JP2000058357A - Manufacture of ac current transformer - Google Patents

Manufacture of ac current transformer

Info

Publication number
JP2000058357A
JP2000058357A JP10230144A JP23014498A JP2000058357A JP 2000058357 A JP2000058357 A JP 2000058357A JP 10230144 A JP10230144 A JP 10230144A JP 23014498 A JP23014498 A JP 23014498A JP 2000058357 A JP2000058357 A JP 2000058357A
Authority
JP
Japan
Prior art keywords
winding
capacitance
current transformer
terminals
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10230144A
Other languages
Japanese (ja)
Inventor
Katsuji Iida
克二 飯田
Takeshi Sakuma
健 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP10230144A priority Critical patent/JP2000058357A/en
Publication of JP2000058357A publication Critical patent/JP2000058357A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a parasitic capacitance component between secondary winding terminals by making a winding method of a secondary winding part winding or bank winding, in an AC current transformer constituted of an iron core using magnetic material and the secondary winding. SOLUTION: In a secondarily converted simple equivalent circuit of an AC current transformer, a resonance circuit is constituted of the respective reactance components due to exciting inductance 6, secondary leakage inductance 8 and a paracitic capacitance 10 between secondary terminals, and the transmission characteristic becomes the resonance frequency fc[=1/2π√(LCp)], if the secondary leakage inductance value of the inductance 8 is L, and the secondary parasitic capacitance value between terminals of the paracitic capacitance 10 is Cp. As a result, frequency characteristic of the AC current transformer is improved by reducing the paracitic capacitance Cp between secondary terminals. The number of layers of a secondary winding is set as two, and capacitance Ce between layers of a part winding which is divided into (n) is sown by the formula. Accordingly the frequency characteristic of the AC current transformer is markedly improved by reducing the paracitic capacitance Ce between the secondary terminals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交流電流を検出す
るための交流変流器、特に巻線方法に関する。
The present invention relates to an AC current transformer for detecting an AC current, and more particularly to a winding method.

【0002】[0002]

【従来の技術】図5は従来の交流電流を検出する交流変
流器の斜視図であり、図5において、例えば、検出もし
くは測定すべき電流の流れる電線もしくは導体12を、
磁性材をもちいた鉄心13に1ターンもしくは複数ター
ン巻回させた1次巻線と、1次巻線とは別に鉄心に巻か
れた2次巻線14の巻線比をそれぞれa:bとすれば、
1次巻線に流れる電流のa/bの大きさの電流を2次巻
線に流すことができる。また、2次巻線の端子間に抵抗
15を接続することで電圧に変換して、電流の計測や電
力変換器などの制御に使用する検出信号等に使用するこ
ともできる。とくに、電流が大きい場合は2次巻線の巻
数を増やし、変流比をできるだけ小さくするようにして
使用してきた。この場合の2次巻線の巻き方は従来重ね
巻であった。最近、半導体スイッチング素子の進歩につ
れてスイッチング周波数が高くなってきており、計測に
おいてもまた電力変換器などの制御においても高い周波
数成分まで正確に検出でき、さらに大電流までが検出で
きる高性能な交流変流器が必要となってきた。
FIG. 5 is a perspective view of a conventional AC current transformer for detecting an AC current. In FIG. 5, for example, an electric wire or a conductor 12 through which a current to be detected or measured flows is shown.
The winding ratio of the primary winding wound one or more turns around the iron core 13 using a magnetic material and the secondary winding 14 wound around the iron core separately from the primary winding are a: b, respectively. if,
A current having the magnitude of a / b of the current flowing through the primary winding can flow through the secondary winding. Further, by connecting the resistor 15 between the terminals of the secondary winding, the voltage can be converted into a voltage and used for a measurement signal of a current, a detection signal used for control of a power converter, and the like. In particular, when the current is large, the number of turns of the secondary winding is increased and the current transformer ratio is used as small as possible. The winding of the secondary winding in this case was conventionally a lap winding. In recent years, the switching frequency has been increasing with the progress of semiconductor switching devices, and high-performance AC transformers that can accurately detect high frequency components in measurement and control of power converters, and can detect even large currents. Sinks are needed.

【0003】[0003]

【発明が解決しようとする課題】前記した如くスイッチ
ング周波数の向上などにより、大電流かつ電流の高周波
成分まで検出できる性能が必要となってきたが、従来の
交流変流器では電線もしくは導体12に流れる高い周波
数成分の電流に対し、2次巻線14の電流の伝送特性は
十分でなく、過渡応答波形を観測してみると高周波の振
動などの現象が見られる。この現象の原因の一つは2次
巻線14の端子間に寄生する容量成分にあり、この寄生
容量成分は交流変流器の周波数特性を悪化させる原因の
一つになっている。特に、大電流検出する交流変流器で
は2次巻線14の巻数が多く、さらに重ね巻で巻かれて
いるために2次巻線端子間に寄生する容量成分が極めて
大きくなり、高周波領域の周波数特性が著しく悪くな
る。
As described above, the ability to detect large currents and high-frequency components of the current has been required due to the improvement of the switching frequency and the like. The transmission characteristic of the current of the secondary winding 14 is not sufficient with respect to the flowing high-frequency component current, and when a transient response waveform is observed, phenomena such as high-frequency vibration are observed. One of the causes of this phenomenon is a capacitance component parasitic between the terminals of the secondary winding 14, and this parasitic capacitance component is one of the causes of deteriorating the frequency characteristics of the AC current transformer. Particularly, in an AC current transformer for detecting a large current, the number of turns of the secondary winding 14 is large, and furthermore, since the secondary winding 14 is wound in a lap winding, a parasitic capacitance component between the secondary winding terminals becomes extremely large. The frequency characteristics are significantly worse.

【0004】また、1次側に流れる電流に対し2次巻線
電流もしくは抵抗15で電圧に変換された検出信号の位
相がずれることがあり、そのため2次端子両端に接続し
た抵抗15により電圧に変換した信号を位相補償などし
て特性を改善する方法も用いられるが、この場合、位相
補償した周波数帯を中心にして使用できる周波数帯域が
制限されるため、低周波から高周波までの幅広い領域に
て使用できないことがある。また、交流変流器の回路構
成部品が増加するため、交流変流器のコストの増加につ
ながり、さらに回路調整も必要となってくる。本発明は
上述した点に鑑みて創案されたもので、その目的とする
ところは、これらの課題を解決する交流変流器の製造方
法を提供することにある。
Also, the phase of the secondary winding current or the detection signal converted to voltage by the resistor 15 may be shifted with respect to the current flowing to the primary side, so that the voltage is changed by the resistor 15 connected across the secondary terminal. A method of improving the characteristics by phase compensation etc. of the converted signal is also used, but in this case, the frequency band that can be used around the phase compensated frequency band is limited, so it can be used in a wide range from low to high frequencies. May not be used. In addition, the number of circuit components of the AC current transformer increases, which leads to an increase in the cost of the AC current transformer, and further requires circuit adjustment. The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing an AC current transformer that solves these problems.

【0005】[0005]

【課題を解決するための手段】つまり、その目的を達成
するための手段は、磁性材を用いた鉄心及び2次巻線か
ら構成される交流変流器において、2次巻線を分割巻き
もしくはバンク巻にすることで2次巻線の端子間に寄生
する容量成分をできるだけ少なくし、大電流かつ低周波
領域から高周波領域までの電流が検出可能な交流変流器
の製造方法を得ることにある。すなわち、電流の流れる
電線もしくは導体を1ターンもしくは複数ターン巻回さ
せた磁性材を使用した鉄心、分割巻やバンク巻した2次
巻線から構成されたものである。
In order to achieve the object, a secondary winding is divided or wound in an AC current transformer composed of an iron core using a magnetic material and a secondary winding. A method of manufacturing an AC current transformer capable of detecting a large current and a current from a low frequency range to a high frequency range by minimizing a parasitic component between terminals of the secondary winding by bank winding to minimize the parasitic component. is there. That is, it is composed of an iron core using a magnetic material in which an electric wire or a conductor through which a current flows is wound one or more turns, and a secondary winding which is divided or bank-wound.

【0006】その作用は、磁性材のまわりに巻回させる
2次巻線において、2次巻線の巻線方法を分割巻もしく
はバンク巻にすることにより2次巻線端子間に寄生する
容量成分を小さくでき、低周波から高周波までの広い使
用周波数帯域が実現できる。また、鉄心及び2次巻線だ
けで構成されるため、位相補償回路などの調整などの必
要がなく簡単でかつ信頼性の高い交流変流器が実現でき
る。以下、本発明の一実施例を図面に基づいて詳述す
る。
The effect of this is that in a secondary winding wound around a magnetic material, the secondary winding is divided or bank-wound to form a parasitic component between the secondary winding terminals. And a wide operating frequency band from low frequency to high frequency can be realized. In addition, since it is constituted only by the iron core and the secondary winding, there is no need to adjust a phase compensation circuit and the like, and a simple and highly reliable AC current transformer can be realized. Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

【0007】[0007]

【発明の実施の形態】図1は本発明の一実施例を示す要
部構成図であり、図1において、1は主電流の流れる電
線または導体、2は磁性材から成る鉄心、3は2次巻
線、4は抵抗である。これを、さらに図2及び図3を参
照して説明する。図2は図1の交流変流器の2次換算し
た簡易等価回路図を示したものであり、5は2次換算し
た電流源、6は励磁インダクタンス、7は鉄損抵抗、8
は2次もれインダクタンス、9は2次巻線抵抗、10は
2次端子間の寄生容量である。また、図3は2次巻線の
巻線方法を説明するために示した説明図で、(a)は重
ね巻、(b)は分割巻、(c)はバンク巻の説明図であ
り、3a,3b,3cは2次巻線である。図4は層間分
布容量を説明するために示した説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a main part of an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an electric wire or conductor through which a main current flows, 2 denotes an iron core made of a magnetic material, and 3 denotes a core. The next winding 4 is a resistor. This will be further described with reference to FIGS. FIG. 2 is a simplified equivalent circuit diagram of the AC current transformer of FIG. 1 converted into a second order, 5 is a current source converted into a second order, 6 is an exciting inductance, 7 is an iron loss resistance, 8
Is a secondary leakage inductance, 9 is a secondary winding resistance, and 10 is a parasitic capacitance between secondary terminals. FIGS. 3A and 3B are explanatory diagrams for explaining a winding method of the secondary winding. FIG. 3A is an explanatory diagram of a lap winding, FIG. 3B is an explanatory diagram of a divided winding, and FIG. 3a, 3b and 3c are secondary windings. FIG. 4 is an explanatory diagram shown for explaining the interlayer distribution capacitance.

【0008】図2において、励磁インダクタンス6、2
次もれインダクタンス8、2次端子間の寄生容量10に
よる各リアクタンス成分により共振回路を構成している
のが分かる。商用周波数等の比較的周波数が低い場合に
は、寄生容量10の成分のインピーダンスが高く伝送特
性に大きな影響はない。しかし、高周波領域において励
磁インダクタンス6はインピーダンスが充分大きくなる
ため無視できるが、一方で寄生容量10が伝送特性に悪
影響を及ぼし、インダクタンス8と寄生容量10で共振
回路を構成するため、伝送特性はインダクタンス8の2
次漏れインダクタンス値をL、寄生容量10の2次端子
間寄生容量値をCpとすれば、共振周波数fc(=1/
2π√(LCp))で決定される。そのため、2次端子
間寄生容量を極力小さくすることで交流変流器の周波数
特性は大きく向上する。
In FIG. 2, excitation inductances 6, 2
It can be seen that the resonance circuit is constituted by the reactance components due to the leakage inductance 8 and the parasitic capacitance 10 between the secondary terminals. When the frequency is relatively low, such as a commercial frequency, the impedance of the component of the parasitic capacitance 10 is high and does not significantly affect the transmission characteristics. However, in the high frequency region, the excitation inductance 6 has a sufficiently large impedance and can be ignored. On the other hand, the parasitic capacitance 10 adversely affects the transmission characteristics, and the inductance 8 and the parasitic capacitance 10 form a resonance circuit. 2 of 8
If the secondary leakage inductance value is L and the parasitic capacitance value between the secondary terminals of the parasitic capacitance 10 is Cp, the resonance frequency fc (= 1 /
2π√ (LCp)). Therefore, the frequency characteristic of the AC current transformer is greatly improved by minimizing the parasitic capacitance between the secondary terminals.

【0009】高周波での2次端子間の寄生容量10は各
変流器の形状などで変わるため、簡単な式で表すような
解析は困難である。しかし、図2における2次端子間寄
生容量10は様々な要因による寄生容量を集中定数とし
て表したものだが、変流器の2次端子間寄生容量は、と
くに以下のものが考えられる。
Since the parasitic capacitance 10 between the secondary terminals at a high frequency varies depending on the shape of each current transformer, it is difficult to perform an analysis using a simple equation. However, although the parasitic capacitance 10 between the secondary terminals in FIG. 2 represents the parasitic capacitance due to various factors as a lumped constant, the following can be considered as the parasitic capacitance between the secondary terminals of the current transformer.

【0010】(1)ターン間容量 (2)層間容量 (1) は隣り合う巻線間の分布容量で巻線の巻回長と
線寸法等から定まる幾何学的容量成分であるが、一般に
巻線間の容量は充分小さく無視できる。(2) の層間
容量は2次端子間寄生容量の大半をしめるため、層間容
量を重点的に小さくすることで2次端子間寄生容量10
を大きく低減できる。例えば2次巻線の巻数が多い場
合、巻線を多層にして巻く必要がでてくる。層間容量
は、図4に示すように2つの隣接する層間に寄生する容
量成分である。以下にて、層間容量について考察する
が、この寄生容量成分も巻線の幾何学的要因や電線に用
いている絶縁被覆の材質で変化するため、明確な解析は
難しい。そこでおおよその傾向を示すものとして図4
(a)のように隣接する2つの層から成り立ち、巻線が
順序よく配列されているコイルの層間容量Ceを考える
ものとする。巻線の一端から他の層に移る点から測った
距離xのところの微小部分dxを考えると、層の長さを
ιとし、単位長さあたりの容量をCとすれば、距離xに
おける等価容量は次のように示される。
(1) Inter-turn capacitance (2) Interlayer capacitance (1) is a distributed capacitance between adjacent windings and is a geometric capacitance component determined by the winding length and the wire size of the windings. The capacitance between the lines is small enough to be ignored. Since the interlayer capacitance of (2) accounts for most of the parasitic capacitance between the secondary terminals, the interlayer capacitance is reduced by focusing on the interlayer capacitance.
Can be greatly reduced. For example, when the number of turns of the secondary winding is large, it is necessary to wind the winding in multiple layers. The interlayer capacitance is a parasitic capacitance component between two adjacent layers as shown in FIG. In the following, the interlayer capacitance will be considered. However, since this parasitic capacitance component also changes depending on the geometric factors of the winding and the material of the insulating coating used for the electric wire, a clear analysis is difficult. Therefore, FIG.
It is assumed that the interlayer capacitance Ce of a coil composed of two adjacent layers as shown in FIG. Considering a minute part dx at a distance x measured from a point where one end of the winding moves to another layer, the equivalent length at the distance x is given assuming that the length of the layer is ι and the capacitance per unit length is C. The capacity is indicated as:

【0011】[0011]

【数1】 (Equation 1)

【0012】そこで、図3(b)のように巻線を分割し
て巻くことによって、分割した各巻線で発生する層間容
量は小さくなり、さらに直列に接続したことと等価にな
るため、寄生する層間容量を大きく低減できる。例えば
図4(b)のように層数を2層とし、分割した巻線間に
寄生する容量成分が無視できるとすれば、前記(3)式
にて求めた層間容量をn分割することで分割した各巻線
の層の長さを1/nにできる。この層間容量がn個直列
接続されるため、分割巻の層間容量は、次のように示さ
れる。
Therefore, by dividing and winding the windings as shown in FIG. 3B, the interlayer capacitance generated in each of the divided windings is reduced, which is equivalent to being connected in series, and thus parasitic. The interlayer capacitance can be greatly reduced. For example, as shown in FIG. 4B, if the number of layers is two and the parasitic capacitance component between the divided windings can be ignored, the interlayer capacitance obtained by the above equation (3) is divided into n. The layer length of each divided winding can be reduced to 1 / n. Since n interlayer capacitors are connected in series, the interlayer capacitance of the divided winding is represented as follows.

【0013】[0013]

【数2】 (Equation 2)

【0014】この式より、層間容量は大きく削減でき
る。また、(5)または(6)式より分かるように、層
数を増やすことでさらに層間容量も減少するため、分割
数をある程度増やして層の長さをできるだけ短くし、ま
た層数を増やすことで層間に寄生する分布容量を大きく
低減できる。つまり、この巻き方を2次巻線に適用する
ことで2次端子間寄生容量10を低減できるため、変流
器の伝送特性を大きく向上できる。また、変流比を小さ
くする必要がある変流器ほど本方法は有効である。一例
として分割巻を説明したが、図3(c)のバンク巻も効
果的に2次巻線端子間の寄生容量10を軽減できる。な
お、図1の構成図ではトロイダルコアを例として使用し
たが、これに限定されるものではなく、その他の形の鉄
心でも本発明の2次巻線の巻線方法は適用できる。
From this equation, the interlayer capacitance can be greatly reduced. Further, as can be seen from the formulas (5) and (6), the interlayer capacity is further reduced by increasing the number of layers. Thus, the distributed capacitance parasitic between the layers can be greatly reduced. That is, by applying this winding method to the secondary winding, the parasitic capacitance 10 between the secondary terminals can be reduced, so that the transmission characteristics of the current transformer can be greatly improved. In addition, the current transformer is more effective for a current transformer requiring a smaller current transformer ratio. Although the split winding has been described as an example, the bank winding of FIG. 3C can also effectively reduce the parasitic capacitance 10 between the secondary winding terminals. Although the toroidal core is used as an example in the configuration diagram of FIG. 1, the present invention is not limited to this, and the winding method of the secondary winding of the present invention can be applied to other types of iron cores.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、次
の効果が得られる。 (イ)幅広い周波数帯域の伝送特性を持つ交流変流器を
実現できる。 (ロ)少ない部品で構成され、信頼性の高い変流器が実
現できる。
As described above, according to the present invention, the following effects can be obtained. (A) An AC current transformer having transmission characteristics in a wide frequency band can be realized. (B) A highly reliable current transformer composed of few components can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】図2は図1の交流変流器の電気的特性を説明す
る簡易等価回路である。
FIG. 2 is a simplified equivalent circuit illustrating electrical characteristics of the AC current transformer of FIG.

【図3】図3は図1の2次巻線の巻線方法を示す説明図
である。
FIG. 3 is an explanatory diagram showing a winding method of a secondary winding of FIG. 1;

【図4】図4は巻線に寄生する層間容量に関する説明図
である。
FIG. 4 is an explanatory diagram relating to an interlayer capacitance parasitic on a winding;

【図5】図5は従来例を示す説明図である。FIG. 5 is an explanatory diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 電線または導体 2 鉄心 3 2次巻線 4 抵抗 5 電流源 6 励磁インダクタンス 7 鉄損抵抗 8 2次漏れインダクタンス 9 2次巻線抵抗 10 2次端子間寄生容量 12 1次巻線 13 鉄心 14 2次巻線 15 抵抗 L 2次漏れインダクタンス値 Cp 2次端子間寄生容量値 ι 層の長さ x 巻線が他の層に移る点から測った距離 dx 微小長さ Ce 層間容量 P 端子 N 端子 n 巻線の分割数 3a 2次巻線 3b 2次巻線 3c 2次巻線 DESCRIPTION OF SYMBOLS 1 Electric wire or conductor 2 Iron core 3 Secondary winding 4 Resistance 5 Current source 6 Excitation inductance 7 Iron loss resistance 8 Secondary leakage inductance 9 Secondary winding resistance 10 Secondary terminal parasitic capacitance 12 Primary winding 13 Iron core 14 2 Secondary winding 15 Resistance L Secondary leakage inductance value Cp Parasitic capacitance value between secondary terminals ι Layer length x Distance measured from the point where the winding moves to another layer dx Small length Ce Interlayer capacitance P terminal N terminal n Number of winding divisions 3a Secondary winding 3b Secondary winding 3c Secondary winding

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流電流の検出を行う材質としての磁性
材を用いた鉄心及び2次巻線から構成される交流変流器
において、鉄心に巻回する2次巻線の巻線方法を分割巻
きもしくはバンク巻とすることを特徴とする交流変流器
の製造方法。
In an AC current transformer including an iron core using a magnetic material as a material for detecting an AC current and a secondary winding, a winding method of a secondary winding wound around the iron core is divided. A method for manufacturing an AC current transformer, wherein the AC current transformer is wound or bank wound.
JP10230144A 1998-07-31 1998-07-31 Manufacture of ac current transformer Pending JP2000058357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10230144A JP2000058357A (en) 1998-07-31 1998-07-31 Manufacture of ac current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10230144A JP2000058357A (en) 1998-07-31 1998-07-31 Manufacture of ac current transformer

Publications (1)

Publication Number Publication Date
JP2000058357A true JP2000058357A (en) 2000-02-25

Family

ID=16903288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10230144A Pending JP2000058357A (en) 1998-07-31 1998-07-31 Manufacture of ac current transformer

Country Status (1)

Country Link
JP (1) JP2000058357A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050602B2 (en) * 2000-08-14 2006-05-23 Knowles Electronics Llc. Low capacitance receiver coil
JP2015222182A (en) * 2014-05-22 2015-12-10 日置電機株式会社 Current sensor and measurement device
JP2016523068A (en) * 2014-03-04 2016-08-04 テラ エナジー システム ソリューション カンパニー リミテッド Unit current transformer unit and electromagnetic induction type power supply device for linearly adjusting output power using the unit current transformer unit
US9872109B2 (en) 2014-12-17 2018-01-16 Knowles Electronics, Llc Shared coil receiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050602B2 (en) * 2000-08-14 2006-05-23 Knowles Electronics Llc. Low capacitance receiver coil
JP2016523068A (en) * 2014-03-04 2016-08-04 テラ エナジー システム ソリューション カンパニー リミテッド Unit current transformer unit and electromagnetic induction type power supply device for linearly adjusting output power using the unit current transformer unit
JP2015222182A (en) * 2014-05-22 2015-12-10 日置電機株式会社 Current sensor and measurement device
US9872109B2 (en) 2014-12-17 2018-01-16 Knowles Electronics, Llc Shared coil receiver

Similar Documents

Publication Publication Date Title
US6577219B2 (en) Multiple-interleaved integrated circuit transformer
RU2374713C2 (en) Planar high-voltage transformer
US3683271A (en) Power supply filter for noise suppression
US6288378B1 (en) Induction heating system with split resonance capacitance
Yamaguchi et al. Load characteristics of a spiral coil type thin film microtransformer
US6980075B2 (en) Inductor having high quality factor and unit inductor arranging method thereof
EA000368B1 (en) High impedance ratio wideband transformer circuit
JPH10308315A (en) Inductance element part
JP2000058357A (en) Manufacture of ac current transformer
JP2001319813A (en) Inductive element
JPH08184621A (en) Electromagnetic induction type probe
JPH04317307A (en) Transformer
JPH05109557A (en) High frequency thin film transformer and high frequency thin film inductor
WO2021198589A3 (en) Very-wide-bandwidth current sensor
JP2002237421A (en) Switching power source transformer
JPH06112048A (en) Oscillation preventive member
JPH0677065A (en) Differential transformer
SU875481A1 (en) Transformer
KR200341465Y1 (en) The wideband multi-tap transformer for impedance matching
Liu et al. Application of relatively high permeability Fe-Si-Al powder cores to common mode chokes
JPH11135335A (en) Insulating transformer
JPH0650684B2 (en) High frequency air core transformer
O'Bryan A 50 Hz Solar Powered DC to AC Inverter
SU1247764A1 (en) High-frequency ammeter
CN110364332A (en) Polyphase transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701