing the oxidation treatment, it is possible to create a PTC thermistor that has a high breakdown voltage, a large resistance change width ψ, and a low resistance.

光贋しΣ弘果 以上の説明により明らかなように、本発明にあっては、
BaTiO3系のPTCサーミスタの製造方法において
、BaTi0a及び5rTiOaからなる主原料100
 molに対し、焼結助材としてTiO□を0.1〜2
.0 mol 、 5iO7を0.1〜5.0 mol
添加するので、基板内の異常粒成長を抑え、均質な粒成
長を促すとともに、電極間の粒界数のバラツキを少なく
して、耐圧を向上させることができる。また、これら焼
結助材は、アクセプタ供給源を粒界に偏析させる働きが
あり、粒界のアクセプタ密度を向上させるので、酸化処
理を低温で行なうことができ、これによって、粒界酸化
の選択性が向上し、粒内が酸化絶縁体化されることがな
く、さらに、室温抵抗値を上昇させることもない。
As is clear from the above explanation, in the present invention,
In the method for manufacturing a BaTiO3-based PTC thermistor, main raw material 100 consisting of BaTiOa and 5rTiOa
0.1 to 2 of TiO□ as a sintering aid to mol
.. 0 mol, 0.1-5.0 mol of 5iO7
Since it is added, it is possible to suppress abnormal grain growth within the substrate, promote homogeneous grain growth, and reduce variation in the number of grain boundaries between electrodes, thereby improving breakdown voltage. In addition, these sintering aids have the function of segregating acceptor sources to the grain boundaries, improving the acceptor density at the grain boundaries, allowing oxidation treatment to be performed at low temperatures, and thereby making it possible to select grain boundary oxidation. The properties are improved, the inside of the grains do not become an oxidized insulator, and the room temperature resistance value does not increase.

また、アクセプタ供給源としてMn、 Cr、 Mg等
の元素のうち少なくとも1種の元素を0.01〜0.1
2mol添加するので、アクセプタ密度を向上させるこ
とにより、前記と同様の効果を強めることができる。
In addition, at least one element among elements such as Mn, Cr, and Mg is used as an acceptor supply source at 0.01 to 0.1
Since 2 mol is added, the same effect as described above can be enhanced by increasing the acceptor density.

さらに、PTCサーミスタの抵抗は殆どが粒界抵抗であ
るが、半導体化剤として希土類元素、Nb及びTaから
なる群から選ばれた少なくとも1種の元素を0.1 m
o1以上含むことにより、粒内の抵抗を調節して室温抵
抗値の小さい基板を得ることができる。。
Furthermore, although the resistance of a PTC thermistor is mostly grain boundary resistance, at least one element selected from the group consisting of rare earth elements, Nb, and Ta is added as a semiconductor agent to 0.1 m
By containing o1 or more, it is possible to adjust the resistance within the grains and obtain a substrate with a small room temperature resistance value. .

そして、これらの混合物を還元性あるいは中性雰囲気下
において焼結させ、この後酸素を含有する雰囲気下にお
いて1150℃以上の温度範囲で粒界だけを選択的に酸
化処理することにより、粒界にポテンシャル障壁を形成
して、抵抗変化幅を大きくすることができ、PTC効果
を十分に有した低抵抗のサーミスタを得ることができる
。従って、大電力回路でも十分使用できるようなPTC
サーミスタを作成することができる。
Then, these mixtures are sintered in a reducing or neutral atmosphere, and then only the grain boundaries are selectively oxidized in an oxygen-containing atmosphere at a temperature of 1150°C or higher. By forming a potential barrier, the width of resistance change can be increased, and a low resistance thermistor with sufficient PTC effect can be obtained. Therefore, PTC can be used sufficiently even in high power circuits.
A thermistor can be created.

特許出願人:住友金属工業株式会社Patent applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)BaTiO_3系の正特性(以下PTCと記す)
サーミスタの製造方法において、BaTiO_3及びS
rTiO_3からなる主原料100molに対し、希土
類元素、Nb及びTaからなる群から選ばれた少なくと
も1種の元素を0.1mol以上、TiO_2を0.1
〜2.0mol、SiO_2を0.1〜5.0mol、
Mn、Cr、Mg等の元素のうち少なくとも1種の元素
を0.01〜0.12mol添加し、これらの混合物を
還元性あるいは中性雰囲気下において焼結させ、この後
酸素を含有する雰囲気下において1150℃以上の温度
範囲で酸化処理することを特徴とする正特性サーミスタ
の製造方法。
(1) Positive characteristics of BaTiO_3 system (hereinafter referred to as PTC)
In the thermistor manufacturing method, BaTiO_3 and S
For 100 mol of the main raw material consisting of rTiO_3, 0.1 mol or more of at least one element selected from the group consisting of rare earth elements, Nb and Ta, and 0.1 mol of TiO_2.
~2.0 mol, 0.1 to 5.0 mol of SiO_2,
Add 0.01 to 0.12 mol of at least one element among elements such as Mn, Cr, Mg, etc., sinter the mixture in a reducing or neutral atmosphere, and then sinter in an atmosphere containing oxygen. 1. A method for manufacturing a positive temperature coefficient thermistor, characterized in that oxidation treatment is performed at a temperature range of 1150° C. or higher.
JP2129495A 1990-05-18 1990-05-18 Manufacture of positive temperature coefficient thermistor Pending JPH0423401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129495A JPH0423401A (en) 1990-05-18 1990-05-18 Manufacture of positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129495A JPH0423401A (en) 1990-05-18 1990-05-18 Manufacture of positive temperature coefficient thermistor

Publications (1)

Publication Number Publication Date
JPH0423401A true JPH0423401A (en) 1992-01-27

Family

ID=15010894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129495A Pending JPH0423401A (en) 1990-05-18 1990-05-18 Manufacture of positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JPH0423401A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348291A (en) * 1965-07-26 1967-10-24 Ingersoll Rand Co Fluid operated stud driver tool
US3398446A (en) * 1963-09-17 1968-08-27 Sandvikens Jernberks Aktiebola Device for applying traction-augmenting studs in tires for vehicles and the like
US6984355B2 (en) * 1999-11-02 2006-01-10 Murata Manufacturing Co., Ltd. Semiconducting ceramic material, process for producing the ceramic material, and thermistor
KR100778105B1 (en) * 2006-03-30 2007-11-22 한국과학기술원 Method for making SrTiO3 varistor using grain boundary segregation
US20090253028A1 (en) * 2007-02-20 2009-10-08 Masaru Takagi Temperature adjustment mechanism and vehicle
RU2713061C1 (en) * 2016-12-08 2020-02-03 Эндресс+Хаузер Ветцер Гмбх+Ко. Кг Method and device for in situ calibration of thermometer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398446A (en) * 1963-09-17 1968-08-27 Sandvikens Jernberks Aktiebola Device for applying traction-augmenting studs in tires for vehicles and the like
US3348291A (en) * 1965-07-26 1967-10-24 Ingersoll Rand Co Fluid operated stud driver tool
US6984355B2 (en) * 1999-11-02 2006-01-10 Murata Manufacturing Co., Ltd. Semiconducting ceramic material, process for producing the ceramic material, and thermistor
KR100778105B1 (en) * 2006-03-30 2007-11-22 한국과학기술원 Method for making SrTiO3 varistor using grain boundary segregation
US20090253028A1 (en) * 2007-02-20 2009-10-08 Masaru Takagi Temperature adjustment mechanism and vehicle
RU2713061C1 (en) * 2016-12-08 2020-02-03 Эндресс+Хаузер Ветцер Гмбх+Ко. Кг Method and device for in situ calibration of thermometer

Similar Documents

Publication Publication Date Title
US4384989A (en) Semiconductive barium titanate
JPWO2007097462A1 (en) Semiconductor porcelain composition
KR20150039692A (en) Semiconductor ceramic composition and ptc thermistor
JPWO2008050876A1 (en) Semiconductor porcelain composition and method for producing the same
KR940001655B1 (en) Semiconductive ceramic composition
JPH0423401A (en) Manufacture of positive temperature coefficient thermistor
JP5844507B2 (en) Method for producing semiconductor porcelain composition and heater using semiconductor porcelain composition
JP2008063188A (en) Compounding material for ptc thermistor and semiconductor ceramic composition for ptc thermister
JP5881169B2 (en) Method for producing semiconductor porcelain composition
JPH01143202A (en) Positive temperature coefficient(ptc) thermister for moderate high temperature
JPS6243522B2 (en)
JPS6046811B2 (en) Composition for semiconductor ceramic capacitors
JPS6048897B2 (en) Composition for semiconductor ceramic capacitors
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPH0335503A (en) Manufacture of ptc thermistor
JP3178083B2 (en) Barium titanate-based ceramic semiconductor and method for producing the same
JPS6217368B2 (en)
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JPH0214762B2 (en)
JP3036051B2 (en) Barium titanate-based semiconductor porcelain composition
JPH04188602A (en) Manufacture of barium titanate semiconductor porcelain
JPS6366401B2 (en)
JPH11106256A (en) Production of barium titanate-based semiconductor material
JPH0443603A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPS6046812B2 (en) Composition for semiconductor ceramic capacitors