JPH04233205A - Compound type inductive voltage divider - Google Patents

Compound type inductive voltage divider

Info

Publication number
JPH04233205A
JPH04233205A JP40900090A JP40900090A JPH04233205A JP H04233205 A JPH04233205 A JP H04233205A JP 40900090 A JP40900090 A JP 40900090A JP 40900090 A JP40900090 A JP 40900090A JP H04233205 A JPH04233205 A JP H04233205A
Authority
JP
Japan
Prior art keywords
voltage
winding
voltage divider
self
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40900090A
Other languages
Japanese (ja)
Other versions
JPH0680620B2 (en
Inventor
Kunihiko Takahashi
高 橋 邦 彦
Shoji Kusui
楠 井 昭 二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Electric Meters Inspection Corp JEMIC
Original Assignee
Japan Electric Meters Inspection Corp JEMIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electric Meters Inspection Corp JEMIC filed Critical Japan Electric Meters Inspection Corp JEMIC
Priority to JP40900090A priority Critical patent/JPH0680620B2/en
Publication of JPH04233205A publication Critical patent/JPH04233205A/en
Publication of JPH0680620B2 publication Critical patent/JPH0680620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a divided voltage output having precision equal to that of a self-induction voltage divider, by detecting the error voltage of a self-induction voltage divider and a secondary winding of one side, and adding the detected voltage, which is electrostatically insulated from the input, to the voltage of the similarly insulated other side secondary winding, as a correction voltage to obtain a divided output voltage. CONSTITUTION:The comparison of corresponding tap voltages of windings 5, 6 is performed by connecting each terminal of the primary winding 81 of an auxiliary transformer 8 with corresponding taps of the windings 5, 6. When the output voltage of the secondary winding 82 of the auxiliary transformer 8 is expressed by n(V1'-V1''), the both ends voltage of a second secondary winding 7 is nV1'' which is equal to the first secondary winding 6. The output voltage V2 is obtained by adding n(V1'-V1''), which is the voltage of the secondary winding 82 of the auxiliary transformer 8, to the voltage nV1'', so that V2 is expressed by V2=n(V1'-V1'')+nV1'=nV1'. Thereby the output voltage V2 can be led out with precision approximate to the winding 5 of a self-induction voltage divider.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は複巻形誘導分圧器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-wound inductive voltage divider.

【0002】0002

【従来の技術】一般的に、分圧器と言えば、抵抗器より
タップを出し、このタップの位置を変えることにより、
高電圧から低電圧を得るものが連想される。しかし、こ
のような分圧器を電源部に使用することを考えた場合、
電力消費が大きく、また電力計、電力量計等の計測器の
電源部に使用する場合には、入力電圧源でのノイズが出
力側に出現することとなるために精度低下の原因となっ
て好ましくない。
[Prior Art] Generally speaking, a voltage divider has a tap connected to a resistor, and by changing the position of this tap,
It is reminiscent of obtaining low voltage from high voltage. However, when considering using such a voltage divider in the power supply section,
Power consumption is large, and when used in the power supply section of measuring instruments such as wattmeters and watt-hour meters, noise from the input voltage source appears on the output side, causing a decrease in accuracy. Undesirable.

【0003】また、分圧器のインピーダンスを計測器の
インピーダンスに比し充分小さくすることは困難で測定
精度を劣化させることになる。
Furthermore, it is difficult to make the impedance of the voltage divider sufficiently smaller than the impedance of the measuring instrument, which deteriorates measurement accuracy.

【0004】そこで、従来より、消費電力を低減し且つ
入出力間を電気的に絶縁し、信号源インピーダンスを小
さくするために、分圧器の中に変圧器を組込むことが行
われている。このような分圧器によれば、流れる電流は
励磁インピーダンスによるわずかなもので、消費電力が
飛躍的に小さくなり、また入出力間は1次、2次巻線に
よる静電的に結合されるため、電気的に絶縁することが
できる。
[0004] Conventionally, therefore, a transformer has been incorporated into a voltage divider in order to reduce power consumption, electrically insulate input and output, and reduce signal source impedance. According to such a voltage divider, the current that flows is small due to the excitation impedance, and the power consumption is dramatically reduced, and the input and output are electrostatically coupled by the primary and secondary windings. , can be electrically insulated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな分圧器であっても、使用する変圧器の比誤差や位相
角が原因での精度低下は否めなかった。
[Problems to be Solved by the Invention] However, even with such a voltage divider, it is undeniable that the accuracy decreases due to ratio errors and phase angles of the transformer used.

【0006】本発明は、このような従来の問題点に鑑み
、分圧精度が高く、更に入出力電圧回路間が静電気的に
絶縁された複巻形誘導分圧器を提供することにある。
SUMMARY OF THE INVENTION In view of these conventional problems, it is an object of the present invention to provide a compound-wound inductive voltage divider which has high voltage division accuracy and which provides electrostatic insulation between input and output voltage circuits.

【0007】[0007]

【課題を解決するための手段】そのため本発明の複巻形
誘導分圧器は、第1の鉄心と、この第1の鉄心に装着さ
れた励磁巻線とからなる励磁回路と、上記第1の鉄心に
第2の鉄心が重ねられるとともに、その第1、第2の両
鉄心に掛け且つ上記励磁巻線と同一巻数で巻線が装着さ
れることにより自己分圧形の誘導分圧器として形成され
た自己誘導分圧器と、この自己誘導分圧器の巻線と巻数
が同一であって且つ相互に巻き方が同一にされて上記第
1、第2の両鉄心に掛けて装着された第1、第2の2次
巻線と、上記自己誘導分圧器の巻線に誘起された電圧と
上記第1の2次巻線に誘起された電圧との差分を入力と
し、その電圧を静電的に絶縁して出力する複巻変圧器と
、上記第2の巻線に誘起された電圧に該複巻変圧器の出
力電圧を合成して分圧出力とする出力回路とを備えてい
る。
[Means for Solving the Problems] Therefore, the compound winding type inductive voltage divider of the present invention includes an excitation circuit consisting of a first iron core and an excitation winding attached to the first iron core, A second core is superimposed on the core, and a winding is attached to both the first and second cores with the same number of turns as the excitation winding, thereby forming a self-dividing type induction voltage divider. a self-induction voltage divider having the same number of windings as that of the self-induction voltage divider, and a first coil which is wound in the same manner as that of the self-induction voltage divider and is attached to both the first and second iron cores; The difference between the voltage induced in the second secondary winding, the winding of the self-induction voltage divider, and the voltage induced in the first secondary winding is input, and the voltage is electrostatically It includes a compound-turn transformer that outputs an insulated output, and an output circuit that combines the voltage induced in the second winding with the output voltage of the compound-turn transformer to produce a divided voltage output.

【0008】[0008]

【作用】本発明によれば、励磁回路の第1の鉄心におけ
る磁束により自己誘導分圧器に電圧を誘起すると共に、
特性を一致させるように作成した2つの2次巻線に第1
、第2の鉄心の磁束により2段変圧器の原理で電圧を誘
起するとともに、自己誘導分圧器と一方の2次巻線との
誤差電圧を複巻変圧器により検出し、その入力とは静電
気的に絶縁された検出電圧を、同じく入力とは静電気的
に絶縁された他方の2次巻線の電圧に補正電圧として加
えて分圧出力電圧とするように構成されているため、入
力とは静電的に絶縁された状態で精度的に自己誘導分圧
器と同等の分圧出力を得ることができる。
[Operation] According to the present invention, a voltage is induced in the self-induction voltage divider by the magnetic flux in the first core of the excitation circuit, and
The first
, a voltage is induced by the magnetic flux of the second core using the principle of a two-stage transformer, and the error voltage between the self-induction voltage divider and one of the secondary windings is detected by a compound transformer, whose input is static electricity. It is configured to add the detected voltage, which is electrostatically isolated from the input, to the voltage of the other secondary winding, which is also electrostatically isolated from the input, as a correction voltage to create a divided output voltage, so the input is different from the input. It is possible to obtain a divided voltage output with accuracy equivalent to that of a self-induction voltage divider in an electrostatically isolated state.

【0009】[0009]

【実施例】以下に本発明の実施例について図面を参照し
つつ説明する。図1は本発明の一実施例に係る複巻形誘
導分圧器の回路構成図、図2は巻線構造の概略図である
。以下は図1を中心に、巻線構造については図2をも参
照して説明される。図1において、1は電圧源、2は第
1の鉄心、3は励磁巻線であり、図2にも示すように、
この励磁巻線3が第1の鉄心2に巻着されて、電圧源1
からの交流電圧V1 により励磁巻線3から鉄心2内に
磁束を発生する励磁回路が構成されている。ここで、励
磁巻線3の巻数を10nとしておく。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of a compound winding type inductive voltage divider according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a winding structure. The winding structure will be described below with reference to FIG. 1 and also to FIG. 2. In FIG. 1, 1 is a voltage source, 2 is a first iron core, and 3 is an excitation winding, and as shown in FIG. 2,
This excitation winding 3 is wound around the first iron core 2, and the voltage source 1
An excitation circuit is constructed that generates magnetic flux from the excitation winding 3 into the iron core 2 using the AC voltage V1 from the excitation winding 3. Here, the number of turns of the excitation winding 3 is assumed to be 10n.

【0010】第1の鉄心2には第2の鉄心4が重ねられ
、これら第1、第2の両鉄心2,4に掛けて巻線5が励
磁巻線3と同一巻数で巻着され、自己分圧形の誘導分圧
器が構成されている。すなわち、同一断面積の10本の
導線を束にしてn回巻き、その後、導線を直列に接続し
て巻線5を形成し、その導線の各接続点をタップTa0
〜Ta10 として取出すことで自己分圧形の誘導分圧
器として形成したものであり、巻線5の巻数は上記励磁
巻線3と同様に10nである。巻線5のタップTa0,
Ta10 は電圧源1に接続され、励磁巻線3と同じ電
圧V1 が印加されている。
A second iron core 4 is superimposed on the first iron core 2, and a winding 5 is wound around both the first and second iron cores 2 and 4 with the same number of turns as the excitation winding 3. A self-dividing type inductive voltage divider is constructed. That is, a bundle of 10 conductive wires with the same cross-sectional area is wound n times, and then the conductive wires are connected in series to form winding 5, and each connection point of the conductive wire is tapped Ta0.
~Ta10 is taken out to form a self-dividing type induction voltage divider, and the number of turns of the winding 5 is 10n similarly to the excitation winding 3 described above. Tap Ta0 of winding 5,
Ta10 is connected to the voltage source 1, and the same voltage V1 as the excitation winding 3 is applied thereto.

【0011】更に両鉄心2,4には、第1、第2の2次
巻線6,7が巻着されている。これら第1、第2の2次
巻線6,7は自己誘導分圧器の巻線5と巻数が同一であ
って且つ相互に巻き方が同一にされて上記第1、第2の
両鉄心2,4に掛けて装着されている。すなわち、これ
ら巻線6,7は、まず同一断面積、同一長さの20本の
導線を束にしてn回巻き、10本ずつ直列に接続し巻数
が10nの2個の2次巻線として作られたもので、各巻
線6,7からは、その10個ずつの各導線接続点がタッ
プTb0〜Tb10 、Tc0〜Tc10 として取出
される。第1の2次巻線6のタップTb0と自己誘導分
圧器の巻線5のタップTa0とは共通に接続されている
。第2の2次巻線7のタップTc0は出力端子に接続さ
れている。
Furthermore, first and second secondary windings 6, 7 are wound around both iron cores 2, 4. These first and second secondary windings 6 and 7 have the same number of turns as the winding 5 of the self-induction voltage divider, and are wound in the same way so that they are connected to both the first and second iron cores 2. , 4. That is, these windings 6 and 7 are made by first making a bundle of 20 conductors with the same cross-sectional area and the same length and winding them n times, then connecting each 10 wires in series to form two secondary windings with a number of turns of 10n. Ten conductor connection points are taken out from each winding 6, 7 as taps Tb0 to Tb10 and Tc0 to Tc10. The tap Tb0 of the first secondary winding 6 and the tap Ta0 of the winding 5 of the self-induction voltage divider are commonly connected. Tap Tc0 of the second secondary winding 7 is connected to the output terminal.

【0012】8は複巻補助変圧器、9〜11はタップ切
換えスイッチである。補助変圧器8は上記自己誘導分圧
器の巻線5に誘起された電圧と第1の2次巻線6に誘起
された電圧との差分を入力とし、その電圧を静電的に絶
縁して出力させるためのものであって、その1次巻線8
1の一端は切換えスイッチ9を介して自己誘導分圧器の
巻線5のタップTa0〜Ta10 のいずれかに選択的
に接続され、同巻線81の他端は切換えスイッチ10を
介して第1の2次巻線6のタップTb0〜Tb10 の
いずれかに選択的に接続されるようになっている。補助
変圧器8の2次巻線82は一端が出力端子に接続され、
同巻線82の他端は切換えスイッチ11を介して第2の
2次巻線7におけるタップTc0〜Tc10 のいずれ
かに選択的に接続されるようになっている。
Reference numeral 8 is a compound auxiliary transformer, and reference numerals 9 to 11 are tap changeover switches. The auxiliary transformer 8 inputs the difference between the voltage induced in the winding 5 of the self-induction voltage divider and the voltage induced in the first secondary winding 6, and electrostatically insulates the voltage. The primary winding 8
One end of the winding 81 is selectively connected to one of the taps Ta0 to Ta10 of the winding 5 of the self-induction voltage divider through the changeover switch 9, and the other end of the same winding 81 is connected to the first tap through the changeover switch 10. It is selectively connected to any one of taps Tb0 to Tb10 of the secondary winding 6. One end of the secondary winding 82 of the auxiliary transformer 8 is connected to the output terminal,
The other end of the winding 82 is selectively connected to one of the taps Tc0 to Tc10 in the second secondary winding 7 via a changeover switch 11.

【0013】切換えスイッチ9〜11は図1で一点鎖線
で図解するように相互に連動するもので、各巻線5〜7
の第1番目から第11番目までのタップTa0〜Ta1
0 (Tb0〜Tb10 /Tc0〜Tc10 )を同
じ番号のもの同士で1対1に対応させる対応関係を定め
ると、切換えスイッチ9〜11は互いにその対応するタ
ップを指すようになっている。すなわち、例えば、図1
に示すように、切換えスイッチ9がタップTa9を差し
ているときには、他の切換えスイッチ10,11は各巻
線6,7で対応するタップTb9,Tc9を指すことと
なる。
The changeover switches 9 to 11 are mutually interlocked as illustrated by the dashed lines in FIG.
1st to 11th taps Ta0 to Ta1
0 (Tb0 to Tb10 /Tc0 to Tc10), if a one-to-one correspondence is established between the same numbers, the changeover switches 9 to 11 will each point to their corresponding taps. That is, for example, FIG.
As shown in FIG. 3, when the changeover switch 9 points to the tap Ta9, the other changeover switches 10 and 11 point to the corresponding taps Tb9 and Tc9 in the respective windings 6 and 7.

【0014】以上のように構成された複巻誘導分圧器は
以下のように動作する。
The compound winding induction voltage divider constructed as described above operates as follows.

【0015】まず、自己誘導分圧器の巻線5全体には、
鉄心2の磁束によって入力電圧V1 とほぼ同じ大きさ
の電圧V1’が誘起する。一方、この巻線5には入力電
圧V1 が直接印加されているため、入力電圧V1 と
誘起電圧V1’との差電圧が鉄心4と巻線5とからなる
誘導性インピーダンスに加わり電流が流れる。ただし、
この差電圧(V1 −V1’)は大変小さな電圧であり
、この電圧で、比較的大きな誘導性インピーダンスに流
れる電流は極めて小さく、分圧精度の極めて高い分圧器
が構成されていることとなる。
First, the entire winding 5 of the self-induction voltage divider has the following:
The magnetic flux of the iron core 2 induces a voltage V1' of approximately the same magnitude as the input voltage V1. On the other hand, since the input voltage V1 is directly applied to the winding 5, the voltage difference between the input voltage V1 and the induced voltage V1' is added to the inductive impedance formed by the iron core 4 and the winding 5, and a current flows. however,
This differential voltage (V1 - V1') is a very small voltage, and at this voltage, the current flowing through the relatively large inductive impedance is extremely small, and a voltage divider with extremely high voltage division accuracy is constructed.

【0016】第1、第2の2次巻線6,7は両鉄心2,
4の磁束と鎖交し2段変圧器の原理で入力電圧V1 に
ほぼ一致した電圧V1’’ を誘起する。ただし、導線
の持つ抵抗と巻線間に分布する分布容量によって、電圧
V1 とはわずかに異なっている。同じ理由で、各タッ
プTb0〜Tb10 ,Tc0〜Tc10 に現れる電
圧も、巻線5のタップTa0〜Ta10 に現れる分圧
電圧ほど正確でない。
The first and second secondary windings 6, 7 are connected to both iron cores 2,
4, and induces a voltage V1'' that almost matches the input voltage V1 using the principle of a two-stage transformer. However, it differs slightly from the voltage V1 due to the resistance of the conducting wire and the distributed capacitance distributed between the windings. For the same reason, the voltages appearing at each tap Tb0-Tb10, Tc0-Tc10 are also not as accurate as the divided voltages appearing at taps Ta0-Ta10 of the winding 5.

【0017】しかしながら、巻線6,7の20本の導線
は、束にした導線を同時に巻いているので、幾何学的形
状は良く一致しており、このため20本の導線からなる
電気回路の電気磁気的特性もお互いによく一致する。
However, since the 20 conductive wires of the windings 6 and 7 are bundled and wound at the same time, their geometrical shapes match well, and therefore the electrical circuit consisting of 20 conductive wires is The electromagnetic properties also match well with each other.

【0018】そこで、巻線5と巻線6との対応するタッ
プの電圧を比較し、その差電圧を巻線7の対応するタッ
プの電圧に補正電圧として加えれば、補正後の電圧は巻
線5の電圧と極めて良く一致することとなる。
Therefore, if the voltages of the corresponding taps of the windings 5 and 6 are compared and the difference voltage is added to the voltage of the corresponding taps of the winding 7 as a correction voltage, the corrected voltage will be the same as that of the windings. This results in extremely good agreement with the voltage of No. 5.

【0019】その巻線5,6の対応するタップ電圧の比
較は補助変圧器8の1次巻線81の各端が各巻線5,6
の対応するタップ接続されることにより為される。つま
り、巻線5,6の一端で電位は共通となっているため、
補助変圧器8の1次巻線81にはn(V1’−V1’’
 )(0≦n≦1)なる電圧が印加され、これにより巻
線82にはn(V1’−V1’’ )に略々等しい電圧
が誘起される。
Comparison of the corresponding tap voltages of the windings 5 and 6 shows that each end of the primary winding 81 of the auxiliary transformer 8 is
This is done by connecting the corresponding taps. In other words, since the potential is common at one end of windings 5 and 6,
The primary winding 81 of the auxiliary transformer 8 has n(V1'-V1''
) (0≦n≦1), and thereby a voltage approximately equal to n(V1'-V1'') is induced in the winding 82.

【0020】ここで、補助変圧器8の入出力間における
誤差は、n(V1’−V1’’ )自体が非常に小さな
値であるため、nV1 全体から見れば、無視できる程
度のものである。
Here, since n(V1'-V1'') itself is a very small value, the error between the input and output of the auxiliary transformer 8 is negligible when viewed from the whole nV1. .

【0021】よって、その誤差を無視して考え、補助変
圧器8の2次巻線82の出力電圧をn(V1’−V1’
’ )として表すと、第2の2次巻線7の両端電圧は第
1の2次巻線6と同じnV1’’ であり、この電圧n
V1’’ に補助変圧器8の2次巻線82の電圧n(V
1’−V1’’ )が加えられたものが、出力電圧V2
 となるから、V2 =n(V1’−V1’’ )+n
V1’’ =nV1’となって、出力電圧V2 は自己
誘導分圧器の巻線5と同等の精度で取出せることが導出
される。
Therefore, ignoring this error, the output voltage of the secondary winding 82 of the auxiliary transformer 8 is calculated as n(V1'-V1'
), the voltage across the second secondary winding 7 is nV1'', which is the same as that of the first secondary winding 6, and this voltage n
V1'' is the voltage n(V
1'-V1'') is added to the output voltage V2
Therefore, V2 = n (V1'-V1'') + n
It is derived that V1'' = nV1' and that the output voltage V2 can be taken out with the same accuracy as the winding 5 of the self-inductive voltage divider.

【0022】そして、第2の2次巻線7からの電圧nV
1’’ は勿論のこと、巻線5と巻線6との差電圧n(
V1’−V1’’ )も補助変圧器8により静電気的に
絶縁しつつ取出される。
Then, the voltage nV from the second secondary winding 7
1'' as well as the differential voltage n(
V1'-V1'') is also taken out while being electrostatically insulated by the auxiliary transformer 8.

【0023】したがって本実施例によれば、分圧精度が
極めて高く、更に入出力電圧回路間が静電気的に絶縁さ
れた複巻形誘導分圧器を実現できることとなる。
Therefore, according to this embodiment, it is possible to realize a compound winding type inductive voltage divider with extremely high voltage division accuracy and in which the input and output voltage circuits are electrostatically isolated.

【0024】図3〜図6は、上記実施例の回路を基にし
た試作品の試験結果を示すものである。なお、試作分圧
器の出力電圧は入力電圧の10分の1である。
FIGS. 3 to 6 show the test results of a prototype based on the circuit of the above embodiment. Note that the output voltage of the prototype voltage divider is one-tenth of the input voltage.

【0025】まず、図3は定格入力電圧が50〔Hz〕
で200〔V〕の低周波用複巻形誘導分圧器における巻
線5の部分における比誤差、位相角の周波数特性を示し
、対して図4は同低周波用複巻形誘導分圧器全体として
比誤差、位相角の周波数特性を示している。両特性を比
較すると、非常に良く一致していることがわかる。
First, in FIG. 3, the rated input voltage is 50 [Hz].
Figure 4 shows the frequency characteristics of the ratio error and phase angle in the winding 5 portion of a 200 [V] low-frequency compound-wound inductive voltage divider. It shows the frequency characteristics of ratio error and phase angle. Comparing both characteristics, it can be seen that they match very well.

【0026】また、図5は定格入力電圧が1000〔H
z〕で200〔V〕の高周波用各複巻形誘導分圧器の巻
線5の部分における比誤差、位相角の周波数特性を示し
、図6は同低周波用複巻形誘導分圧器全体として比誤差
、位相角の周波数特性を示している。これらの図を見て
も両特性は非常に良く一致している。
FIG. 5 also shows that the rated input voltage is 1000 [H].
Figure 6 shows the ratio error and phase angle frequency characteristics of the winding 5 of each compound winding type inductive voltage divider for high frequency of 200 [V] at 200 [V]. It shows the frequency characteristics of ratio error and phase angle. Looking at these figures, both characteristics match very well.

【0027】総じて高周波用・低周波用を問わず、自己
誘導分圧器の特性に、全体の複巻形誘導分圧器の特性が
良く一致していることが確認される。
In general, it is confirmed that the characteristics of the entire compound-wound induction voltage divider are in good agreement with the characteristics of the self-induction voltage divider, regardless of whether it is used for high frequencies or low frequencies.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、励
磁回路の第1の鉄心における磁束により自己誘導分圧器
を励磁すると共に、特性を一致させるように作成した2
つの2次巻線を第1、第2の鉄心の磁束により2段変圧
器の原理で励磁するとともに、自己誘導分圧器と一方の
2次巻線との誤差電圧を複巻変圧器により検出し、その
入力とは静電気的に絶縁された検出電圧を、同じく入力
とは静電気的に絶縁された他方の2次巻線の電圧に補正
電圧として加えて分圧出力電圧とするように構成されて
いるため、入力とは静電的に絶縁された状態で精度的に
自己誘導分圧器と同等の分圧出力を得ることができると
いう効果を奏する。
As explained above, according to the present invention, the self-induction voltage divider is excited by the magnetic flux in the first core of the excitation circuit, and two
The two secondary windings are excited using the principle of a two-stage transformer using the magnetic flux of the first and second cores, and the error voltage between the self-induction voltage divider and one of the secondary windings is detected using a compound transformer. , the detection voltage which is electrostatically isolated from the input is added as a correction voltage to the voltage of the other secondary winding which is also electrostatically isolated from the input to obtain a divided output voltage. Therefore, it is possible to obtain a divided voltage output with accuracy equivalent to that of a self-induction voltage divider while being electrostatically isolated from the input.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例に係る複巻形誘導分圧器の回
路図である。
FIG. 1 is a circuit diagram of a compound-wound inductive voltage divider according to an embodiment of the present invention.

【図2】図1に示す複巻形誘導分圧器の機械的構造図で
ある。
FIG. 2 is a mechanical structural diagram of the compound-wound inductive voltage divider shown in FIG. 1;

【図3】図1および図2に示す実施例を基にして試作し
た低周波用誘導分圧器における自己誘導分圧器部の周波
数特性図である。
3 is a frequency characteristic diagram of a self-induction voltage divider section in a low-frequency induction voltage divider prototyped based on the embodiment shown in FIGS. 1 and 2. FIG.

【図4】図3の対象と同じ低周波用誘導分圧器全体の周
波数特性図である。
FIG. 4 is a frequency characteristic diagram of the entire low-frequency inductive voltage divider that is the same as that shown in FIG. 3;

【図5】図1および図2に示す実施例を基にして試作し
た高周波用誘導分圧器における自己誘導分圧器部の周波
数特性図である。
5 is a frequency characteristic diagram of a self-induction voltage divider section in a high-frequency induction voltage divider prototyped based on the embodiment shown in FIGS. 1 and 2. FIG.

【図6】図5の対象と同じ高周波用誘導分圧器全体の周
波数特性図である。
FIG. 6 is a frequency characteristic diagram of the entire high-frequency inductive voltage divider that is the same as that shown in FIG. 5;

【符号の説明】[Explanation of symbols]

2  第1の鉄心 3  励磁巻線 4  第2の鉄心 5  自己誘導分圧器の巻線 6  第1の2次巻線 7  第2の2次巻線 8  複巻補助変圧器 9  タップ切換えスイッチ 10  タップ切換えスイッチ 11  タップ切換えスイッチ 2 First iron core 3 Excitation winding 4 Second iron core 5. Winding of self-induction voltage divider 6 First secondary winding 7 Second secondary winding 8 Compound winding auxiliary transformer 9 Tap changeover switch 10 Tap changeover switch 11 Tap changeover switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1の鉄心と該第1の鉄心に装着された励
磁巻線とからなる励磁回路と、該第1の鉄心に第2の鉄
心が重ねられるとともに、該第1、第2の両鉄心に掛け
且つ前記励磁巻線と同一巻数で巻線が装着されることに
より自己分圧形の誘導分圧器として形成された自己誘導
分圧器と、該自己誘導分圧器の巻線と巻数が同一であっ
て且つ相互に巻き方が同一にされて前記第1、第2の両
鉄心に掛けて装着された第1、第2の2次巻線と、前記
自己誘導分圧器の巻線に誘起された電圧と前記第1の2
次巻線に誘起された電圧との差分を入力とし、その電圧
を静電的に絶縁して出力する複巻変圧器と、  前記第
2の巻線に誘起された電圧に該複巻変圧器の出力電圧を
合成して分圧出力とする出力回路と、を備えている複巻
形誘導分圧器。
Claims: 1. An excitation circuit comprising a first iron core and an excitation winding attached to the first iron core; a second iron core is superimposed on the first iron core; A self-induction voltage divider formed as a self-voltage type induction voltage divider by installing a winding over both iron cores and having the same number of turns as the excitation winding, and a winding and the number of turns of the self-induction voltage divider. first and second secondary windings that are the same and are wound in the same manner and are installed over both the first and second iron cores; and a winding of the self-induction voltage divider. and the voltage induced in the first two
a compound-turn transformer that inputs the difference between the voltage induced in the second winding and electrostatically insulates the voltage and outputs the voltage; An output circuit that synthesizes the output voltages of and outputs a divided voltage.
JP40900090A 1990-12-28 1990-12-28 Compound winding type voltage divider Expired - Fee Related JPH0680620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40900090A JPH0680620B2 (en) 1990-12-28 1990-12-28 Compound winding type voltage divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40900090A JPH0680620B2 (en) 1990-12-28 1990-12-28 Compound winding type voltage divider

Publications (2)

Publication Number Publication Date
JPH04233205A true JPH04233205A (en) 1992-08-21
JPH0680620B2 JPH0680620B2 (en) 1994-10-12

Family

ID=18518389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40900090A Expired - Fee Related JPH0680620B2 (en) 1990-12-28 1990-12-28 Compound winding type voltage divider

Country Status (1)

Country Link
JP (1) JPH0680620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059616A (en) * 2005-08-24 2007-03-08 Nippon Denki Keiki Kenteisho Inductive voltage divider

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059616A (en) * 2005-08-24 2007-03-08 Nippon Denki Keiki Kenteisho Inductive voltage divider
JP4508983B2 (en) * 2005-08-24 2010-07-21 日本電気計器検定所 Induction voltage divider

Also Published As

Publication number Publication date
JPH0680620B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US7538541B2 (en) Split Rogowski coil current measuring device and methods
JP4972098B2 (en) Flexible precision current detector
US7298141B2 (en) Fluxgate and fluxgate magnetometers
KR960011531B1 (en) Current sensor
US20100013460A1 (en) Rogowski Sensor and Method for Measuring a Current
MXPA04008387A (en) Measuring current through an electrical conductor.
JP2002508846A (en) Current sensor
JP4622839B2 (en) Rogowski coil, Rogowski coil production method, and current measuring device
JPH07311224A (en) Electric-current detecting device
JPH09329633A (en) Conductivity meter
CN107271932B (en) Improved B-H measuring coil and method for measuring two-dimensional magnetic characteristics of cubic sample based on improved B-H measuring coil
JPS63306608A (en) Instrument transformer for measuring current flowing through electric conductor
JP3415697B2 (en) Electromagnetic induction probe
JPH1194508A (en) Linear displacement measuring device
KR100724101B1 (en) AC current sensor using air core
JP2000147023A (en) Large-aperture current probe with sensitivity-adjusting function
JPH04233205A (en) Compound type inductive voltage divider
JPS60501434A (en) active current transformer
WO2021198589A3 (en) Very-wide-bandwidth current sensor
CN213275740U (en) Flexible current sensor with multiple characteristic quantity measurement
US20230204633A1 (en) Current sensor and manufacturing method of current sensor
CN211086485U (en) Annular opening PCB Rogowski coil of sectional type wiring
JPH0798337A (en) Current detector
CN108195365A (en) A kind of dynamically tuned gyro, DTG and its angular position pick up
JP2000058357A (en) Manufacture of ac current transformer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees