JPH11135335A - Insulating transformer - Google Patents

Insulating transformer

Info

Publication number
JPH11135335A
JPH11135335A JP29756297A JP29756297A JPH11135335A JP H11135335 A JPH11135335 A JP H11135335A JP 29756297 A JP29756297 A JP 29756297A JP 29756297 A JP29756297 A JP 29756297A JP H11135335 A JPH11135335 A JP H11135335A
Authority
JP
Japan
Prior art keywords
insulating
transformer
metal
current
side power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29756297A
Other languages
Japanese (ja)
Other versions
JP3665945B2 (en
Inventor
Isao Toyama
勲 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP29756297A priority Critical patent/JP3665945B2/en
Publication of JPH11135335A publication Critical patent/JPH11135335A/en
Application granted granted Critical
Publication of JP3665945B2 publication Critical patent/JP3665945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce discharge current and to absorb energy, so that the energy accumulated in a capacitor formed between a low-tension side shield plate on a primary coil of an insulating transformer and a high-tension side shield plate under a secondary coil do not give damages to a load at load-grounding. SOLUTION: Where a transformer 2 is housed is provided, and the metal case 1 is filled with an insulating oil 6, and the metal case 1 is provided with a low-tension side power supply terminal 3, a high-tension side power tapping bushing 4, and a ground terminal 5. Here, a metal conduit 16 is provided at a central part of the high-tension side power tapping bushing 4. Then a plurality of iron cores 31 are split-allocated around the metal conduit 16 with an insulating plate 32 in between, so as to provide a gap.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子やイオンを数
100kVの直流高電圧で加速する装置に用いる絶縁変
圧器に関するもので、電子銃やイオン源を大地から絶縁
して加速電圧にあたる高電位点に置き、大地電位点から
電力供給する目的で使用する絶縁変圧器に関するもので
ある。すなわち、絶縁変圧器の1次、2次各々のコイル
はAC200Vの低電圧で所定容量のものであるが、2
次コイルの端子と1次コイルの端子、鉄心間に常時数1
00kVの直流高電圧が加わった状態で使用する絶縁変
圧器の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating transformer for use in an apparatus for accelerating electrons and ions at a high DC voltage of several hundred kV. The present invention relates to an insulating transformer used for the purpose of supplying power from a ground potential point. That is, the primary and secondary coils of the insulating transformer have a low voltage of 200 V AC and a predetermined capacity.
Number of terminals always between primary coil terminal and primary coil terminal, iron core
The present invention relates to an improvement of an insulation transformer used in a state where a high DC voltage of 00 kV is applied.

【0002】[0002]

【従来の技術】図4は、従来の絶縁変圧器の内部構造図
である。変圧器2を収納した金属ケース1に絶縁油6を
充填し、該金属ケースに低圧側電力供給用端子3、高圧
側電力引出用ブッシング4、並びに接地端子5が設けら
れている。高圧側電力引出用ブッシング4は碍管7とフ
ランジ8、9より構成され、碍管7は使用電圧に充分耐
えられるだけの絶縁沿面距離を有したセラミックまたは
レジンよりなり、該碍管の両端にはセメント等の接着剤
により金属製の高圧側フランジ8と低圧側フランジ9と
が固着され、低圧側フランジ9は金属ケース1の天板に
設けられた取付用フランジ11にネジ等で取付けられる
とともに、碍管7と取付用フランジ11の間はパッキン
グ10を介して気密が保たれている。また、高圧側フラ
ンジ8には金属製の天板12がネジ等で取付けられると
ともに、天板12と碍管7の間はパッキング13を介し
て気密が保たれている。さらに、天板12の上面には絶
縁された2次電圧を引出すための高電位側引出端子14
と該端子の外傷防止と電界緩和を兼ねたトップカバー1
5が取付けられ、天板12の下面には中心導体となる金
属導管16が溶接、ろう付けまたはネジ等により取付け
られ、その金属導管16の内部には変圧器2の2次リー
ド線29が通り、金属導管16自身は2次リード線29
のシールド効果を果たしている。金属導管16の外層に
は対金属ケースの取付用フランジ11間との絶縁電圧に
耐えるよう絶縁紙または絶縁フイルムを巻回してなる絶
縁層17が設けられている。
2. Description of the Related Art FIG. 4 is a diagram showing the internal structure of a conventional insulating transformer. A metal case 1 containing a transformer 2 is filled with insulating oil 6, and the metal case is provided with a low voltage side power supply terminal 3, a high voltage side power extraction bushing 4, and a ground terminal 5. The high-voltage side power lead-out bushing 4 is composed of a porcelain tube 7 and flanges 8 and 9. The porcelain tube 7 is made of ceramic or resin having an insulating creepage distance sufficient to withstand the working voltage. The high-pressure side flange 8 and the low-pressure side flange 9 made of metal are fixed to each other with an adhesive, and the low-pressure side flange 9 is attached to a mounting flange 11 provided on a top plate of the metal case 1 by screws or the like. Airtightness is maintained between the mounting flange 11 and the packing 11 via a packing 10. A metal top plate 12 is attached to the high-pressure side flange 8 with screws or the like, and the space between the top plate 12 and the insulator tube 7 is kept airtight through a packing 13. Further, on the upper surface of the top plate 12, a high-potential-side extraction terminal 14 for extracting an insulated secondary voltage is provided.
And top cover 1 which also prevents the terminal from being damaged and alleviates the electric field
5, a metal conduit 16 serving as a central conductor is attached to the lower surface of the top plate 12 by welding, brazing, screws, or the like. Inside the metal conduit 16, a secondary lead wire 29 of the transformer 2 passes. , The metal conduit 16 itself is a secondary lead 29
Plays the shielding effect. The outer layer of the metal conduit 16 is provided with an insulating layer 17 formed by winding insulating paper or insulating film so as to withstand an insulating voltage between the mounting flanges 11 of the metal case.

【0003】変圧器2は、1次コイル22と鉄心20間
の絶縁を確保するとともに巻心となるボビン21上に1
次コイル22と2次コイル26が巻かれ、両コイル間に
は使用電圧に耐え得る厚みの絶縁層24を設けている。
さらに、1次コイル22と2次コイル26間の誘導障害
を防止するため、1次コイル22と2次コイル26が対
面する箇所に1ターン短絡とならぬよう銅箔23、25
(以下、シールド板という)を挿入しており、1次コイ
ル側の低圧側シールド板23は電気的に接地されるよう
低圧シールド線28を設け接地端子5に繋がれている。
2次コイル側の高圧側シールド板25にも高圧シールド
線30を設け、高圧側電力引出用ブッシング4の金属導
管16に電気的に繋がれている。また、1次コイル22
の両端の1次リード線27は大地電位である低圧側電力
供給用端子3に電気的に繋がれ、2次コイル26の両端
の2次リード線29は高圧側電力引出用ブッシング4の
金属導管16の内部を通り、該金属導管の上部開孔部よ
り、2次リード線29は引出されて、天板12に設けら
れた高電位側引出端子14に繋がれている。
[0003] The transformer 2 secures insulation between the primary coil 22 and the iron core 20, and places the primary coil 22 on a bobbin 21 serving as a core.
A secondary coil 22 and a secondary coil 26 are wound, and an insulating layer 24 having a thickness that can withstand a working voltage is provided between the two coils.
Further, in order to prevent an induction failure between the primary coil 22 and the secondary coil 26, the copper foils 23 and 25 are not short-circuited for one turn at a position where the primary coil 22 and the secondary coil 26 face each other.
(Hereinafter referred to as a shield plate), and the low-voltage shield plate 23 on the primary coil side is provided with a low-voltage shield wire 28 so as to be electrically grounded, and is connected to the ground terminal 5.
A high voltage shield wire 30 is also provided on the high voltage side shield plate 25 on the secondary coil side, and is electrically connected to the metal conduit 16 of the high voltage side power extraction bushing 4. Also, the primary coil 22
Are electrically connected to the low voltage side power supply terminal 3 at the ground potential, and the secondary leads 29 at both ends of the secondary coil 26 are metal conduits of the high voltage side power lead-out bushing 4. The secondary lead wire 29 is drawn out from the upper opening of the metal conduit through the inside of the metal conduit 16 and is connected to the high-potential side lead-out terminal 14 provided on the top plate 12.

【0004】図4は、単相内鉄形の1脚巻線構造の絶縁
変圧器であるが、単相両脚巻構造、3相3脚絶縁変圧器
においても1脚当りの構造は類似であり、その等価回路
で単相、3相各々の例を図5(a)、(b)に示す。ま
た図中の番号は図4で説明したものと同一である。
FIG. 4 shows an insulating transformer having a single-phase internal iron-type one-leg winding structure. The structure per leg of a single-phase double-leg winding structure and a three-phase three-leg insulating transformer is similar. FIGS. 5A and 5B show examples of single-phase and three-phase equivalent circuits. The numbers in the figure are the same as those described in FIG.

【0005】[0005]

【発明が解決しようとする課題】このような変圧器2で
は、1次コイル側の低圧側シールド板23と2次コイル
側の高圧側シールド板25が対向電極となり、コンデン
サが形成されることになる。一般に絶縁変圧器の良否を
決定する電圧降下分は1次と2次コイル間の結合度合に
より決まり、その値は各々のコイル間ギャップに比例し
て悪化したり、巻幅に比例して良くなる。従って、変圧
器2においては、1次と2次コイル間の絶縁層24の厚
さを極力薄くし、コイルの巻幅は可能な限り広く取ろう
とする。その結果、1次コイル上に設けた低圧側シール
ド板23と2次コイル下に設けた高圧側シールド板25
の間には、大きなコンデンサが形成されることになる。
In such a transformer 2, the low voltage side shield plate 23 on the primary coil side and the high voltage side shield plate 25 on the secondary coil side serve as opposing electrodes to form a capacitor. Become. In general, the voltage drop that determines the quality of an insulating transformer is determined by the degree of coupling between the primary and secondary coils, and the value deteriorates in proportion to the gap between the coils or improves in proportion to the winding width. . Therefore, in the transformer 2, the thickness of the insulating layer 24 between the primary and secondary coils is made as thin as possible, and the winding width of the coil is made as wide as possible. As a result, the low voltage side shield plate 23 provided above the primary coil and the high voltage side shield plate 25 provided below the secondary coil 25
In between, a large capacitor will be formed.

【0006】上記の理由から、これ迄は絶縁変圧器を直
流高電圧の下で使用すると、コンデンサに大きなエネル
ギーが蓄えられ、使用する負荷側で地絡放電が生じた
時、直接短絡となり大きな短絡電流が放出され、負荷側
に大きなダメージを与えるという問題があった。
[0006] For the above reasons, when an insulating transformer is used under a high DC voltage, a large amount of energy is stored in a capacitor, and when a ground fault discharge occurs on the load side to be used, a direct short circuit occurs and a large short circuit occurs. There is a problem that a current is emitted and a large damage is given to the load side.

【0007】[0007]

【課題を解決するための手段】本発明の絶縁変圧器は、
この様な負荷地絡時の電流を抑制し、さらには、その蓄
積エネルギーを絶縁変圧器内で吸収しようとするもので
ある。
The insulating transformer of the present invention comprises:
The current at the time of such a load ground fault is suppressed, and further, the stored energy is to be absorbed in the insulating transformer.

【0008】すなわち、本発明の絶縁変圧器は、変圧器
を収納した金属ケース1と該金属ケースに絶縁油6を
充填し、かつ該金属ケースに低圧側電力供給用端子3と
高圧側電力引出用ブッシング4と接地端子5とを設けた
絶縁変圧器において、該高圧側電力引出用ブッシングの
中央部に金属導管16を配置し、かつ該金属導管の外周
に絶縁板32を介して複数個の鉄心31を分割配置し、
ギャップ18を設けたことを特徴としている。
That is, the insulating transformer according to the present invention comprises a transformer
2 was filled with an insulating oil 6 in the metal case 1 and the metal case containing and isolation transformer having a low pressure-side power supply terminal 3 and the high-voltage side power lead bushing 4 and the ground terminal 5 to the metal casing In the above, a metal conduit 16 is arranged at the center of the high-voltage side power extraction bushing, and a plurality of iron cores 31 are divided and arranged around the outer periphery of the metal conduit with an insulating plate 32 interposed therebetween.
It is characterized in that a gap 18 is provided.

【0009】さらに、上記鉄心31と金属導管16との
間および絶縁板32の間に金属箔33を介在させ、該金
属箔間に抵抗器34を接続してなることを特徴としてい
る。
Further, a metal foil 33 is interposed between the iron core 31 and the metal conduit 16 and between the insulating plates 32, and a resistor 34 is connected between the metal foils.

【0010】[0010]

【発明の実施の形態】上記のように、金属導管の外周に
ギャップを有する鉄心を配することにより、負荷側での
短絡(地絡)電流を抑制することができ、さらに、該鉄
心に2次コイルとして作用する金属箔を設け、かつ抵抗
器を接続することにより、放電時定数を短縮し、かつ放
出するエネルギーを抵抗体に吸収させることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, by providing an iron core having a gap around the outer periphery of a metal conduit, a short circuit (ground fault) current on the load side can be suppressed. By providing a metal foil acting as a secondary coil and connecting a resistor, the discharge time constant can be shortened and the emitted energy can be absorbed by the resistor.

【0011】[0011]

【実施例1】図1は本発明による絶縁変圧器の内部構造
図である。図1において、高圧側電力引出用ブッシング
4の金属導管16と絶縁層17の間に鉄心31を絶縁板
32を介して多数貫通挿入している以外は、図4と同じ
構成であり、記号も同じである。図2(a)、(b)、
(c)は本発明の鉄心部の拡大図であり、図2(a)
は、金属導管16に多数の鉄心31を絶縁板32を介し
て貫通挿入している平面図で、(b)はその断面図、
(c)は(b)のA−A’線による断面部分の一部斜視
図である。図2の鉄心31は、ケイ素鋼板やアモルファ
スコア等の高透磁率で飽和磁束密度が高く、かつ、高周
波特性に優れたテープ状の極薄磁性材を円盤状に巻回し
て成形した後に切断して、ギャップ18の間隔長をx/
n(m/切断箇所数)としたもので、図2ではn=2で
ある。
FIG. 1 is an internal structural view of an insulating transformer according to the present invention. 1, except that a number of iron cores 31 are inserted between the metal conduit 16 and the insulating layer 17 of the high-voltage side power lead-out bushing 4 and the insulating layer 17 via the insulating plate 32. Is the same. 2 (a), (b),
(C) is an enlarged view of the iron core part of the present invention, and FIG.
Is a plan view in which a large number of iron cores 31 are inserted through the metal conduit 16 via an insulating plate 32, and FIG.
(C) is a partial perspective view of a section taken along line AA 'of (b). The core 31 shown in FIG. 2 is formed by winding a tape-shaped ultra-thin magnetic material having high magnetic permeability and high saturation magnetic flux density such as a silicon steel plate or an amorphous core and having excellent high-frequency characteristics into a disk shape, and then cutting. And the interval length of the gap 18 is x /
In FIG. 2, n = 2 (m / number of cut portions).

【0012】絶縁変圧器を直流高電圧の絶縁用として使
用する時には、1次と2次コイル間にて形成されている
コンデンサには
When an insulating transformer is used for DC high voltage insulation, a capacitor formed between a primary coil and a secondary coil includes

【0013】[0013]

【数1】 (Equation 1)

【0014】のエネルギーが蓄積されており、高電圧側
(負荷側)で地絡放電(短絡)が生じた時、放電電流路
に浮遊する回路のインダクタンスLと抵抗値Rで定まる
短絡放電電流が流れ、負荷側に大きなダメージを与え
る。その短絡放電等価回路は図6(a)に示すCd −L
−Rの直列放電回路で示され、短絡電流波形は図6
(b)に示す減衰正弦波電流となり、次式で近似的に表
される。
When a ground fault discharge (short-circuit) occurs on the high voltage side (load side), a short-circuit discharge current determined by the inductance L and the resistance value R of the circuit floating in the discharge current path is stored. Flow, causing heavy damage to the load side. The equivalent short-circuit discharge circuit is Cd-L shown in FIG.
The short-circuit current waveform is shown in FIG.
It becomes the attenuated sine wave current shown in (b) and is approximately represented by the following equation.

【0015】[0015]

【数2】 (Equation 2)

【0016】短絡電流I(t)を軽減させるには回路のイ
ンダクタンスLを増やして、尖頭電流値Ip を抑えるこ
とと、回路抵抗値Rを増やし減衰時定数τを小さくし
て、早く減衰させることが考えられるが、回路抵抗値R
を増やすことは絶縁変圧器本来の使命である定常時の損
失を増やすことになり好ましくない。本発明の絶縁変圧
器は、インダクタンスLを増やし、尖頭電流値Ip を抑
えようとするもので、絶縁変圧器の一部である高圧側電
力引出用ブッシング4の短絡電流路に対するインダクタ
ンスを増やし、絶縁変圧器本来の使命である定常(交
流)電流路には影響を及ぼさぬよう考えられたものであ
る。
In order to reduce the short-circuit current I (t), the inductance L of the circuit is increased to suppress the peak current value Ip, and the circuit resistance value R is increased to decrease the decay time constant τ so that the decay time is reduced. It is conceivable that the circuit resistance R
Increasing the power loss increases the steady-state loss, which is the original mission of the insulating transformer, and is not preferable. The insulating transformer of the present invention increases the inductance L and suppresses the peak current value Ip, and increases the inductance of the high-side power lead-out bushing 4, which is a part of the insulating transformer, with respect to the short-circuit current path. It was designed so as not to affect the stationary (alternating current) current path, which is the original mission of the insulating transformer.

【0017】上記の通り、高圧側電力引出用ブッシング
4の金属導管16の外周に高透磁率の鉄心31を配する
ことにより、短絡電流路を形成する金属導管16のイン
ダクタンスを増やすことになるが、金属導管16内に一
括して挿入された変圧器2の2次リード線29を流れる
定常(交流)電流路は完全に金属導管16内を往復して
おり、該金属導管外には磁束漏洩はなく、定常電流に対
しては鉄心31の影響は受けない。負荷短絡時、絶縁変
圧器のコンデンサに蓄えられたエネルギーEn はコンデ
ンサとインダクタンスLの間を交互に移行し、減衰正弦
波電流が流れるので、金属導管16の外周に鉄心31を
配して短絡放電路のインダクタンスを集中定数としたと
き、そのインダクタンスは全エネルギーを受入れられる
だけの容量が必要である。
As described above, by arranging the iron core 31 having a high magnetic permeability around the outer periphery of the metal conduit 16 of the bushing 4 for drawing out the high-voltage power, the inductance of the metal conduit 16 forming the short-circuit current path is increased. The steady (alternating) current path flowing through the secondary lead 29 of the transformer 2 inserted into the metal conduit 16 is completely reciprocated in the metal conduit 16 and there is no flux leakage outside the metal conduit. , And the steady current is not affected by the iron core 31. When the load is short-circuited, the energy En stored in the capacitor of the insulating transformer alternates between the capacitor and the inductance L, and an attenuated sine wave current flows. Assuming that the inductance of the road is a lumped constant, the inductance needs to have a capacity capable of receiving the entire energy.

【0018】鉄心内に蓄えられるエネルギーは磁束密度
Bm の関数として、次式で表されることは周知である。
It is well known that the energy stored in an iron core is represented by the following equation as a function of the magnetic flux density Bm.

【0019】[0019]

【数3】 (Equation 3)

【0020】ここで、一例として、DC400kV絶縁
用の単相200V、1kVAの絶縁変圧器を考えた場
合、コンデンサの浮遊容量Cd がCd =500pFある
とすると、そこに蓄えられたエネルギーEn は(1)式
より、En =40Jとなる。このエネルギーを比透磁率
μS=10,000の鉄心に飽和磁束密度に近いBm =1.5
Tで蓄えようとした時、必要な鉄心体積は(3)式より
Vcore=0.447m3となり、重量換算で約3.5ト
ンとなり、従来の絶縁変圧器の数倍の重量となるので、
もはや実用に供さない。その対策として、鉄心31を直
径方向に切断して、その切断部にギャップ18を設ける
ものである。この切断部のギャップ18の材質が非磁性
材であれば、比透磁率μS =1であり、そこに蓄えられ
るエネルギ−は、次式で表される。
Here, as an example, when a single-phase 200 V, 1 kVA insulating transformer for DC 400 kV isolation is considered, if the stray capacitance Cd of the capacitor is Cd = 500 pF, the energy En stored therein is (1 ), En = 40J. This energy is applied to an iron core having a relative magnetic permeability μ S = 10,000 and Bm = 1.5 close to the saturation magnetic flux density.
When trying Takuwaeyo in T, core volume required (3) Vcore = 0.447m 3 becomes from the equation, it becomes about 3.5 tons weight basis, since several times the weight of a conventional isolation transformer,
No longer practical. As a countermeasure, the iron core 31 is cut in the diameter direction, and a gap 18 is provided at the cut portion. If the material of the gap 18 of the cut portion is a non-magnetic material, the relative magnetic permeability μ S = 1, and the energy stored therein is represented by the following equation.

【0021】[0021]

【数4】 (Equation 4)

【0022】上記の例と同じく、40Jのエネルギ−を
最大磁束密度1.5Tで蓄えるに必要なギャップ体積は
(4)式より、Vgap = 0.447・10-43(= 44.7 c
c)となり実用に供する値である。いま、ここで、鉄心3
1の内半径が20mm、外半径が40mmで複数個の鉄
心の軸長総和が1mとした場合、必要なギャップ18の
間隔長xは2.24mmとなり、該鉄心を直径方向に2
分割する場合にはギャップ18は2ヵ所でき、1ヵ所あ
たり1.12mmにすればよく、十分実用に供する値で
ある。一方、負荷短絡時には該鉄心の軸長総和が1mで
ある軸長方向にはコンデンサに充電された400kVの
電圧相当の振動電圧が加わり、この加電圧に耐えるよ
う、鉄心31を軸方向に分断し、各鉄心31間には絶縁
板32による絶縁層が設けられている。
As in the above example, the gap volume required to store 40 J of energy at a maximum magnetic flux density of 1.5 T is given by the following equation (4): Vgap = 0.47 · 10 −4 m 3 (= 44.7 c)
c) is a value for practical use. Now, here, iron core 3
If the inner radius of 1 is 20 mm, the outer radius is 40 mm, and the sum of the axial lengths of a plurality of iron cores is 1 m, the necessary gap length x of the gap 18 is 2.24 mm, and the iron core is moved by 2 mm in the diameter direction.
In the case of division, the gap 18 can be provided at two places, and the gap 18 may be set to 1.12 mm per place, which is a value practically used. On the other hand, when the load is short-circuited, a vibration voltage equivalent to a voltage of 400 kV charged in the capacitor is applied in the axial direction in which the total axial length of the iron core is 1 m, and the iron core 31 is divided in the axial direction to withstand the applied voltage. An insulating layer of an insulating plate 32 is provided between the iron cores 31.

【0023】上記の鉄心31を用いた場合、高圧側電力
引出用ブッシング4の金属導管16のインダクタンスL
は約11μHとなり、400kVで負荷地絡時の短絡電
流は(2)式で示され、尖頭電流値Ip =2697Aと
なる。一方、鉄心を用いない従来品では、短絡路の浮遊
インダクタンスLは高々1μH程度と見込むと短絡尖頭
電流値Ip =8944Aであり、本発明の効果として短
絡時の尖頭電流を1/3.3 に抑えることになる。な
お、コンデンサに蓄えられていたエネルギーは(2)式
で示す正弦波の減衰振動電流として回路抵抗に消費さ
れ、短絡放電路の抵抗成分は特定できないが、大半が放
電部のアーク抵抗と仮定すると、蓄積エネルギーの大半
は放電部に注入され、インダクタンスLを増やしても放
電部へのエネルギー注入量に関しては本発明での効果は
現れない。しかし、負荷が電子やイオンを加速する加速
管のように高真空中での放電では、そのダメージは電流
の尖頭値に依存するところが多く、本発明の効果は大で
ある。
When the above-described iron core 31 is used, the inductance L of the metal conduit 16 of the bushing 4 for drawing out the high-voltage power is set.
Is about 11 .mu.H. At 400 kV, the short-circuit current at the time of load ground fault is expressed by the equation (2), and the peak current value Ip = 2697 A. On the other hand, in the conventional product using no iron core, the stray inductance L of the short circuit is estimated to be at most about 1 μH, and the short circuit peak current value Ip is 8944 A. As an effect of the present invention, the peak current at the time of short circuit is 1/3. 3 The energy stored in the capacitor is consumed by the circuit resistance as a sine wave damped oscillating current represented by the equation (2), and although the resistance component of the short-circuit discharge path cannot be specified, it is assumed that most is the arc resistance of the discharge part. Most of the stored energy is injected into the discharge portion, and even if the inductance L is increased, the effect of the present invention does not appear on the amount of energy injected into the discharge portion. However, in a discharge in a high vacuum such as an acceleration tube in which a load accelerates electrons or ions, the damage often depends on the peak value of the current, and the effect of the present invention is great.

【0024】[0024]

【実施例2】図3(a)、(b)、(c)は、本発明の
他の実施例の鉄心部の拡大図で、図3(a)は、図2の
高圧側の電力引出用ブッシング4の金属導管16と絶縁
層17の間にギャップ18を有する鉄心31を絶縁板3
2を介して多数貫通挿入している構造において、該鉄心
31と金属導管16との間および絶縁板32の間に厚さ
数10μmの銅箔等の金属箔33を介在させ、断面U字
形にせしめて鉄心を覆うとともに、該金属箔の開放端間
に抵抗器34を並列接続した平面図で、(b)はその断
面図であり、(c)は(b)のA−A’線による断面部
分の一部斜視図である。本発明は、鉄心31に対して、
金属導管16が1ターン貫通の1次コイルとなり、銅箔
等の金属箔33が1ターンの2次コイルとなり、構成比
が1:1の変流器を形成していることになる(以下、環
状変流器という)。金属箔33の開放端に当たる環状変
流器の外周部には抵抗器34が多数均等配分で並列接続
されているが、該抵抗器は環状変流器の外周に2本の被
覆絶縁された抵抗線を2層逆巻とした無誘導巻抵抗でも
よく、必要とする抵抗値を有するものを挿入すればよ
い。
Embodiment 2 FIGS. 3 (a), 3 (b) and 3 (c) are enlarged views of an iron core according to another embodiment of the present invention, and FIG. 3 (a) is a drawing of electric power on the high voltage side in FIG. The core 31 having the gap 18 between the metal conduit 16 of the bushing 4 and the insulating layer 17 is attached to the insulating plate 3.
2, a metal foil 33 such as a copper foil having a thickness of several tens of μm is interposed between the iron core 31 and the metal conduit 16 and between the insulating plates 32 to form a U-shaped cross section. A plan view in which a resistor 34 is connected in parallel between the open ends of the metal foil while covering the iron core at least, (b) is a cross-sectional view thereof, and (c) is a sectional view taken along line AA 'of (b). It is a partial perspective view of a cross section. The present invention, for the iron core 31,
The metal conduit 16 serves as a primary coil having one turn, and the metal foil 33 such as a copper foil serves as a secondary coil having one turn, thereby forming a current transformer having a composition ratio of 1: 1 (hereinafter, referred to as a current transformer). Annular current transformer). A large number of resistors 34 are connected in parallel at equal intervals to the outer periphery of the annular current transformer, which corresponds to the open end of the metal foil 33. The resistor is connected to the outer periphery of the annular current transformer by two coated and insulated resistors. A non-induction winding resistance in which the wire has two layers of reverse winding may be used, and a wire having a required resistance value may be inserted.

【0025】図7は、本発明による絶縁変圧器の実用時
の短絡等価回路を示す。図7において、2次コイル33
として作用する金属箔33を有する鉄心はn個(D1 、
D2、D3 、・・・・、Dn )で、各々の2次回路に抵抗値
rの抵抗が繋がれており、コンデンサに蓄えられた電荷
が、負荷側Gで短絡時、1次電流I1 である短絡電流が
流れると同時に、各鉄心の金属箔33にはトランス結合
による2次電流I2 が流れている。該環状変流器の結合
度が100%の場合、1次電流I1 と2次電流I2 は等
しくなり、図8は図7の動作説明を簡略化するための2
次を1次に換算した等価回路図である。ここにLは各環
状変流器の励磁インダクタンスの総和で、実施例1に記
載したギャップ入り環状鉄心のインダクタンスLに相当
し、抵抗値Rの抵抗は各環状変流器の2次コイル33に
接続された抵抗値rの抵抗の総和(R=n・r)であ
る。図8に示す等価回路でコンデンサに蓄えられた電荷
が負荷側Gで短絡放電した時、コンデンサからの放電電
流Ic は励磁インダクタンスLと抵抗値Rの2次抵抗と
に分流して、電流IL と電流IR として流れる。そのと
きの各々の電流は次式で算出される。
FIG. 7 shows a short-circuit equivalent circuit of the insulating transformer according to the present invention in practical use. In FIG. 7, the secondary coil 33
Iron cores having a metal foil 33 acting as
D2, D3,..., Dn), a resistance having a resistance value r is connected to each secondary circuit, and when the electric charge stored in the capacitor is short-circuited on the load side G, the primary current I 1 at the same time the short-circuit current flows is, the secondary current I 2 flows by transformer coupling the metal foil 33 of the iron core. When the degree of coupling of the annular current transformer is 100%, the primary current I 1 and the secondary current I 2 are equal, and FIG.
FIG. 9 is an equivalent circuit diagram obtained by converting the following into the first order. Here, L is the sum of the exciting inductances of the respective annular current transformers, and corresponds to the inductance L of the annular core with a gap described in the first embodiment, and the resistance of the resistance value R is applied to the secondary coil 33 of each annular current transformer. It is the total sum of the connected resistance values r (R = n · r). In the equivalent circuit shown in FIG. 8, when the charge stored in the capacitor is short-circuited on the load side G, the discharge current Ic from the capacitor is divided into the exciting inductance L and the secondary resistance having the resistance value R, and the current I L Flows as the current I R. Each current at that time is calculated by the following equation.

【0026】[0026]

【数5】 (Equation 5)

【0027】高圧側電力引出用ブッシング4の中心金属
導管16のインダクタンスLに流れる電流IL は(5)
式で示す2次の微分方程式となり、2次抵抗の値により
振動減衰電流や非振動減衰電流になり、2次抵抗の値が
(9)式で示される臨界抵抗値Rc より大きくなると電
流IL は振動系になる。環状変流器の2次回路の抵抗を
流れる電流IR は(6)式で示すように高圧側電力引出
用ブッシング4の中心金属導管16のインダクタンスL
に流れる電流IL の微分波形に係数を掛けたものとな
り、負荷側の短絡電流に相当するコンデンサを流れる電
流Ic はインダクタンスLに流れる電流IL と抵抗値R
の抵抗に流れる電流IR の和として(7)式で示され
る。
The current I L flowing through the inductance L of the central metal conduit 16 of the high voltage side power lead bushing 4 (5)
The equation becomes a second-order differential equation, which becomes a vibration damping current or a non-vibration damping current depending on the value of the secondary resistance. When the value of the secondary resistance becomes larger than the critical resistance value Rc shown by the equation (9), the current IL Becomes a vibration system. The current I R flowing through the resistance of the secondary circuit of the ring-shaped current transformer is expressed by the inductance L
As the result multiplied by a coefficient differentiated waveform of the current I L flowing through the current current Ic flowing through the capacitor corresponding to the short-circuit current of the load side flowing through inductance L I L and the resistance value R
Equation (7) shows the sum of the currents I R flowing through the resistors of FIG.

【0028】図9は、先の実施例1で示した鉄心31に
2次コイル26を配して該2次コイルに抵抗値Rの抵抗
を付加した場合、抵抗値Rにより短絡電流がどのように
変化するかを表したものである。図9では抵抗値を
(9)式に基づく臨界抵抗値Rc の1、2、3、5、1
0、100倍の抵抗値で計算した結果を示しており、臨
界抵抗値Rc の3〜5倍で最大電流値が最小となり、そ
れより小さい抵抗値では非振動系に近づき通電時定数は
短くなるが尖頭電流値は増加する。また、抵抗値が10
0Rc の波形は、実施例1で示す2次コイルおよび抵抗
を入れない場合に相当する。最適条件は負荷側のダメー
ジの状況に応じて選ばなければならないが、何れの抵抗
値であっても回路構成から明らかなように、コンデンサ
に蓄えられたエネルギーは全て抵抗成分である抵抗値R
の抵抗に吸収(消費)されるので、負荷側の放電部への
エネルギー注入が抑えられ、負荷側のダメージを大幅に
減少することができ、その効果は絶大である。
FIG. 9 shows the case where the secondary coil 26 is arranged on the iron core 31 shown in the first embodiment and a resistance having a resistance value R is added to the secondary coil. It is expressed whether it changes to. In FIG. 9, the resistance is set to 1, 2, 3, 5, 1 of the critical resistance Rc based on the equation (9).
The calculation results are shown with a resistance value of 0 and 100 times. The maximum current value becomes minimum when the critical resistance value Rc is 3 to 5 times. However, the peak current value increases. Also, if the resistance value is 10
The waveform of 0Rc corresponds to the case where the secondary coil and the resistor shown in the first embodiment are not inserted. The optimum condition must be selected according to the situation of the damage on the load side. However, as is clear from the circuit configuration, any energy stored in the capacitor is a resistance value R which is a resistance component.
Is absorbed (consumed) by the resistor, the energy injection into the discharge portion on the load side is suppressed, and the damage on the load side can be greatly reduced, and the effect is enormous.

【0029】[0029]

【発明の効果】金属導管の外周にギャップを有する鉄心
を配することにより、負荷側での短絡(地絡)電流を抑
制することができる。さらに、該鉄心に2次コイルとし
て作用する金属箔を設け、かつ抵抗を接続することによ
り、放電時定数を短縮し、かつ放出するエネルギーを抵
抗体に吸収させることができる。
By arranging an iron core having a gap around the outer periphery of the metal conduit, a short-circuit (ground fault) current on the load side can be suppressed. Further, by providing a metal foil acting as a secondary coil on the iron core and connecting a resistor, the discharge time constant can be shortened and the released energy can be absorbed by the resistor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明による絶縁変圧器の内部構造図
である。
FIG. 1 is an internal structural diagram of an insulating transformer according to the present invention.

【図2】図2(a)、(b)、(c)は、本発明の鉄心
部を拡大した図面で、(a)は金属導管16に鉄心31
を絶縁板32を介して多数挿入している平面図、(b)
はその断面図、(c)は(b)のA−A’線による断面
部分の一部斜視図である。
2 (a), 2 (b), and 2 (c) are enlarged views of an iron core portion of the present invention, and FIG.
FIG. 2B is a plan view in which many are inserted through an insulating plate 32, FIG.
Is a cross-sectional view thereof, and (c) is a partial perspective view of a cross-sectional portion taken along line AA ′ of (b).

【図3】図3(a)、(b)、(c)は、本発明の他の
実施例の鉄心部を拡大した図面で、図3(a)は、鉄心
31と金属導管16との間および絶縁板32の間に金属
箔を介在させ、断面U字形にせしめて鉄心を覆うととも
に、該金属箔の開放端間に抵抗器を並列接続した平面図
で、(b)はその断面図、(c)は(b)のA−A’線
による断面部分の一部斜視図である。
3 (a), 3 (b) and 3 (c) are enlarged views of an iron core portion according to another embodiment of the present invention, and FIG. 3 (a) shows the connection between an iron core 31 and a metal conduit 16; FIG. 4B is a plan view in which a metal foil is interposed between the insulating plates 32 and has a U-shaped cross section to cover the iron core and resistors are connected in parallel between open ends of the metal foil, and FIG. (C) is a partial perspective view of a section taken along line AA ′ of (b).

【図4】図4は、従来の絶縁変圧器の内部構造図であ
る。
FIG. 4 is an internal structural view of a conventional insulating transformer.

【図5】図5は、絶縁変圧器の等価回路の回路図で、
(a)は単相の場合、(b)は3相の場合である。
FIG. 5 is a circuit diagram of an equivalent circuit of the isolation transformer.
(A) is for a single phase, and (b) is for a three phase.

【図6】図6(a)は、短絡放電の等価回路図であり、
(b)は放電電流波形である。
FIG. 6A is an equivalent circuit diagram of a short-circuit discharge,
(B) is a discharge current waveform.

【図7】図7は、本発明の絶縁変圧器の実用時の短絡放
電回路図である。
FIG. 7 is a short-circuit discharge circuit diagram of the insulating transformer of the present invention at the time of practical use.

【図8】図8は、本発明の絶縁変圧器の実用時の等価回
路である。
FIG. 8 is an equivalent circuit in practical use of the insulating transformer of the present invention.

【図9】図9(a)は第8図の回路を説明するための動
作回路図であり、図9(b)は、抵抗値変化に伴う放電
電流波形である。
9A is an operation circuit diagram for explaining the circuit of FIG. 8, and FIG. 9B is a discharge current waveform accompanying a change in resistance value.

【符号の説明】[Explanation of symbols]

1 金属ケース 2 変圧器 3 低圧側電力供給用端子 4 高圧側電力引出用ブッシング 5 接地端子 6 絶縁油 7 碍管 8 高圧側フランジ 9 低圧側フランジ 10 パッキング 11 取付用フランジ 12 天板 13 パッキング 14 高電位側引出端子 15 トップカバー 16 金属導管 17 絶縁層 18 ギャップ 20 鉄心 21 ボビン 22 1次コイル 23 低圧側シールド板 24 絶縁層 25 高圧側シールド板 26 2次コイル 27 1次リード線 28 低圧シールド線 29 2次リード線 30 高圧シールド線 31 鉄心 32 絶縁板 33 金属箔 34 抵抗器 DESCRIPTION OF SYMBOLS 1 Metal case 2 Transformer 3 Low-voltage side power supply terminal 4 High-voltage side power lead-out bushing 5 Grounding terminal 6 Insulating oil 7 Insulator tube 8 High-pressure side flange 9 Low-voltage side flange 10 Packing 11 Mounting flange 12 Top plate 13 Packing 14 High potential Side lead-out terminal 15 Top cover 16 Metal conduit 17 Insulating layer 18 Gap 20 Iron core 21 Bobbin 22 Primary coil 23 Low voltage side shield plate 24 Insulation layer 25 High voltage side shield plate 26 Secondary coil 27 Primary lead wire 28 Low voltage shield wire 29 2 Next lead wire 30 High voltage shield wire 31 Iron core 32 Insulation plate 33 Metal foil 34 Resistor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 変圧器()を収納した金属ケース
(1)と該金属ケースに絶縁油(6)を充填し、かつ該
金属ケースに低圧側電力供給用端子(3)と高圧側電力
引出用ブッシング(4)と接地端子(5)とを設けた絶
縁変圧器において、該高圧側電力引出用ブッシングの中
央部に金属導管(16)を配置し、かつ該金属導管の外
周に絶縁板(32)を介して複数個の鉄心(31)を分
割配置し、ギャップ(18)を設けたことを特徴とする
絶縁変圧器。
A metal case (1) accommodating a transformer ( 2 ), an insulating oil (6) filled in the metal case, and a low voltage side power supply terminal (3) and a high voltage side power supply in the metal case. In an insulating transformer provided with a lead-out bushing (4) and a ground terminal (5), a metal conduit (16) is arranged at the center of the high-voltage side power lead-out bushing, and an insulating plate is provided on the outer periphery of the metal conduit. An insulating transformer, wherein a plurality of iron cores (31) are divided and arranged via (32) and a gap (18) is provided.
【請求項2】 上記鉄心(31)と金属導管(16)と
の間および絶縁板(32)の間に金属箔(33)を介在
させ、該金属箔間に抵抗器(34)を接続してなること
を特徴とする請求項1記載の絶縁変圧器。
2. A metal foil (33) is interposed between the iron core (31) and the metal conduit (16) and between the insulating plate (32), and a resistor (34) is connected between the metal foils. The insulation transformer according to claim 1, wherein:
JP29756297A 1997-10-29 1997-10-29 Isolation transformer Expired - Lifetime JP3665945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29756297A JP3665945B2 (en) 1997-10-29 1997-10-29 Isolation transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29756297A JP3665945B2 (en) 1997-10-29 1997-10-29 Isolation transformer

Publications (2)

Publication Number Publication Date
JPH11135335A true JPH11135335A (en) 1999-05-21
JP3665945B2 JP3665945B2 (en) 2005-06-29

Family

ID=17848159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29756297A Expired - Lifetime JP3665945B2 (en) 1997-10-29 1997-10-29 Isolation transformer

Country Status (1)

Country Link
JP (1) JP3665945B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107545998A (en) * 2017-10-27 2018-01-05 江苏思源赫兹互感器有限公司 A kind of isolating transformer
CN110648821A (en) * 2019-10-31 2020-01-03 江苏思源赫兹互感器有限公司 Transformer for station
JP2020038926A (en) * 2018-09-05 2020-03-12 東芝インフラシステムズ株式会社 Dry transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107545998A (en) * 2017-10-27 2018-01-05 江苏思源赫兹互感器有限公司 A kind of isolating transformer
CN107545998B (en) * 2017-10-27 2024-02-23 江苏思源赫兹互感器有限公司 Isolation transformer
JP2020038926A (en) * 2018-09-05 2020-03-12 東芝インフラシステムズ株式会社 Dry transformer
CN110648821A (en) * 2019-10-31 2020-01-03 江苏思源赫兹互感器有限公司 Transformer for station

Also Published As

Publication number Publication date
JP3665945B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
US3683271A (en) Power supply filter for noise suppression
RU2374713C2 (en) Planar high-voltage transformer
US4459576A (en) Toroidal transformer with electrostatic shield
JP2000036418A (en) Arc limiting device
JPS63502549A (en) Electrical components with inductive and capacitive properties
US20110007433A1 (en) Filter appliance for a multiphase electrical converter device
Dzhankhotov et al. A new passive hybrid air-core foil filter for modern power drives
US5331255A (en) High voltage power supply
RU2046427C1 (en) High-voltage instrument current transformer
EP0410526A1 (en) Generator for generating an electric voltage
WO2020036507A1 (en) Smoothing and current limiting reactor of a filter device for a railway traction substation
US6100781A (en) High leakage inductance transformer
JP3665945B2 (en) Isolation transformer
CA2495382C (en) Winding arrangement
US3466584A (en) Winding for a stationary induction electrical apparatus
KR101201291B1 (en) Transformer with backward double winding coil transformer for protceting electro-static shield, surge and eletromagnetic noise
US3380007A (en) Shielded arrangements for electrical transformers
US3376530A (en) Axially spaced transformer pancake coils having static plate
JPH0311534B2 (en)
JP3024007B2 (en) Neon transformer
EP4099348A2 (en) Dry-type transformer and winding method thereof
JPH0342810A (en) Pulse transformer
US20230230762A1 (en) High frequency medium voltage transformer with central insulating divider
JP2000058357A (en) Manufacture of ac current transformer
JP2002237421A (en) Switching power source transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term