JPH04231108A - Method for constraining/cooling flange of h-shape steel - Google Patents
Method for constraining/cooling flange of h-shape steelInfo
- Publication number
- JPH04231108A JPH04231108A JP2409113A JP40911390A JPH04231108A JP H04231108 A JPH04231108 A JP H04231108A JP 2409113 A JP2409113 A JP 2409113A JP 40911390 A JP40911390 A JP 40911390A JP H04231108 A JPH04231108 A JP H04231108A
- Authority
- JP
- Japan
- Prior art keywords
- flange
- web
- cooling
- flanges
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 57
- 238000001816 cooling Methods 0.000 title claims abstract description 57
- 239000010959 steel Substances 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title description 39
- 238000005096 rolling process Methods 0.000 claims abstract description 35
- 230000035882 stress Effects 0.000 abstract description 45
- 230000008646 thermal stress Effects 0.000 abstract description 9
- 239000000498 cooling water Substances 0.000 abstract description 6
- 230000001360 synchronised effect Effects 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000008602 contraction Effects 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000000452 restraining effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B39/00—Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B39/14—Guiding, positioning or aligning work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/08—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
- B21B1/088—H- or I-sections
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
【0001】0001
【産業上の利用】本発明は、熱間圧延によりH形鋼を製
造する際のフランジの冷却方法、詳しくは、熱間仕上圧
延後の冷却過程でH形鋼のウェブに生ずる波打ち変形や
、H形鋼全体の反りや曲がり変形を防止し、良好な形状
のH形鋼を効率よく製造することができるフランジの冷
却方法に関する。[Industrial Application] The present invention relates to a method for cooling a flange when manufacturing an H-beam steel by hot rolling, and more specifically, to reduce the waving deformation that occurs in the web of an H-beam steel during the cooling process after hot finishing rolling. The present invention relates to a method for cooling a flange, which prevents warpage and bending deformation of the entire H-section steel, and allows efficient production of H-section steel having a good shape.
【0002】0002
【従来の技術】熱間圧延により製造されるH形鋼におい
ては、特にフランジ厚に対してウェブ厚が薄い場合、仕
上圧延終了時におけるウェブとフランジの温度差および
仕上圧延終了後のウェブとフランジの冷却速度の差に起
因してウェブに波打ち変形が生じたり、反り曲がり変形
が生ずる。[Prior Art] In H-beam steel manufactured by hot rolling, especially when the web thickness is thinner than the flange thickness, there is a temperature difference between the web and the flange at the end of finishing rolling, and a difference in temperature between the web and the flange after finishing rolling. Due to the difference in the cooling rate of the web, waving deformation or warping deformation occurs in the web.
【0003】このようなウェブの波打ち変形を防止する
ため、一般にフランジ面に冷却水を噴射してフランジを
ウェブよりも強く冷却する方法が用いられている。また
、H形鋼の走行通路の両側に冷媒で冷却したガイドロー
ラを複数対配設し、走行する熱延H形鋼の左右のフラン
ジ外面にそれぞれガイドローラを軽く接触させて冷却す
る方法も提案されている(特開昭62−161916号
公報)。[0003] In order to prevent such waving deformation of the web, a method is generally used in which cooling water is injected onto the flange surface to cool the flange more strongly than the web. We also proposed a method in which multiple pairs of guide rollers cooled with a refrigerant are placed on both sides of the running path of the H-section steel, and the guide rollers are brought into light contact with the outer surfaces of the left and right flanges of the running hot-rolled H-section steel to cool the running path. (Japanese Unexamined Patent Publication No. 161916/1982).
【0004】これらの方法では、仕上圧延後の冷却過程
におけるウェブの温度低下にフランジの温度低下を追従
させることにより、ウェブとフランジの冷却速度の差に
起因して生ずるウェブの波打ち変形を防止しようとする
のであるが、フランジを強く冷却すると、冷却中にフラ
ンジが収縮し、ウェブに圧縮応力が働いて波打ち変形が
生ずるという問題がある。すなわち、これらの方法では
、特にウェブが薄く、仕上圧延終了時におけるウェブと
フランジの温度差(以下、初期温度差という)が大きい
場合には、強制冷却中にウェブが波打ち変形をおこし、
また、初期温度差による応力を十分に緩和できないため
に、室温まで冷却した後も波打ち変形が残る。さらに、
水により強制冷却する場合は、噴射した水がフランジの
下方部に流れるので冷却が不均一となり易く、冷却中あ
るいは冷却後に反りや曲がり変形が引き起こされる。[0004] These methods attempt to prevent the waving deformation of the web caused by the difference in cooling rate between the web and the flange by causing the temperature drop of the flange to follow the temperature drop of the web during the cooling process after finish rolling. However, if the flange is strongly cooled, there is a problem in that the flange contracts during cooling, compressive stress acts on the web, and waving deformation occurs. In other words, in these methods, especially when the web is thin and the temperature difference between the web and the flange at the end of finish rolling (hereinafter referred to as initial temperature difference) is large, the web may undergo undulating deformation during forced cooling.
Furthermore, since the stress caused by the initial temperature difference cannot be sufficiently relaxed, waving deformation remains even after cooling to room temperature. moreover,
In the case of forced cooling with water, the injected water flows to the lower part of the flange, so cooling tends to be uneven, causing warping or bending deformation during or after cooling.
【0005】このような問題に対する対策として、U形
、H形、山形などの形鋼を熱間仕上圧延が終了した後拘
束状態とし、その状態で冷却して反りや曲がりを低減す
る方法あるいは装置が提案されている(特開昭54−3
3253 号公報、特開昭62−235423号公報、
特開昭62−235424号公報、特開昭62−235
425号公報など)。また、ウェブ波打ち防止策として
、例えば、水冷開始前に材料の前後端を固定して温度低
下による収縮を拘束する収縮拘束フランジ水冷法が提案
されている(材料とプロセスvol.3(1990)
P.498)。[0005] As a countermeasure to such problems, a method or device is proposed in which U-shaped, H-shaped, angle-shaped steel sections, etc. are held in a restrained state after finishing hot rolling, and then cooled in that state to reduce warping and bending. has been proposed (Japanese Unexamined Patent Publication No. 54-3
No. 3253, JP-A No. 62-235423,
JP-A-62-235424, JP-A-62-235
425, etc.). In addition, as a measure to prevent web undulation, for example, a shrinkage restraint flange water cooling method has been proposed, in which the front and rear ends of the material are fixed before the start of water cooling to restrain shrinkage due to temperature drop (Materials and Processes vol. 3 (1990)).
P. 498).
【0006】[0006]
【発明が解決しようとする課題】しかし、前記の特開昭
54−33253 号公報、特開昭62−235423
号公報、特開昭62−235424号公報および特開昭
62−235425号公報に記載されている技術は、何
れも形鋼を抑えつけて冷却する技術であるため、冷却中
の反り(中間反り)を抑えることは可能であるが、ウェ
ブの波打ち変形を防止することはできず、冷却の仕方に
よっては冷却後の反りが大きくなるという問題がある。[Problems to be Solved by the Invention] However, the above-mentioned Japanese Patent Application Laid-Open No. 54-33253 and Japanese Patent Application Laid-Open No. 62-235423
The techniques described in Japanese Patent Application Laid-open No. 62-235424 and Japanese Patent Application Laid-open No. 62-235425 are all techniques for cooling the shaped steel by suppressing it, so that warping during cooling (intermediate warping) is avoided. ), but it is not possible to prevent the waving deformation of the web, and depending on the cooling method, there is a problem that the warpage after cooling becomes large.
【0007】また、前記の収縮拘束フランジ水冷法は、
材料の前後端を固定しているので水冷中にウェブに圧縮
応力が発生するのを防止することができるとともに、水
冷によって、初期温度差によるウェブとフランジの熱収
縮量の差を相殺できるだけの塑性伸び変形をフランジに
与えることができ、ウェブの波打ち変形を防止すること
ができるが、前後端を固定されたフレームで拘束しなけ
ればならず、圧延を行いながらこの方法を適用すること
は不可能で、作業能率が悪い。その上、拘束装置への過
負荷を防止するために材料の熱収縮に伴って生ずる引張
力をある限度以内に抑えるような引張制御機構を必要と
するなど、未だ試験段階に止まっており、工業的に有効
な方法とは言えない。[0007] Furthermore, the shrinkage restraint flange water cooling method described above
Since the front and rear ends of the material are fixed, it is possible to prevent compressive stress from occurring in the web during water cooling, and water cooling also provides enough plasticity to offset the difference in thermal contraction between the web and flange due to the initial temperature difference. Elongation deformation can be applied to the flange and waving deformation of the web can be prevented, but the front and rear ends must be restrained by a fixed frame, making it impossible to apply this method while rolling. So, work efficiency is poor. Furthermore, in order to prevent overload on the restraint device, a tension control mechanism is required to suppress the tensile force generated by thermal contraction of the material within a certain limit, and is still in the testing stage. This cannot be said to be an effective method.
【0008】本発明の課題は、H形鋼の圧延後の冷却過
程におけるウェブの波打ち変形や反り曲がり変形を防止
し、かつ、H形鋼を高い効率で製造できるフランジの冷
却方法を提供することにある。An object of the present invention is to provide a method for cooling a flange that can prevent web waving and warping deformation during the cooling process of H-section steel after rolling, and that can manufacture H-section steel with high efficiency. It is in.
【0009】[0009]
【課題を解決するための手段】本発明者らは、上記の課
題を解決するために検討を重ねた結果、仕上圧延機から
送り出されるH形鋼のフランジをその両面から挟持し、
その挟持部を仕上圧延機から送り出されるH形鋼の速度
と同じ速度で移動させつつフランジを強制冷却すること
によりウェブの波打ち変形を防止できることを確認した
。本発明はこの知見に基づいてなされたもので、その要
旨は「熱間仕上げ圧延後のH形鋼の両フランジを、それ
ぞれこのH形鋼の長手方向の1箇所以上でフランジの両
面から挟持しつつ仕上げ圧延機とフランジ挟持部との間
、および/またはフランジ挟持部どうしの間でフランジ
を強制冷却することを特徴とするH形鋼のフランジ拘束
冷却方法」にある。[Means for Solving the Problems] As a result of repeated studies in order to solve the above problems, the present inventors have found that the flange of an H-shaped steel sent out from a finishing rolling mill is held between both sides thereof,
It was confirmed that waving deformation of the web could be prevented by forcing the flange to cool while moving the clamping portion at the same speed as the H-beam sent out from the finishing mill. The present invention was made based on this knowledge, and its gist is ``both flanges of an H-section steel after hot finish rolling are held between both sides of the flanges at one or more locations in the longitudinal direction of the H-section steel. ``A flange restraint cooling method for an H-section steel'' characterized in that the flange is forcibly cooled between a finishing rolling mill and a flange clamping part and/or between flange clamping parts.
【0010】すなわち、フランジを強制冷却する際にフ
ランジに生じようとする熱収縮を、仕上圧延機やフラン
ジ挟持部における接触圧力にもとずく摩擦力により拘束
することによって、フランジに長手方向の引張応力を発
生させ、塑性伸び歪を生じさせてウェブの波打ち変形を
防止するのである。また、フランジ拘束部AとB、Cと
D(図1参照)の長手方向の挟持力を調整することによ
って、H形鋼の反り曲がり変形を防止することも可能で
ある。[0010] That is, by restraining the thermal contraction that tends to occur in the flange when the flange is forcedly cooled by the frictional force based on the contact pressure in the finishing mill and the flange clamping part, the flange is subjected to longitudinal tension. This generates stress and plastic elongation strain to prevent the web from waving. Further, by adjusting the clamping force in the longitudinal direction of the flange restraining parts A, B, C, and D (see FIG. 1), it is also possible to prevent the H-section steel from warping and deforming.
【0011】前記のフランジの挟持方法としては、ガイ
ドシューによる方法およびロールによる方法のいずれで
もよい。なお、後述するように、ガイドシューによる場
合はフランジ挟持部を圧延速度と同じ速度で圧延方向に
移動させることが必要であり、ロールによる場合はその
必要がない。ガイドシューとしては、フランジとの接触
面が平板状の治具、丸形の治具などどのような形状の治
具を用いてもよく、あるいは、ガイドシューによらずロ
ールを用いて挟持してもよい。つまり、フランジ挟持部
において、フランジと挟持具の間の接触圧力にもとづく
摩擦力によりフランジを拘束できるものであれば、いず
れも使用可能である。[0011] The flange may be held by either a guide shoe method or a roll method. As will be described later, when using guide shoes, it is necessary to move the flange holding part in the rolling direction at the same speed as the rolling speed, but when using rolls, there is no need for this. As the guide shoe, any shape of jig may be used, such as a jig whose contact surface with the flange is a flat plate or a round jig, or it may be held by using rolls instead of the guide shoe. Good too. In other words, in the flange clamping part, any material can be used as long as the flange can be restrained by the frictional force based on the contact pressure between the flange and the clamping tool.
【0012】前記の圧延速度とは、仕上圧延機の最終端
から送り出されるH形鋼の速度である。[0012] The above-mentioned rolling speed is the speed of the H-section steel delivered from the final end of the finishing mill.
【0013】フランジの強制冷却は、水の噴射により行
ってもよいし、他に有効な冷却手段があればそれを用い
てもよい。また、強制冷却を行うフランジの部位は拘束
されている範囲であればよく、1箇所で挟持した場合は
仕上げ圧延機とフランジ挟持部との間で、2箇所以上で
挟持した場合はフランジ挟持部どうしの間、あるいはさ
らに仕上げ圧延機と1段目のフランジ挟持部との間で冷
却する。[0013] The forced cooling of the flange may be performed by jetting water, or any other effective cooling means may be used. In addition, the part of the flange that performs forced cooling may be within the restricted range; if it is clamped at one location, it is between the finishing rolling mill and the flange clamping part, and if it is clamped at two or more locations, it is between the flange clamping part. Cooling is performed between the rolling mills or between the finishing rolling mill and the first stage flange clamping section.
【0014】[0014]
【作用】まず、ウェブの波打ち変形の発生機構について
述べる。図2−1の(a) はフランジ厚tf に対し
てウェブ厚tw が薄いH形鋼の断面図である。図2−
1の(b) はこのようなH形鋼の仕上圧延終了時にお
けるフランジとウェブの温度の違いを模式的に示した図
で、ウェブとフランジの熱容量の違いや表面積の差に基
づく放熱量の差によって、仕上圧延終了時にはウェブの
温度がフランジ温度に比べて著しく低下する。なお、図
2−1の(b) において、Wはフランジの幅、H−2
tf はH形鋼の高さ(H)から両方のフランジ厚(2
tf )を差し引いたウェブの長さをあらわす。このよ
うな温度の違いのある状態で仕上圧延を終了したH形鋼
が室温まで冷却されると、ウェブとフランジの温度差は
なくなるが(図2−1の(c))、フランジの方が熱収
縮量が大きいために(図2−1の(d))、H形鋼の長
手方向に生ずる応力はウェブにおいては圧縮応力、フラ
ンジにおいては引張応力となる( 図2−1の(e)
参照。以下、この応力を初期温度差による応力と呼ぶ)
。[Operation] First, the mechanism of occurrence of web waving deformation will be described. FIG. 2-1 (a) is a cross-sectional view of an H-beam steel whose web thickness tw is thinner than the flange thickness tf. Figure 2-
1(b) is a diagram schematically showing the difference in temperature between the flange and web at the end of finish rolling of such an H-section steel, and shows the amount of heat dissipated based on the difference in heat capacity and surface area between the web and flange. Due to the difference, the temperature of the web is significantly lower than the flange temperature at the end of finish rolling. In addition, in Figure 2-1 (b), W is the width of the flange, H-2
tf is calculated from the height of the H-shaped steel (H) to the thickness of both flanges (2
tf ) is subtracted from the web length. When an H-section steel that has finished finish rolling under such a temperature difference is cooled to room temperature, the temperature difference between the web and flange disappears ((c) in Figure 2-1), but the flange Due to the large amount of thermal contraction ((d) in Figure 2-1), the stress generated in the longitudinal direction of the H-section steel becomes compressive stress in the web and tensile stress in the flange ((e) in Figure 2-1).
reference. (Hereinafter, this stress will be referred to as stress due to initial temperature difference)
.
【0015】また、仕上圧延後の冷却過程において、前
記の放熱量の差、すなわち、ウェブからの放熱量がフラ
ンジからの放熱量に較べて大きいことから、図2−2の
(f)に示すように、ウェブの温度はフランジの温度に
比べて低下の度合いが大きく、ウェブとフランジの温度
差が一時的に増加する(同図において、破線は仕上圧延
終了時の温度をあらわす)。このウェブの温度低下は、
ウェブに引張熱応力を生じさせ、その結果、ウェブに長
手方向の塑性伸び歪みが生じ(図2−2の(g))、温
度が低下して均一状態に近くなると(図2−2の(h)
)、この塑性伸び歪みによってウェブに長手方向の圧縮
応力が発生する(以下、この応力を塑性変形差による応
力と呼ぶ)。図2−2の(i) は前記の熱収縮差(図
2−1の(d))と塑性伸び歪差(塑性変形差)とを合
わせたもので、そのため図2−2の(j) に示すよう
に、ウェブには大きな圧縮応力が、またフランジには大
きな引張応力が生ずる。同図中の破線σcrはウェブの
臨界座屈応力で、ウェブに生ずる圧縮応力がこの値を超
えるとウェブに変形が生ずる。すなわち、熱間圧延終了
後のH形鋼のウェブは、初期温度差による応力や塑性変
形差による応力などが重畳した高い圧縮応力を受け、そ
のためウェブに波打ち変形が生じ、H形鋼としての形状
が損なわれるとともに剛性および強度機能が劣化する。In addition, in the cooling process after finish rolling, the difference in the amount of heat released, that is, the amount of heat released from the web is larger than the amount of heat released from the flange, as shown in FIG. 2-2 (f). As shown, the temperature of the web decreases to a greater extent than the temperature of the flange, and the temperature difference between the web and the flange temporarily increases (in the figure, the broken line represents the temperature at the end of finish rolling). This web temperature drop is
Tensile thermal stress is generated in the web, resulting in plastic elongation strain in the longitudinal direction of the web ((g) in Figure 2-2), and as the temperature decreases and approaches a uniform state ((g) in Figure 2-2). h)
), this plastic elongation strain generates compressive stress in the longitudinal direction of the web (hereinafter, this stress will be referred to as stress due to differential plastic deformation). (i) in Figure 2-2 is the combination of the thermal shrinkage difference ((d) in Figure 2-1) and the plastic elongation strain difference (plastic deformation difference), so (j) in Figure 2-2 As shown in Figure 2, large compressive stresses occur in the web and large tensile stresses occur in the flanges. The broken line σcr in the figure is the critical buckling stress of the web, and if the compressive stress generated in the web exceeds this value, the web will deform. In other words, the web of the H-beam after hot rolling is subjected to high compressive stress, which is a combination of stress due to the initial temperature difference and stress due to the difference in plastic deformation, which causes waving deformation in the web and the shape of the H-beam. stiffness and strength functions are impaired.
【0016】このように、ウェブの波打ち変形にはその
発生機構からみて初期温度差によるものと塑性変形差に
よるものとがある。初期温度差は通常の圧延では 10
0〜200℃に達するが、例えば、H 640mm×
200mm×6/20mmのH形鋼について図2に示し
たモデルにより計算すると、ウェブに発生する圧縮応力
は17〜34 kgf/mm2にもなる。一方、臨界座
屈応力σcrは次の式で表され、上記のH形鋼の場合σ
crは 7.6〜11.4 kgf/mm2程度となる
ので、初期温度差による応力だけで、塑性変形差が生じ
なくてもウェブの波打ち変形が発生することになる。[0016] As described above, the waving deformation of the web can be classified into two types, one due to the initial temperature difference and the other due to the plastic deformation difference. The initial temperature difference is 10 in normal rolling.
It reaches 0 to 200℃, but for example, H 640mm×
When calculated using the model shown in FIG. 2 for a 200 mm x 6/20 mm H-section steel, the compressive stress generated in the web is 17 to 34 kgf/mm2. On the other hand, the critical buckling stress σcr is expressed by the following formula, and in the case of the above H section steel, σ
Since the cr is approximately 7.6 to 11.4 kgf/mm2, the web will undergo waving deformation due to the stress due to the initial temperature difference alone, even if no plastic deformation difference occurs.
【0017】[0017]
【数1】[Math 1]
【0018】従って、ウェブの波打ち変形を防止するた
めには、この波打ち変形が発生する前に、すなわち、H
形鋼の温度が低下してウェブに生ずる圧縮応力が臨界座
屈応力σcrを超える前に、ウェブとフランジの熱収縮
量の差を減少させるような塑性伸びをフランジに与えて
、ウェブに作用する圧縮応力を減少させればよい。Therefore, in order to prevent the waving deformation of the web, it is necessary to
Before the temperature of the section steel decreases and the compressive stress generated in the web exceeds the critical buckling stress σcr, plastic elongation is applied to the flange to reduce the difference in the amount of thermal contraction between the web and the flange, and acts on the web. It is sufficient to reduce the compressive stress.
【0019】フランジに塑性伸びを与えるには、H形鋼
を長手方向に拘束し、フランジを強制冷却することによ
ってフランジに降伏応力を超える引張熱応力を発生させ
ればよい(材料とプロセスvol.3(1990)p.
448参照)。そのために、本発明方法では前記のよう
にフランジを両面から挟持して拘束し、強制冷却するの
である。In order to impart plastic elongation to the flange, it is sufficient to restrain the H-shaped steel in the longitudinal direction and forcefully cool the flange to generate a tensile thermal stress in the flange that exceeds the yield stress (Materials and Processes vol. 3 (1990) p.
448). For this purpose, in the method of the present invention, the flange is held and restrained from both sides as described above, and forced cooling is performed.
【0020】図1は、本発明を実施するための装置の一
例の構成を示す説明図で、図1(a)はこの装置の要部
の平面図、図1(b) は図1(a)のI−I矢視図、
図1(c) はこの装置の一部の拡大断面図で、左右対
称のものの一方のみを示す図である。これらの図におい
て、A、BおよびC、Dは仕上圧延機4を通過したH形
鋼1の両フランジ2をそれぞれ挟持するガイドシューで
、これらのガイドシューはフランジ2を両面から挟持す
るためにいずれも2個で1組であり、AとB、CとDが
対をなすとともに、A、BとC、DとがH形鋼の両方の
フランジの相対する位置に配設されている。この例では
、フランジ2を2箇所で挟持している。FIG. 1 is an explanatory diagram showing the configuration of an example of an apparatus for carrying out the present invention. FIG. 1(a) is a plan view of the main part of this apparatus, and FIG. ) I-I arrow view of
FIG. 1(c) is an enlarged sectional view of a part of this device, showing only one side of the left-right symmetry. In these figures, A, B, C, and D are guide shoes that respectively clamp both flanges 2 of the H-section steel 1 that has passed through the finishing rolling mill 4. These guide shoes are designed to clamp the flanges 2 from both sides. Each of them is a set of two, and A and B and C and D form a pair, and A, B, C, and D are arranged at opposing positions on both flanges of the H-section steel. In this example, the flange 2 is held between two locations.
【0021】ガイドシューは、図1(c) に示すよう
に、2個で1組のうちの一方は油圧シリンダ6を介して
、他方は直接、フレーム5に接続されており、フレーム
5は調節機構8を介して下部フレーム7に固定されてい
る。
調節機構8はH形鋼の寸法が変わり、フランジ2と壁面
9の間の距離が変化してもそれに応じてフレーム5の長
さを調節できる機能を有している。また、下部フレーム
7は壁面9に沿ってH形鋼の長手方向に、かつ、H形鋼
が仕上圧延機から送り出される速度vと同期させた速度
v′で移動できるように構成されている。また、この例
では仕上圧延機4と1段目のガイドシューA、Bおよび
C、Dの間、および1段目と2段目のガイドシューの間
に水を噴射してフランジ2を冷却するためのフランジ冷
却ノズル10が設けられている。As shown in FIG. 1(c), there are two guide shoes, one of which is connected to the frame 5 via the hydraulic cylinder 6 and the other directly to the frame 5. It is fixed to the lower frame 7 via a mechanism 8. The adjustment mechanism 8 has a function that allows the length of the frame 5 to be adjusted accordingly even if the dimensions of the H-shaped steel change and the distance between the flange 2 and the wall surface 9 changes. Further, the lower frame 7 is configured to be able to move along the wall surface 9 in the longitudinal direction of the H-section steel at a speed v' that is synchronized with the speed v at which the H-section steel is sent out from the finishing mill. In addition, in this example, water is injected between the finishing rolling mill 4 and the guide shoes A, B, C, and D of the first stage, and between the guide shoes of the first stage and the second stage to cool the flange 2. A flange cooling nozzle 10 is provided for this purpose.
【0022】この装置を用いて本発明方法を実施するに
は、先ず、仕上圧延機を通過したH形鋼1の左右のフラ
ンジ2をその両側面からガイドシューA、BおよびC、
Dで挟持し、油圧シリンダ6により力FA 、FB お
よびFC 、FD で押圧する。フレーム5は調節機構
8を介して下部フレーム7に固定されているので、H形
鋼1の壁面9からの距離がH形鋼1の寸法によって変わ
っても、それに対応してその長さが調節される。この下
部フレーム7をH形鋼1が仕上圧延機4から送り出され
る速度vと同期させた速度v′で圧延方向に移動させな
がらフランジ2に冷却ノズル10から冷却水を噴射し、
フランジ2を強制冷却する。フランジ2は熱収縮しよう
とするので、ガイドシューA、BおよびC、Dとフラン
ジ2の接触面にフランジ2の熱収縮を妨げる方向の摩擦
力(拘束力)μFA 、μFB およびμFC 、μF
D が働く。この拘束力により、フランジ2に生ずる熱
応力は拘束のない場合に較べてより強い引張応力として
作用する。In order to carry out the method of the present invention using this apparatus, first, the left and right flanges 2 of the H-section steel 1 that have passed through the finishing rolling mill are inserted into the guide shoes A, B and C from both sides thereof.
D and press it with force FA, FB, FC, FD by hydraulic cylinder 6. Since the frame 5 is fixed to the lower frame 7 via the adjustment mechanism 8, even if the distance from the wall surface 9 of the H-section steel 1 changes depending on the dimensions of the H-section steel 1, its length can be adjusted accordingly. be done. Cooling water is injected from the cooling nozzle 10 onto the flange 2 while moving the lower frame 7 in the rolling direction at a speed v' synchronized with the speed v at which the H-section steel 1 is sent out from the finishing rolling mill 4,
The flange 2 is forcibly cooled. Since the flange 2 tends to shrink due to heat, frictional forces (restrictive forces) μFA , μFB , μFC , μF are applied to the contact surfaces of the guide shoes A, B, C, and D and the flange 2 in a direction that prevents the heat shrinkage of the flange 2.
D works. Due to this restraining force, the thermal stress generated in the flange 2 acts as a stronger tensile stress than in the case without restraint.
【0023】図3は本発明方法を適用した場合にH形鋼
に生ずる応力を示す模式図であるが、この図3の(a)
に示すように、強制冷却後のフランジ2の温度は強制
冷却なしの場合(同図中の破線)に較べてΔTだけ低下
する。そして、図3(b) に示すように、強制冷却中
のフランジ2およびウェブ3に生ずる熱応力は、フラン
ジ2においては引張、ウェブ3においては圧縮となるが
、拘束なしの場合(同図中の破線)に比較して前記の摩
擦力に起因するΔσだけ引張応力側に移行し、フランジ
2の発生応力が降伏応力σY を超えるので、フランジ
2に塑性伸びを与えることができる。その結果、フラン
ジ2とウェブ3の熱収縮量の差が緩和され、H形鋼が室
温まで冷却されウェブ3とフランジ2の温度差がない状
態でのウェブ3に生ずる圧縮応力が低減するので、臨界
座屈応力σcrを超えず、ウェブの波打ち変形の発生が
防止される。FIG. 3 is a schematic diagram showing the stress generated in the H-section steel when the method of the present invention is applied.
As shown in the figure, the temperature of the flange 2 after forced cooling is lowered by ΔT compared to the case without forced cooling (broken line in the figure). As shown in Figure 3(b), the thermal stress generated in the flange 2 and web 3 during forced cooling is tensile in the flange 2 and compressive in the web 3, but in the case of no restraint (in the figure) (broken line), the stress shifts to the tensile stress side by Δσ caused by the frictional force, and the stress generated in the flange 2 exceeds the yield stress σY, so that the flange 2 can be given plastic elongation. As a result, the difference in the amount of thermal contraction between the flange 2 and the web 3 is alleviated, and the compressive stress that occurs in the web 3 when the H-section steel is cooled to room temperature and there is no temperature difference between the web 3 and the flange 2 is reduced. The critical buckling stress σcr is not exceeded, and the occurrence of waving deformation of the web is prevented.
【0024】強制冷却のみによって、拘束を行った場合
と同等の引張熱応力(図3(b) の実線)と塑性伸び
を与えようとすると、フランジ2における引張熱応力の
増加に伴ってウェブ3における圧縮熱応力を図3(b)
の破線の場合よりも増加させ、ウェブ3の圧縮応力が
臨界座屈応力σcrを超えてしまい、強制冷却中にウェ
ブ3の波打ち変形を招くことになる。本発明方法によれ
ば、強制冷却中のウェブ3の圧縮応力を臨界座屈応力σ
crよりも低く抑えつつフランジ2の引張応力を増加さ
せることができるので、強制冷却中ならびにH形鋼が室
温に冷却されるまでの全冷却過程を通してウェブの波打
ち変形を防止することができるのである。[0024] When attempting to give the same tensile thermal stress (solid line in Fig. 3(b)) and plastic elongation as in the case of restraint only by forced cooling, the tensile thermal stress at the flange 2 increases and the web 3 Figure 3(b) shows the compressive thermal stress in
The compressive stress of the web 3 exceeds the critical buckling stress σcr, resulting in undulating deformation of the web 3 during forced cooling. According to the method of the present invention, the compressive stress of the web 3 during forced cooling is reduced to the critical buckling stress σ
Since the tensile stress of the flange 2 can be increased while keeping it lower than cr, it is possible to prevent the web from waving during forced cooling and throughout the entire cooling process until the H-beam is cooled to room temperature. .
【0025】強制冷却中のフランジ2に生ずる引張応力
σf は次のようにあらわされる。The tensile stress σf generated in the flange 2 during forced cooling is expressed as follows.
【0026】[0026]
【数2】[Math 2]
【0027】拘束部ですべりが生ずるとσf は小さく
なるが、すべりが生じてもσf がσY を超える条件
は、次式のようになる。[0027] If slip occurs in the restraint portion, σf becomes small, but the condition under which σf exceeds σY even if slip occurs is as shown in the following equation.
【0028】[0028]
【数3】[Math 3]
【0029】図1に示したようなガイドシューでフラン
ジを挟持する装置により本発明方法を実施するにあたっ
ては、ガイドシューによるフランジ拘束箇所は複数箇所
とするのが好ましい。これは、本発明方法を実施する際
前記のように挟持部をH形鋼の移送とともに移動させる
のであるが、所定距離移動させた後拘束を解除してガイ
ドシューをもとの位置に戻し、再度挟持しなおして拘束
冷却を行うことになるので、拘束が1箇所の場合は、ガ
イドシューをもとの位置に戻す間拘束なしで冷却される
ことになるからである。なお、挟持部をH形鋼の進行方
向に移動させるのは、挟持部と仕上圧延機との間でH形
鋼に不必要な圧縮応力を生じさせないためである。When carrying out the method of the present invention using a device such as the one shown in FIG. 1 in which a flange is held between guide shoes, it is preferable that the flange be restrained by the guide shoes at a plurality of locations. This is because when carrying out the method of the present invention, the clamping part is moved together with the transfer of the H-beam as described above, but after it has been moved a predetermined distance, the restraint is released and the guide shoe is returned to its original position. This is because the guide shoe is clamped again to perform restraint cooling, so if the guide shoe is restrained at only one place, it will be cooled without being restrained while the guide shoe is returned to its original position. Note that the reason why the clamping part is moved in the traveling direction of the H-shaped steel is to prevent unnecessary compressive stress from being generated in the H-shaped steel between the clamping part and the finishing rolling mill.
【0030】図4は本発明方法を実施するための装置の
他の例の挟持部を示す説明図で、左右対称のものの一方
のみを示す図であるが、この場合は、フランジ2を挟持
するためにガイドシューではなくロールE、Fが用いら
れている。ロールはガイドシューの場合と同様に2個1
組で、そのうちの一方はそのロール軸が油圧シリンダ6
のロッドに接続され、他方はそのロール軸がフレーム(
図示せず)に固定されていて、いずれもH形鋼をそれが
仕上圧延機から送り出される速度vと同期させた速度で
、かつ同じ方向に移動させ得るように構成されている。
この装置を用いる場合は、ロールをH形鋼の進行方向に
移動させる必要はなく、ロールを仕上圧延機の最終ロー
ルの回転に同期させて駆動させればよい。このロールの
回転によって、ガイドシューで拘束した場合と同様の拘
束効果を得ることができる。FIG. 4 is an explanatory view showing the holding part of another example of the apparatus for carrying out the method of the present invention, and only one side of the left-right symmetrical part is shown, but in this case, the flange 2 is held Therefore, rolls E and F are used instead of guide shoes. As with the guide shoe, there are 2 rolls in 1
one of which has its roll axis connected to the hydraulic cylinder 6.
The other rod has its roll axis connected to the frame (
(not shown), and both are configured so that the H-section steel can be moved at a speed synchronized with the speed v at which it is sent out from the finishing mill and in the same direction. When using this device, it is not necessary to move the rolls in the direction of movement of the H-section steel, but it is sufficient to drive the rolls in synchronization with the rotation of the final roll of the finishing mill. By rotating this roll, it is possible to obtain the same restraining effect as when restraining with a guide shoe.
【0031】フランジを強制冷却する場合、フランジ面
に噴射した冷却水はフランジの下方に流れるので、フラ
ンジの下方部の方が強く冷却されやすい。このため、熱
応力によって生ずる塑性伸び歪がフランジの下方部で大
きくなり、H形鋼の温度が均一になった状態でH形鋼の
長手方向の下向きに凸の反り曲がりが生ずることがある
。このような変形が生ずる場合も本発明方法は効果的で
ある。すなわち、フランジをガイドシューとの摩擦力で
拘束しているため、フランジの下方部に強制冷却による
大きな引張応力が生ずると、フランジ下方部の挟持部に
すべりが生じ、フランジの上方部、下方部の引張応力を
均一化するように作用するからである。When the flange is forcibly cooled, the cooling water injected onto the flange surface flows below the flange, so that the lower part of the flange is more likely to be cooled more strongly. Therefore, plastic elongation strain caused by thermal stress becomes large at the lower part of the flange, and even when the temperature of the H-section steel is uniform, downward convex warpage in the longitudinal direction of the H-section steel may occur. The method of the present invention is effective even when such deformation occurs. In other words, since the flange is restrained by the frictional force with the guide shoe, if a large tensile stress is generated in the lower part of the flange due to forced cooling, the gripping part of the lower part of the flange will slip, causing the upper and lower parts of the flange to slip. This is because it acts to equalize the tensile stress of.
【0032】あるいは、予めフランジの下方部の押付け
力FB 、FD を上方部の押付け力FA 、FC よ
り小さくしておいてもよい。Alternatively, the pressing forces FB, FD at the lower part of the flange may be made smaller than the pressing forces FA, FC at the upper part.
【0033】本発明方法では、フランジの拘束をガイド
シューやロールによる挟持部での摩擦力を利用して行う
ので、フランジに働く引張力がある限度を超えると挟持
部ですべりが生じ、装置に過負荷が作用する懸念はない
。さらに、フランジを挟持するガイドシューやロールに
加える力をコントロールすることにより、拘束力を制御
することができる。[0033] In the method of the present invention, the flange is restrained by using the frictional force at the clamping part of the guide shoes and rolls, so if the tensile force acting on the flange exceeds a certain limit, slipping will occur at the clamping part, causing damage to the device. There is no concern that overload will occur. Furthermore, the restraining force can be controlled by controlling the force applied to the guide shoes and rolls that clamp the flange.
【0034】本発明方法は、H形鋼の熱間圧延ラインで
圧延を行いながら適用することができ、特別の拘束冷却
工程を必要としない。従って、作業能率を低下させるこ
となく高能率でH形鋼を製造することができる。The method of the present invention can be applied while rolling is being carried out in a hot rolling line for H-section steel, and does not require a special restraint cooling process. Therefore, H-section steel can be manufactured with high efficiency without reducing work efficiency.
【0035】[0035]
【実施例】ロールによる圧下・駆動型のフランジ挟持装
置を仕上圧延機の後方10mの位置(#1ゾーン)と2
0mの位置(#2ゾーン)に配設し、本発明のフランジ
拘束冷却法を適用して製造したH形鋼について、ウェブ
の波打ち変形および反り曲がり変形の調査を行った。な
お、比較のためにフランジを拘束せずに水冷する従来法
についても同様の調査を行った。[Example] A roll-down/driven flange clamping device was installed at a position 10 m behind the finishing mill (#1 zone) and at a position 2
The waving deformation and warpage deformation of the web were investigated for the H-beam steel manufactured by applying the flange restraint cooling method of the present invention, which was placed at the 0 m position (#2 zone). For comparison, a similar investigation was also conducted on a conventional method in which the flange is water-cooled without being constrained.
【0036】用いたロールのロール径はいずれも 30
0mm、ロール押付け力は各ロールとも最大500kg
fである。
仕上圧延機とフランジ挟持部の間および両フランジ挟持
部間には、それぞれ5mの区間を冷却できる強制冷却装
置を設置し、水スプレーによりフランジを冷却した。[0036] The roll diameter of the rolls used was 30
0mm, roll pressing force is maximum 500kg for each roll
It is f. A forced cooling device capable of cooling a 5 m section was installed between the finishing mill and the flange clamping part, and between both flange clamping parts, and the flanges were cooled by water spray.
【0037】仕上圧延機出側におけるH形鋼(H 64
0mm× 200mm×6/20mm)の温度は、ウェ
ブが 600℃、フランジが750℃である。[0037] H-shaped steel (H 64
The temperature of the web is 600°C and the flange is 750°C.
【0038】調査結果を表1に示す。[0038] The investigation results are shown in Table 1.
【0039】[0039]
【表1】[Table 1]
【0040】この表から明らかなように、拘束冷却を行
わず単にフランジを冷却した場合(従来法)は、冷却水
量が少ないNo.3では冷却床でウェブの波打ちが発生
し、冷却水量が多いNo.4では強制冷却中にウェブの
波打ちが発生して冷却後も波打ち変形が残るとともに冷
却床で長手方向の反り曲がりが発生した。これに対し、
本発明方法(No.1およびNo.2)では圧延後の全
過程を通してウェブの波打ちならびに反り曲がりは発生
せず、健全な形状のH形鋼を製造することができた。As is clear from this table, when the flange is simply cooled without restraint cooling (conventional method), the amount of cooling water is small in No. In No. 3, web waving occurred on the cooling bed, and No. 3 had a large amount of cooling water. In No. 4, waving occurred in the web during forced cooling, and the waving deformation remained even after cooling, and longitudinal warping occurred on the cooling bed. On the other hand,
In the methods of the present invention (No. 1 and No. 2), no waving or warping of the web occurred throughout the entire process after rolling, and H-beam steels with a sound shape could be manufactured.
【0041】[0041]
【発明の効果】H形鋼の熱間圧延による製造において、
仕上圧延後の冷却の際に本発明方法を適用すれば、ウェ
ブの波打ちや、H形鋼の反り曲がり変形を防止すること
ができる。この方法はオンラインで実施することができ
るので、製造効率を損なうことなく、工業的価値は極め
て大きい。[Effect of the invention] In the production of H-beam steel by hot rolling,
If the method of the present invention is applied during cooling after finish rolling, it is possible to prevent web waving and warping of the H-beam steel. Since this method can be carried out online, it has great industrial value without compromising production efficiency.
図1は、本発明方法を実施するための装置の一例の構成
を示す図である。図2−1及び図2−2は、ウェブの波
打ち発生機構の説明図である。図3は、本発明方法を適
用することによるウェブの波打ち発生防止機構の説明図
である。図4は、本発明方法を実施するための装置の他
の例の構成を示す図である。FIG. 1 is a diagram showing the configuration of an example of an apparatus for carrying out the method of the present invention. FIGS. 2-1 and 2-2 are explanatory diagrams of a web undulation generation mechanism. FIG. 3 is an explanatory diagram of a mechanism for preventing web undulation by applying the method of the present invention. FIG. 4 is a diagram showing the configuration of another example of the apparatus for implementing the method of the present invention.
Claims (1)
、それぞれこのH形鋼の長手方向の1箇所以上でフラン
ジの両面から挟持しつつ仕上げ圧延機とフランジ挟持部
との間、および/またはフランジ挟持部どうしの間でフ
ランジを強制冷却することを特徴とするH形鋼のフラン
ジ拘束冷却方法。[Claim 1] Both flanges of an H-section steel after hot finish rolling are held between a finish rolling mill and a flange holding part while being held from both sides of the flange at one or more longitudinal points of the H-section steel, respectively; and/or a flange restraint cooling method for H-beam steel, characterized in that the flange is forcibly cooled between the flange clamping parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2409113A JPH04231108A (en) | 1990-12-28 | 1990-12-28 | Method for constraining/cooling flange of h-shape steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2409113A JPH04231108A (en) | 1990-12-28 | 1990-12-28 | Method for constraining/cooling flange of h-shape steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04231108A true JPH04231108A (en) | 1992-08-20 |
Family
ID=18518483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2409113A Pending JPH04231108A (en) | 1990-12-28 | 1990-12-28 | Method for constraining/cooling flange of h-shape steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04231108A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102962269A (en) * | 2012-12-20 | 2013-03-13 | 丹阳市精密合金厂有限公司 | Method for removing oil of inner surface of small-caliber cold-rolling pipe |
-
1990
- 1990-12-28 JP JP2409113A patent/JPH04231108A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102962269A (en) * | 2012-12-20 | 2013-03-13 | 丹阳市精密合金厂有限公司 | Method for removing oil of inner surface of small-caliber cold-rolling pipe |
CN104148421A (en) * | 2012-12-20 | 2014-11-19 | 丹阳市精密合金厂有限公司 | Environment-friendly pollution-free cold rolling pipe inner surface oil removing method |
CN104148422A (en) * | 2012-12-20 | 2014-11-19 | 丹阳市精密合金厂有限公司 | Cold rolled tube inner surface oil removing method |
CN104148423A (en) * | 2012-12-20 | 2014-11-19 | 丹阳市精密合金厂有限公司 | Nickel-base anticorrosion alloy cold rolled tube inner surface oil removing method |
CN104174669A (en) * | 2012-12-20 | 2014-12-03 | 丹阳市精密合金厂有限公司 | Method for removing oil of inner surface of small-diameter cold rolled tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2307718C2 (en) | Method and apparatus for controlled straightening and cooling of wide metallic strip, mainly steel strip at outlet of hot rolling mill | |
EP0241919B1 (en) | Method of and apparatus for effecting a thickness-reduction rolling of a hot thin plate material | |
GB2271071A (en) | Guiding rolled product | |
KR100878370B1 (en) | Structural body and method for cold rolling | |
KR20120063507A (en) | Cooling apparatus and cooling method for hot rolling | |
JPH04231108A (en) | Method for constraining/cooling flange of h-shape steel | |
JP2005095926A (en) | Continuous casting and hot-rolling apparatus, and continuous casting and hot-rolling method | |
JP4760403B2 (en) | Thermal crown control device, rolling mill, and metal strip manufacturing method using the rolling mill | |
JP4720250B2 (en) | Steel rolling control method | |
JP3342331B2 (en) | Hot rolling equipment | |
KR101024587B1 (en) | Hot rolling facilities | |
RU2268790C1 (en) | Sheet rolling method and apparatus for performing the same | |
JP3345776B2 (en) | Method and apparatus for cooling U-shaped sheet pile | |
JPH0669605B2 (en) | A method for directly producing a thin metal plate from a slab | |
JP3119692B2 (en) | Continuous hot strip rolling equipment and rolling method | |
JPH0414173B2 (en) | ||
JP3334411B2 (en) | H-section cooling system | |
JPS60213303A (en) | Control of distortion of roll | |
JPH11319945A (en) | Manufacture of steel plate and its device | |
JP2002011515A (en) | Line and method for manufacturing steel sheet | |
JPS60248818A (en) | Manufacture of h-beam having thin web | |
JPS63171255A (en) | Non-solidified rolling method | |
JP3356024B2 (en) | Hot rolled steel strip manufacturing method | |
JPH09108737A (en) | Method and device for removing residual stress of wide flange shape steel | |
JPH0215816A (en) | Restricting cooling control method for shape steel |