JPH04230997A - Thin film electrode for element, electroluminescence element with it, and manufacture thereof - Google Patents
Thin film electrode for element, electroluminescence element with it, and manufacture thereofInfo
- Publication number
- JPH04230997A JPH04230997A JP3125908A JP12590891A JPH04230997A JP H04230997 A JPH04230997 A JP H04230997A JP 3125908 A JP3125908 A JP 3125908A JP 12590891 A JP12590891 A JP 12590891A JP H04230997 A JPH04230997 A JP H04230997A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- organic
- metal
- electron
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 238000005401 electroluminescence Methods 0.000 title 1
- 229910052751 metal Inorganic materials 0.000 claims abstract description 81
- 239000002184 metal Substances 0.000 claims abstract description 81
- 239000000126 substance Substances 0.000 claims abstract description 58
- 150000001875 compounds Chemical class 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims description 28
- 238000001704 evaporation Methods 0.000 claims description 5
- 150000002894 organic compounds Chemical class 0.000 abstract description 16
- 239000000758 substrate Substances 0.000 abstract description 15
- 229910052749 magnesium Inorganic materials 0.000 abstract description 12
- 229910052725 zinc Inorganic materials 0.000 abstract description 9
- 229910052738 indium Inorganic materials 0.000 abstract description 6
- 229910052769 Ytterbium Inorganic materials 0.000 abstract description 5
- 229910052791 calcium Inorganic materials 0.000 abstract description 5
- 229910052693 Europium Inorganic materials 0.000 abstract description 4
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 4
- 229910052691 Erbium Inorganic materials 0.000 abstract description 3
- 229910052779 Neodymium Inorganic materials 0.000 abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 abstract description 3
- 229910052746 lanthanum Inorganic materials 0.000 abstract description 3
- 229910052727 yttrium Inorganic materials 0.000 abstract description 3
- 229910052684 Cerium Inorganic materials 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 75
- 239000010408 film Substances 0.000 description 48
- 239000011777 magnesium Substances 0.000 description 42
- 238000007740 vapor deposition Methods 0.000 description 38
- 238000002347 injection Methods 0.000 description 37
- 239000007924 injection Substances 0.000 description 37
- -1 polycyclic aromatic compounds Chemical class 0.000 description 23
- 239000000463 material Substances 0.000 description 21
- 125000003118 aryl group Chemical group 0.000 description 14
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- 238000000151 deposition Methods 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 12
- 230000008021 deposition Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 238000004020 luminiscence type Methods 0.000 description 7
- 125000006575 electron-withdrawing group Chemical group 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000005525 hole transport Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000006862 quantum yield reaction Methods 0.000 description 4
- 230000027756 respiratory electron transport chain Effects 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical compound C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 3
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- JZRYQZJSTWVBBD-UHFFFAOYSA-N pentaporphyrin i Chemical compound N1C(C=C2NC(=CC3=NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 JZRYQZJSTWVBBD-UHFFFAOYSA-N 0.000 description 3
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- HAUGRYOERYOXHX-UHFFFAOYSA-N Alloxazine Chemical compound C1=CC=C2N=C(C(=O)NC(=O)N3)C3=NC2=C1 HAUGRYOERYOXHX-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 150000008376 fluorenones Chemical class 0.000 description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical group N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 150000004032 porphyrins Chemical group 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical class C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 1
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- YTDHEFNWWHSXSU-UHFFFAOYSA-N 2,3,5,6-tetrachloroaniline Chemical compound NC1=C(Cl)C(Cl)=CC(Cl)=C1Cl YTDHEFNWWHSXSU-UHFFFAOYSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- SJSBKIXOCNOEFF-UHFFFAOYSA-N 2h-thiopyran 1,1-dioxide Chemical class O=S1(=O)CC=CC=C1 SJSBKIXOCNOEFF-UHFFFAOYSA-N 0.000 description 1
- SMBSZJBWYCGCJP-UHFFFAOYSA-N 3-(diethylamino)chromen-2-one Chemical compound C1=CC=C2OC(=O)C(N(CC)CC)=CC2=C1 SMBSZJBWYCGCJP-UHFFFAOYSA-N 0.000 description 1
- BWCDLEQTELFBAW-UHFFFAOYSA-N 3h-dioxazole Chemical class N1OOC=C1 BWCDLEQTELFBAW-UHFFFAOYSA-N 0.000 description 1
- AHDTYXOIJHCGKH-UHFFFAOYSA-N 4-[[4-(dimethylamino)-2-methylphenyl]-phenylmethyl]-n,n,3-trimethylaniline Chemical compound CC1=CC(N(C)C)=CC=C1C(C=1C(=CC(=CC=1)N(C)C)C)C1=CC=CC=C1 AHDTYXOIJHCGKH-UHFFFAOYSA-N 0.000 description 1
- RHPVVNRNAHRJOQ-UHFFFAOYSA-N 4-methyl-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1NC1=CC=C(C)C=C1 RHPVVNRNAHRJOQ-UHFFFAOYSA-N 0.000 description 1
- MVIXNQZIMMIGEL-UHFFFAOYSA-N 4-methyl-n-[4-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]phenyl]-n-(4-methylphenyl)aniline Chemical group C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MVIXNQZIMMIGEL-UHFFFAOYSA-N 0.000 description 1
- XIQGFRHAIQHZBD-UHFFFAOYSA-N 4-methyl-n-[4-[[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-phenylmethyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 XIQGFRHAIQHZBD-UHFFFAOYSA-N 0.000 description 1
- NUJGNDIAVBGFHG-UHFFFAOYSA-N 5,11-dihydroquinolino[3,2-b]quinoline-6,12-dione Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C(=O)C1=CC=CC=C1N2 NUJGNDIAVBGFHG-UHFFFAOYSA-N 0.000 description 1
- QCRMNYVCABKJCM-UHFFFAOYSA-N 5-methyl-2h-pyran Chemical compound CC1=COCC=C1 QCRMNYVCABKJCM-UHFFFAOYSA-N 0.000 description 1
- WPYMZALMVVFPJZ-UHFFFAOYSA-N 6,7,15,16,24,25,33,34-octamethyl-2,11,20,29,37,38,39,40-octazanonacyclo[28.6.1.13,10.112,19.121,28.04,9.013,18.022,27.031,36]tetraconta-1,3,5,7,9,11,13(18),14,16,19,21(38),22(27),23,25,28,30(37),31(36),32,34-nonadecaene Chemical compound N1=C(N=C2[C]3C=C(C)C(C)=CC3=C(N=C3C4=CC(C)=C(C)C=C4C(=N4)N3)N2)[C](C=C(C(C)=C2)C)C2=C1N=C1C2=CC(C)=C(C)C=C2C4=N1 WPYMZALMVVFPJZ-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- IJZOTLAMUVAXEX-UHFFFAOYSA-N C1(=CC=CC=C1)N(C1=CC=C(C=C1)C=1C(=CC(=CC=1)N(C1=CC=CC=C1)C1=CC=CC=C1)C=1C(=CC=CC=1)C1=CC=CC=C1)C1=CC=CC=C1 Chemical group C1(=CC=CC=C1)N(C1=CC=C(C=C1)C=1C(=CC(=CC=1)N(C1=CC=CC=C1)C1=CC=CC=C1)C=1C(=CC=CC=1)C1=CC=CC=C1)C1=CC=CC=C1 IJZOTLAMUVAXEX-UHFFFAOYSA-N 0.000 description 1
- OQFCTJNGGQEMMF-UHFFFAOYSA-M CC(C=CC1=CC=C2)=NC1=C2[O-].CC(C=CC1=CC=C2)=NC1=C2O.[O-2].[Al+3] Chemical compound CC(C=CC1=CC=C2)=NC1=C2[O-].CC(C=CC1=CC=C2)=NC1=C2O.[O-2].[Al+3] OQFCTJNGGQEMMF-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 241000511976 Hoya Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- CTQMJYWDVABFRZ-UHFFFAOYSA-N cloxiquine Chemical compound C1=CN=C2C(O)=CC=C(Cl)C2=C1 CTQMJYWDVABFRZ-UHFFFAOYSA-N 0.000 description 1
- 229950003660 cloxiquine Drugs 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- JRUYYVYCSJCVMP-UHFFFAOYSA-N coumarin 30 Chemical compound C1=CC=C2N(C)C(C=3C4=CC=C(C=C4OC(=O)C=3)N(CC)CC)=NC2=C1 JRUYYVYCSJCVMP-UHFFFAOYSA-N 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical compound [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- HQQKMOJOCZFMSV-UHFFFAOYSA-N dilithium phthalocyanine Chemical compound [Li+].[Li+].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 HQQKMOJOCZFMSV-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000000990 laser dye Substances 0.000 description 1
- LBAIJNRSTQHDMR-UHFFFAOYSA-N magnesium phthalocyanine Chemical compound [Mg].C12=CC=CC=C2C(N=C2NC(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2N1 LBAIJNRSTQHDMR-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical group C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- BBDFECYVDQCSCN-UHFFFAOYSA-N n-(4-methoxyphenyl)-4-[4-(n-(4-methoxyphenyl)anilino)phenyl]-n-phenylaniline Chemical group C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(OC)=CC=1)C1=CC=CC=C1 BBDFECYVDQCSCN-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004971 nitroalkyl group Chemical group 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 238000005173 quadrupole mass spectroscopy Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- JACPFCQFVIAGDN-UHFFFAOYSA-M sipc iv Chemical compound [OH-].[Si+4].CN(C)CCC[Si](C)(C)[O-].C=1C=CC=C(C(N=C2[N-]C(C3=CC=CC=C32)=N2)=N3)C=1C3=CC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 JACPFCQFVIAGDN-UHFFFAOYSA-M 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】
本発明は素子用薄膜電極及びそれを有する
エレクトロルミネッセンス(以下、ELという)素子並
びにそれらの製造方法に関し、詳しくは、有機EL素子
の陰極として用いるのに特に好適な素子用薄膜電極及び
その製造方法並びに高輝度,高効率発光を得られるEL
素子及びその製造方法に関する。[Industrial application field]
The present invention relates to a thin film electrode for an element, an electroluminescent (hereinafter referred to as EL) element having the same, and a method for manufacturing the same, and more specifically, a thin film electrode for an element particularly suitable for use as a cathode of an organic EL element and a method for manufacturing the same. In addition, EL provides high brightness and high efficiency light emission.
This invention relates to an element and its manufacturing method.
【従来の技術及び発明が解決しようとする課題】有機化
合物の高い蛍光効率に着目し、有機化合物のEL性能を
利用した素子の研究は古くから行われている。例えば、
Helfrish, Dresner,William
sらはアントラセン結晶を用い、青色発光を得ている(
J.Chem. Phys.,44, 2902 (1
966))。また、Vincett やBarlowら
は、縮合多環芳香族化合物を真空蒸着法により発光素子
の製作を行っている(Thin Solid Film
s, 99, 171(1982))。BACKGROUND OF THE INVENTION Focusing on the high fluorescence efficiency of organic compounds, research into devices that utilize the EL performance of organic compounds has been conducted for a long time. for example,
Helfrish, Dresner, William
et al. used anthracene crystals to obtain blue light emission (
J. Chem. Phys. ,44, 2902 (1
966)). Furthermore, Vincett, Barlow et al. have fabricated light emitting devices using a vacuum evaporation method using fused polycyclic aromatic compounds (Thin Solid Film).
s, 99, 171 (1982)).
【0002】しかし、いずれも発光輝度,発光効率は低
いものしか得られていない。最近、テトラフェニルブタ
ジエンを発光材料に用いて100cd/m2 の青色発
光を得たことが報告されている(特開昭59−1943
93号公報)。さらに、正孔伝導性のジアミン化合物と
発光材料としての蛍光性アルミニウムキレート錯体を積
層することにより、輝度1000cd/m2 以上の緑
色発光有機薄膜EL素子を開発したことが報告されてい
る(Appl. Phys. Lett., 51,
913(1987))。また、レーザー色素として有名
なジスチリルベンゼン系化合物は、青〜青緑の領域で高
い蛍光性を有し、これを発光材料として単層で80cd
/m2 程度のEL発光を得られたことが報告されてい
る(欧州特許0319881)。However, in either case, only low luminance and low luminous efficiency can be obtained. Recently, it has been reported that blue light emission of 100 cd/m2 was obtained using tetraphenylbutadiene as a luminescent material (Japanese Patent Laid-Open No. 59-1943
Publication No. 93). Furthermore, it has been reported that a green light-emitting organic thin film EL device with a luminance of 1000 cd/m2 or more was developed by laminating a hole-conducting diamine compound and a fluorescent aluminum chelate complex as a light-emitting material (Appl. Phys. Lett., 51,
913 (1987)). In addition, distyrylbenzene compounds, which are famous as laser dyes, have high fluorescence in the blue to blue-green region, and when used as a light-emitting material in a single layer, 80 cd
It has been reported that an EL emission of about 1/m2 could be obtained (European Patent No. 0319881).
【0003】ここで上記有機薄膜EL素子における陰極
としては、米国特許3173050,同3382394
等に記載されているように、アルカリ金属、例えばNa
: K合金等が知られているが、これらの電極を用いた
素子は最高の量子収率が0.01〜0.08%(RCA
Review, vol30, p.322)であり
、著しく仕事関数が低く、易電子注入性ではあるが活性
が高く不安定なため実用的ではない。また、トンネル注
入陰極(米国特許3710167,Proceedin
gs of IEEE, p.1863, 1970
年)は、n型Siからなるウェハー上にSiO2 を2
0〜40Åの厚さでカバーして陰極とするものや、Al
上にAl2 O3 を50Åの厚さでカバーしたものを
陰極とするもので、アントラセンを発光層として量子収
率0.01〜0.04%を得ている。しかしこれらの陰
極は、上述のアルカリ金属に比べて安定性はあるが、極
薄の酸化膜を形成する必要があり、再現性に難点があっ
た。さらに、米国特許4539507は、陰極にInを
使用し、ITO/1,1−ビス(4−ジ−p−トリルア
ミノフェニル)シクロヘキサン(正孔輸送層)/4,4
′−ビス(5,7−ジ−t−ペンチル−2−ベンゾオキ
サゾリル)スチルベン(電子輸送層)/Inの構成のE
L素子が、印加電圧22V,140mA/cm2 の電
流密度の時に、520nmのピークを持つ340cd/
m2 の発光(量子収率1.2%,電力変換効率0.1
4%)を得られることが報告されている。このEL素子
は、印加電圧の低減及び素子の高輝度化を果たしている
が、陰極のInは電子注入性が弱く、改良の余地が残さ
れている。また、EP0278757には、アルカリ金
属以外の複数の金属よりなり、少なくとも一方が仕事関
数4eV以下の金属である陰極、例えばMgとAg,I
n,Sn,Sb,Te,Mnのいずれかを有機物上へ蒸
着形成することにより、均一,緻密かつ良好な面抵抗値
を有する陰極が示されている。具体的にはMgとAgと
を用い、ITO/1,1−ビス(4−ジ−p−トリルア
ミノフェニル)シクロヘキサン/オキシンのAl錯体/
Mg:Agの構成で5V印加時に0.05mW/cm2
(約50cd/m2 ),電力変換効率0.45%の
発光(緑色)を得ている。[0003] Here, as the cathode in the organic thin film EL element, US Pat.
Alkali metals such as Na
: K alloys are known, but devices using these electrodes have a maximum quantum yield of 0.01 to 0.08% (RCA
Review, vol30, p. 322), which has a significantly low work function and is easy to inject electrons, but is highly active and unstable, making it impractical. Also, a tunnel injection cathode (U.S. Pat. No. 3,710,167, Proceedin
gs of IEEE, p. 1863, 1970
(2003), SiO2 was deposited on a wafer made of n-type Si.
A cathode covered with a thickness of 0 to 40 Å, or an Al
The cathode is formed by covering the top with Al2O3 to a thickness of 50 Å, and anthracene is used as the light emitting layer to obtain a quantum yield of 0.01 to 0.04%. However, although these cathodes are more stable than the above-mentioned alkali metals, they require the formation of an extremely thin oxide film, which poses a problem in reproducibility. Furthermore, US Pat. No. 4,539,507 uses In for the cathode, ITO/1,1-bis(4-di-p-tolylaminophenyl)cyclohexane (hole transport layer)/4,4
'-bis(5,7-di-t-pentyl-2-benzoxazolyl)stilbene (electron transport layer)/In composition
When the L element has an applied voltage of 22V and a current density of 140mA/cm2, the current density is 340cd/cm2 with a peak of 520nm.
m2 emission (quantum yield 1.2%, power conversion efficiency 0.1
4%). Although this EL element has achieved reduction in applied voltage and increased brightness of the element, In of the cathode has weak electron injection properties, and there remains room for improvement. EP0278757 also describes cathodes made of multiple metals other than alkali metals, at least one of which has a work function of 4 eV or less, such as Mg, Ag, I
It has been shown that a cathode that is uniform, dense, and has a good sheet resistance value can be obtained by vapor-depositing any of n, Sn, Sb, Te, and Mn onto an organic material. Specifically, using Mg and Ag, an Al complex of ITO/1,1-bis(4-di-p-tolylaminophenyl)cyclohexane/oxine/
0.05mW/cm2 when 5V is applied with Mg:Ag configuration
(approximately 50 cd/m2), light emission (green) with a power conversion efficiency of 0.45% was obtained.
【0004】このEL素子の陰極は、有機膜への付着度
,均一度,緻密度が高まり、安定性,面抵抗値の低下,
発光効率の向上を果たしているが、この陰極も、例えば
Mg:Ag(原子比10:1)における体積抵抗率は3
.4〜6×10−5Ω・cmであり、Mgのバルク(多
結晶)の体積抵抗率4.45×10−6Ω・cmに比べ
8〜13倍と大きい。これは未だ薄膜の均一性,緻密性
が不足しているためと考えられるが、この均一性,緻密
性の不足は、大気中での酸化につながる。また、場合に
よっては有機層との密着が不良であり、不均一な発光を
与える場合が多々あった。第2金属にAg,In,Al
等を用いるので、蒸着時の蒸着源が800℃以上の高温
となり、輻射熱により下地の有機膜に損傷を与える場合
が多い。そこで本発明者らは、上記アルカリ金属以外の
仕事関数の小さな金属とそれ以外の金属とからなる電極
の特徴はそのままに、さらに均一,緻密かつ有機層との
密着性が良好な薄膜が得られ、面抵抗値が良好で、また
製膜時に下地となる有機膜に損傷を与えることのない薄
膜電極を開発すべく鋭意研究を重ねた。[0004] The cathode of this EL element has improved adhesion, uniformity, and density to the organic film, and has improved stability, reduced sheet resistance, and
Although the luminous efficiency has been improved, this cathode also has a volume resistivity of 3, for example in Mg:Ag (atomic ratio 10:1).
.. It is 4 to 6×10 −5 Ω·cm, which is 8 to 13 times larger than the volume resistivity of Mg bulk (polycrystalline), which is 4.45×10 −6 Ω·cm. This is thought to be because the thin film still lacks uniformity and density, but this lack of uniformity and density leads to oxidation in the atmosphere. In addition, in some cases, the adhesion with the organic layer was poor, resulting in non-uniform light emission. Ag, In, Al for the second metal
etc., the vapor deposition source reaches a high temperature of 800° C. or higher during vapor deposition, and the underlying organic film is often damaged by radiant heat. Therefore, the present inventors have developed a thin film that is more uniform, dense, and has good adhesion to the organic layer, while retaining the characteristics of the electrode made of a metal with a small work function other than the alkali metal and other metals. We conducted intensive research to develop a thin film electrode that has a good sheet resistance value and does not damage the underlying organic film during film formation.
【0005】[0005]
【発明が解決しようとする課題】その結果、特定の金属
と有機物とを使用することにより、上記目的を達成でき
ることを見出した。本発明はかかる知見に基いて完成し
たものである。[Problems to be Solved by the Invention] As a result, it has been found that the above object can be achieved by using a specific metal and an organic substance. The present invention was completed based on this knowledge.
【0006】すなわち、本発明は、易電子注入性金属と
有機物とからなる素子用薄膜電極を提供するものである
。また本発明は、易電子注入性金属と有機物とを共蒸着
する素子用薄膜電極の製造方法を提供する。更に本発明
は、上記素子用薄膜電極を陰極として用いたEL素子を
提供する。また更に本発明は、易電子注入性金属と有機
物とを共蒸着して陰極を形成するEL素子の製造方法を
提供するものである。That is, the present invention provides a thin film electrode for an element made of an electron-injecting metal and an organic substance. The present invention also provides a method for manufacturing a thin film electrode for an element, in which an electron-injecting metal and an organic substance are co-deposited. Furthermore, the present invention provides an EL device using the above thin film electrode for the device as a cathode. Furthermore, the present invention provides a method for manufacturing an EL element in which a cathode is formed by co-evaporating a metal with easy electron injection and an organic substance.
【0007】上記易電子注入性金属は、有機薄膜EL素
子における有機物よりなる発光層や電子注入層(電子輸
送層)などの電子輸送帯域に電子を注入するため、好ま
しくは4.1eV以下の仕事関数を保有する金属及び電
気伝導性化合物よりなるものである。このような易電子
注入性金属としては、「化学便覧」第3版,基礎編II
,丸善,昭和59年,II−493より列記するならば
、Ba,Ca,Ce,Cs,Er,Eu,Gd,Hf,
K,La,Mg,Na,Nd,Sc,Sm,Y,Yb,
Zn,Li等が挙げられる。しかしこの中で、特に仕事
関数の小さなCs,Na等の第I族の金属は著しく反応
性が高く、安定させることが困難である。従って本発明
の薄膜電極に用いる好ましい金属は、Gd,Zn,In
,Ta,Ba,Ca,Ce,Er,Eu,Gd,Hf,
La,Mg,Nd,Sc,Sm,Y,Yb,Zn等であ
る。このような易電子注入性金属を薄膜電極の構成材料
に用いることにより、素子の動作電圧の低下,素子の発
光量子収率の向上,素子の発光効率の向上を図ることが
できる。[0007] The above-mentioned metal capable of injecting electrons preferably has a work of 4.1 eV or less in order to inject electrons into an electron transport band such as a light emitting layer or an electron injection layer (electron transport layer) made of an organic substance in an organic thin film EL device. It is made of a metal and an electrically conductive compound that has a function. Such electron-injecting metals are described in "Chemistry Handbook" 3rd edition, Basic Edition II.
, Maruzen, 1982, II-493.Ba, Ca, Ce, Cs, Er, Eu, Gd, Hf,
K, La, Mg, Na, Nd, Sc, Sm, Y, Yb,
Examples include Zn and Li. However, among these, Group I metals such as Cs and Na, which have particularly small work functions, have extremely high reactivity and are difficult to stabilize. Therefore, preferable metals used for the thin film electrode of the present invention are Gd, Zn, In
, Ta, Ba, Ca, Ce, Er, Eu, Gd, Hf,
These include La, Mg, Nd, Sc, Sm, Y, Yb, and Zn. By using such an easily electron-injecting metal as a constituent material of a thin film electrode, it is possible to lower the operating voltage of the device, improve the luminescence quantum yield of the device, and improve the luminous efficiency of the device.
【0008】一方、前記有機物は、各種のものを用いる
ことができるが、上記易電子注入性金属に付着または結
合する性質を保有する有機低分子及び有機高分子化合物
、好ましくは易電子注入性金属と錯体を形成する能力を
保有する有機化合物またはアクセプター性の有機化合物
である。アクセプター性の有機化合物は、「伝導性低次
元物質の化学」,学会出版センター,1983,p61
にも示されるように、分子構造内に電子吸引性の基、例
えば[0008] On the other hand, the organic substance can be of various types, but organic low molecules and organic polymer compounds that have the property of adhering to or bonding to the electron-injecting metal, preferably the electron-injecting metal. It is an organic compound that has the ability to form a complex with or an acceptor organic compound. Acceptor organic compounds are described in "Chemistry of Conductive Low-dimensional Materials", Gakkai Publishing Center, 1983, p61.
As shown in
【0009】[0009]
【化1】[Chemical formula 1]
【0010】(式中、Xはハロゲン原子,Rはアルキル
基,アリール基,アルキル置換アリール基,アルコキシ
置換アリール基または水素原子を示す。)を保有する化
合物であり、吸引性を強めるため場合によってはキノイ
ド構造を保有する化合物である。好ましい化合物として
は次の(a)〜(e)に分類される構造式に示すものが
挙げられる。(In the formula, X is a halogen atom, R is an alkyl group, an aryl group, an alkyl-substituted aryl group, an alkoxy-substituted aryl group, or a hydrogen atom.) is a compound that has a quinoid structure. Preferred compounds include those shown in the following structural formulas (a) to (e).
【0011】[0011]
【化2】[Case 2]
【0012】上記一般式(I)において、R1,R2,
R3,R4 は、独立にアルキル基,アルコキシ基,ハ
ロゲン原子,ニトロ基,シアノ基,アルコキシカルボニ
ル基,アリール基を示し、またR1 とR2,R3 と
R4 は互いにこれらを構成する炭素原子が一緒に結合
し、飽和,不飽和の6員環,5員環を形成してもよい。
R5 とR6 はそれぞれ電子吸引性基であり、例えば
ジシアノメチレン基,ジシアノカルボニルメチレン基,
酸素原子,シアノイミノ基,シアノアルコキシカルボニ
ルメチレン基,ジアルコキシカルボニルメチレン基,ジ
カルボン酸メチレン基あるいはシアノカルボン酸メチレ
ン基を示す。また、上記一般式(II)において、R5
とR6 は一般式(I)と同じ意味の電子吸引性基で
あり、R1,R2,R3,R4,R7,R8,R9,R
10は、一般式(I)におけるR1 〜R4 と同様の
基である。このような構造の具体的な化合物としては、In the above general formula (I), R1, R2,
R3 and R4 independently represent an alkyl group, an alkoxy group, a halogen atom, a nitro group, a cyano group, an alkoxycarbonyl group, and an aryl group; They may be combined to form a saturated or unsaturated 6-membered ring or 5-membered ring. R5 and R6 are each an electron-withdrawing group, such as a dicyanomethylene group, a dicyanocarbonylmethylene group,
Indicates an oxygen atom, a cyanoimino group, a cyanoalkoxycarbonylmethylene group, a dialkoxycarbonylmethylene group, a dicarboxylic acid methylene group, or a cyanocarboxylic acid methylene group. Furthermore, in the above general formula (II), R5
and R6 are electron-withdrawing groups having the same meaning as in general formula (I), and R1, R2, R3, R4, R7, R8, R9, R
10 is the same group as R1 to R4 in general formula (I). Specific compounds with such a structure include:
【0013】[0013]
【化3】[Chemical formula 3]
【0014】[0014]
【化4】[C4]
【0015】等が挙げられる(特開昭57−14925
9号,同61−225151号,同61−233750
号,米国特許4869984号,同4869985号参
照)。[0015] etc. (Japanese Unexamined Patent Publication No. 57-14925
No. 9, No. 61-225151, No. 61-233750
(see U.S. Pat. Nos. 4,869,984 and 4,869,985).
【0016】[0016]
【化5】[C5]
【0017】上記一般式(III)で示す化合物中、R
11〜R14は独立にアシル基,アルコキシカルボニル
基,ニトロ基,アルキルアミノ基,カルボニル基,アリ
ールアルキル基,アリールオキシカルボニル基,ベンジ
ルオキシカルボニル基,フェネチルオキシカルボニル基
,アミノカルボニル基であり、R15は電子吸引性基、
例えばジシアノカルボニルメチレン基,酸素原子,ジシ
アノメチレン基,シアノイミノ基,シアノアルコキシカ
ルボニルメチレン基,ジアルコキシカルボニルメチレン
基,ジカルボン酸メチレン基あるいはシアノカルボン酸
メチレン基である。具体的には、In the compound represented by the above general formula (III), R
11 to R14 are independently an acyl group, alkoxycarbonyl group, nitro group, alkylamino group, carbonyl group, arylalkyl group, aryloxycarbonyl group, benzyloxycarbonyl group, phenethyloxycarbonyl group, or aminocarbonyl group, and R15 is electron-withdrawing group,
Examples include a dicyanocarbonylmethylene group, an oxygen atom, a dicyanomethylene group, a cyanoimino group, a cyanoalkoxycarbonylmethylene group, a dialkoxycarbonylmethylene group, a dicarboxylic acid methylene group, or a cyanocarboxylic acid methylene group. in particular,
【0018】[0018]
【化6】[C6]
【0019】等が挙げられる(特開昭60−69657
号,同61−143764号,同61−148159号
参照)。(c)下記一般式(IV)で表される4H,−
チオピラン−1,1−ジオキシド誘導体(特開昭60−
222477号公報参照)。[0019] etc. (Japanese Patent Application Laid-Open No. 60-69657
No. 61-143764, No. 61-148159). (c) 4H,- represented by the following general formula (IV)
Thiopyran-1,1-dioxide derivatives (Japanese Patent Application Laid-Open No. 1983-1999-
(See Publication No. 222477).
【0020】[0020]
【化7】[C7]
【0021】ここで、R23は電子吸引基を示し、R2
1,R25は独立にアルキル基またはアリール基を、R
22及びR24は独立に水素又はアルコキシカルボニル
基を示し、またR21とR22、R24とR25はこれ
らを構成している炭素原子が一緒に縮合不飽和6員環を
形成してもよい。この一般式(IV)で表わされるチオ
ピランジオキシド誘導体も、−0.5Vより正側に半波
還元電位を示し、好ましいアクセプター性分子として用
いられる。具体的にはHere, R23 represents an electron-withdrawing group, and R23 represents an electron-withdrawing group.
1, R25 independently represents an alkyl group or an aryl group, R
22 and R24 independently represent hydrogen or an alkoxycarbonyl group, and the carbon atoms constituting R21 and R22, R24 and R25 may together form a fused unsaturated 6-membered ring. The thiopyrane dioxide derivative represented by the general formula (IV) also exhibits a half-wave reduction potential on the positive side of −0.5 V and is used as a preferred acceptor molecule. in particular
【0022】[0022]
【化8】[Chemical formula 8]
【0023】(Rはアルキル基,アリール基,アルキル
基置換アリール基あるいはアルコキシ基置換アリール基
などを示す)で示されるジカルボン酸イミド構造を保有
する芳香環化合物やヘテロ環化合物もアクセプター性分
子である。これらは特に好ましい化合物群である。具体
的にはAromatic ring compounds and heterocyclic compounds having a dicarboxylic acid imide structure represented by (R represents an alkyl group, an aryl group, an alkyl group-substituted aryl group, an alkoxy group-substituted aryl group, etc.) are also acceptor molecules. . These are a particularly preferred group of compounds. in particular
【0024】[0024]
【化9】[Chemical formula 9]
【0025】等が挙げられる。[0025] etc.
【0026】[0026]
【化10】[Chemical formula 10]
【0027】(式中、Ar1 ,Ar 2,Ar4,A
r5 は、独立にアリール基,アルキル置換アリール基
あるいはシアノ置換アリール基を示し、Ar3 はアリ
ーレン基,アルキル置換アリーレン基あるいはシアノ置
換アリーレン基を示す。具体的には(wherein, Ar1, Ar2, Ar4, A
r5 independently represents an aryl group, an alkyl-substituted aryl group, or a cyano-substituted aryl group, and Ar3 represents an arylene group, an alkyl-substituted arylene group, or a cyano-substituted arylene group. in particular
【0028】[0028]
【化11】[Chemical formula 11]
【0029】等が挙げられる。上記(a)〜(e)の化
合物群は、電子吸引性基を保有する有機化合物であれば
、本発明の好ましい化合物に成り得るものであって、具
体的に列挙されている特定の構造に限定されるものでは
ない。また、金属と有機物の付着または結合(錯体形成
を含む)を維持できるものであれば、アルキル基,アル
コキシ基,アリール基,アルコキシアルキル基,アリル
オキシアルキル基,ヒドロキシ基,ヒドロキシアルキル
基,アラルキル基,アルキルアミノ基,アリールアミノ
基,ニトロアルキル基,アルキルカルボニル基,アルコ
キシカルボニル基等の任意の基が有機物に置換されてい
てもよい。 また、上記の有機低分子構造を含有する
ポリマー、例えばこれらをペンダント基として備えてい
るポリマー、主鎖構造の中に備えているポリマーを用い
てもよい。これはポリマーにしても易電子注入性金属を
付着または結合する性質を維持しているからである。次
に錯体を形成する有機化合物としては、好ましくは下記
構造式(VI)をもつポルフィリン,フタロシアニン化
合物である。[0029] etc. The above compound groups (a) to (e) can be preferred compounds of the present invention as long as they are organic compounds having an electron-withdrawing group. It is not limited. In addition, as long as the attachment or bonding (including complex formation) of metal and organic substance can be maintained, alkyl groups, alkoxy groups, aryl groups, alkoxyalkyl groups, allyloxyalkyl groups, hydroxy groups, hydroxyalkyl groups, aralkyl groups , alkylamino group, arylamino group, nitroalkyl group, alkylcarbonyl group, alkoxycarbonyl group, etc. may be substituted with an organic substance. Further, polymers containing the above-mentioned organic low molecular structures, such as polymers having these as pendant groups, or polymers having these in the main chain structure, may also be used. This is because even if the polymer is used, it maintains the property of adhering to or bonding with an easily electron-injecting metal. Next, the organic compound forming the complex is preferably a porphyrin or phthalocyanine compound having the following structural formula (VI).
【0030】[0030]
【化12】[Chemical formula 12]
【0031】ここでQは−N=または−C(R)=であ
り、Rは水素,アルキル基,アラルキル基,アリール基
,複素環式基であり、T1 とT2は水素を表わすか、
あるいは共に結合し不飽和6員環を完成し、さらにはア
ルキル基,アリール基,ハロゲン原子,複素環基のよう
な置換基を付け加えてもよい。また、(VI)の化合物
は既に金属原子と錯体を形成していてもよい。このよう
な錯体形成性の有機化合物も、アクセプター性の分子で
なくても、易電子注入性金属と錯体を形成する能力を保
有すれば、本発明の有機物として用いることができる。
別種の有機化合物として易電子注入金属に付着する性質
を保有するものも用いることができる。この様な例とし
て、キレート化オキシノイド化合物があり、良好な易電
子注入金属:有機化合物の陰極を形成することが見出さ
れた。ここで、好ましいものとしては、下式のものが挙
げられる。Here, Q is -N= or -C(R)=, R is hydrogen, an alkyl group, an aralkyl group, an aryl group, a heterocyclic group, and T1 and T2 represent hydrogen or
Alternatively, they may be bonded together to complete an unsaturated 6-membered ring, and further substituents such as an alkyl group, an aryl group, a halogen atom, or a heterocyclic group may be added. Further, the compound (VI) may already form a complex with a metal atom. Such complex-forming organic compounds can also be used as the organic substance of the present invention, even if they are not acceptor molecules, as long as they have the ability to form a complex with an electron-injecting metal. Another type of organic compound that has the property of adhering to an electron-injecting metal can also be used. Examples of such are chelated oxinoid compounds, which have been found to form good electron-injecting metal:organic compound cathodes. Here, preferred ones include those of the following formula.
【0032】[0032]
【化13】[Chemical formula 13]
【0033】(式中、Meは金属を表し、nは1〜3の
整数である。Zは独立に各々の場合において少なくとも
2個の縮合芳香族環を持つ核を完成する原子を示す。)
前記から、金属が一価,二価,または三価の金属であり
得ることが明らかである。金属としては、例えばリチウ
ム,ナトリウム,またはカリウムの様なアリカリ金属、
マグネシウムまたはカルシウムのようなアルカリ土類金
属、あるいは硼素またはアルミニウムの様な土類金属が
挙げられる。一般的には、有用なキレート用金属である
ことが知られている一価,二価,または三価の金属はど
れでも使用することができる。また、Zは少なくとも2
個の縮合芳香族環を含む複素環状核を完成し、それらの
うちの一つにおいてアゾールまたはアジン環がある。脂
肪族環及び芳香族環の両方を含めて、追加の環が必要な
らばこれら2個の所要環と縮合することができる。さら
に、機能状の改善なしに分子の嵩を付加することを避け
るためZの数は、好ましくは18個以下である。上記有
用なキレート化オキシノイド化合物の例としては、アル
ミニウムトリスオキシン,マグネシウムビスオキシン,
ビス〔ベンゾ(f)−8−キノリノール〕亜鉛,ビス(
2−メチル−8−キノリノラート)アルミニウムオキサ
イド,インジウムトリスオキシン,アルミニウムトリス
(5−メチルオキシン),リチウムオキシン,ガリウム
トリオキシン,カルシウムビス(5−クロロオキシン)
,ポリ〔亜鉛(II)−ビス(8−ヒドロキシ−5−キ
ノリノニル)メタン〕,ジリチウムエピンドリジオン等
が挙げられる。以上の好ましい化合物の中で特に好まし
いのは(a),(b),(d),(e)の化合物の群、
例えば下記のTCNQ,TNF,NTDI,PTDI,
アロキサジン等である。(wherein Me represents a metal and n is an integer from 1 to 3; Z independently in each case represents the atom completing the nucleus with at least two fused aromatic rings).
From the above it is clear that the metal can be a monovalent, divalent or trivalent metal. Examples of metals include alkali metals such as lithium, sodium, or potassium;
Alkaline earth metals such as magnesium or calcium, or earth metals such as boron or aluminum may be mentioned. Generally, any monovalent, divalent, or trivalent metal known to be a useful chelating metal can be used. Also, Z is at least 2
complete the heterocyclic nucleus containing fused aromatic rings, in one of which is an azole or azine ring. Additional rings, including both aliphatic and aromatic rings, can be fused with these two required rings if desired. Furthermore, the number of Z is preferably 18 or less to avoid adding molecular bulk without improving functionality. Examples of the above useful chelated oxinoid compounds include aluminum trisoxine, magnesium bisoxine,
Bis[benzo(f)-8-quinolinol]zinc, bis(
2-methyl-8-quinolinolate) aluminum oxide, indium trisoxine, aluminum tris(5-methyloxine), lithium oxine, gallium trioxine, calcium bis(5-chlorooxine)
, poly[zinc(II)-bis(8-hydroxy-5-quinolinonyl)methane], dilithium epindolidione, and the like. Among the above preferred compounds, particularly preferred are the groups of compounds (a), (b), (d), and (e),
For example, the following TCNQ, TNF, NTDI, PTDI,
Alloxazine and the like.
【0034】[0034]
【化14】[Chemical formula 14]
【0035】また、(a)〜(f)の化合物の一般式(
I)〜(VII)おいて、好ましいアルキル基は炭素数
1〜10であり、具体例としてはメチル基,エチル基,
プロピル基,ブチル基等が挙げられる。同様にして、好
ましいアリール基は炭素数6〜20であり、具体例とし
てはフェニル基,ナフチル基,アントニル基,ピレニル
基,ペリレニル基等が挙げられ、好ましいアルコキシ基
は炭素数1〜10であり、具体例としてはメトキシ基,
エトキシ基,プロポキシ基,ブトキシ基等が挙げられる
。[0035] Furthermore, the general formula (
In I) to (VII), preferable alkyl groups have 1 to 10 carbon atoms, and specific examples include methyl group, ethyl group,
Examples include propyl group and butyl group. Similarly, preferred aryl groups have 6 to 20 carbon atoms, and specific examples include phenyl, naphthyl, anthonyl, pyrenyl, perylenyl, etc., and preferred alkoxy groups have 1 to 10 carbon atoms. , specific examples include methoxy group,
Examples include ethoxy group, propoxy group, butoxy group, and the like.
【0036】次に上記易電子注入性金属と有機物とを用
いて薄膜電極を形成する方法を説明する。薄膜を形成す
る手段としては様々な方法を用いることが可能であるが
、EL素子の陰極として使用する際の好ましい陰極形態
である均一で緻密な薄膜状態を得るため、気相からの沈
着により薄膜を形成する方法、すなわち蒸着法を用いる
ことが好ましい。特に、有機物が気相になる温度と、金
属が気相になる温度とが著しく異なるため、金属蒸着源
と有機物蒸着源とを分けて、それぞれ同時に沈着する二
元同時蒸着法にて形成することが好ましい。実際の蒸着
にあたっては、金属蒸着源及び有機物蒸着源を、それぞ
れの蒸気圧が充分に高まる温度に設定し、有機物と金属
が意図する蒸着速度に達したところで蒸着源上にあるシ
ャッターを開き蒸着を開始する。目的の膜厚値に到達し
たら、シャッターを閉じて作製を止める。蒸着時の好ま
しい真空度は10−5Torr以下であり、基板温度は
特に限定されないが、下地の有機膜の薄膜性を失わせな
い温度に設定すべきである。有機膜の薄膜性は、溶融,
結晶化などにより失われることがあるため、0℃〜10
0℃が好ましく、室温程度とすることが好ましい。尚、
有機物の蒸着時には分解温度に到達しないように留意す
べきである。また、有機物は場合によっては加熱途中で
ガス放出を行うことがあるが、これは洗浄で使用した残
存溶媒であることが多く、分解とは関係ない場合がある
。Next, a method of forming a thin film electrode using the above-mentioned electron-injecting metal and organic substance will be explained. Various methods can be used to form a thin film, but in order to obtain a uniform and dense thin film, which is the preferred cathode form when used as a cathode for an EL device, it is possible to form a thin film by deposition from a gas phase. It is preferable to use a method of forming a , that is, a vapor deposition method. In particular, since the temperature at which an organic substance becomes a gas phase and the temperature at which a metal becomes a vapor phase are significantly different, it is necessary to separate the metal vapor deposition source and the organic substance vapor deposition source and deposit them simultaneously using a binary simultaneous vapor deposition method. is preferred. During actual vapor deposition, the metal vapor deposition source and the organic material vapor deposition source are set at a temperature that sufficiently increases their respective vapor pressures, and when the organic material and metal reach the intended vapor deposition rate, the shutter above the vapor deposition source is opened and the vapor deposition begins. Start. When the desired film thickness value is reached, the shutter is closed to stop the production. The preferred degree of vacuum during vapor deposition is 10 -5 Torr or less, and the substrate temperature is not particularly limited, but should be set at a temperature that does not destroy the thin film properties of the underlying organic film. The thin film properties of organic films are due to melting,
Because it may be lost due to crystallization, etc.,
The temperature is preferably 0°C, and preferably about room temperature. still,
Care should be taken not to reach the decomposition temperature when depositing organic matter. Furthermore, in some cases, organic substances may release gas during heating, but this is often due to residual solvent used in cleaning and may not be related to decomposition.
【0037】易電子注入金属と有機物との組成比は、金
属に対して有機物が重量比で1/30程度の微量であっ
ても、均質で緻密且つ非常に小さく良好な面抵抗値を保
有する金属薄膜(陰極)を生成することができる。有機
物の金属に対する重量比は30%までは金属としての体
質が優先し、好ましく用いることができる。特に好まし
くは、特に良好な面抵抗値を保有しうる重量比1〜10
%の範囲である。上記の1/30程度はモル比に換算す
れば1%程度以下であってほんの少量の有機物が上記の
良好な結果を与えていることになる。通常有機物は一成
分であるが、必要により二成分以上の複数の成分と金属
よりなる電極を作製することも可能である。また、金属
を複数の成分(例えばMgとYb等)にすることも可能
である。膜厚としては好ましくは10nm〜500nm
である。極度に薄すぎると(10nm以下)面抵抗値が
上昇し、かつ酸化しやすい。また厚くなりすぎると作製
に時間がかかる。特に好ましくは50nm〜300nm
である。また金属の蒸着速度は、好ましくは0.1nm
/秒〜10nm/秒、特に好ましくは0.5〜5nm/
秒である。また金属の中には処理中に脱ガスするものが
あるが、この脱ガス組成は、四重極質量分析計によれば
、CO,CO2 ,H2 O,H2 の吸着ガスである
ことが判明した。H2 O,CO,CO2 などは蒸着
中に金属を酸化させるので好ましくないため、あらかじ
め金属蒸着源の洗浄,溶融等を行い吸着ガスを除去して
おくことが望ましい。The composition ratio of the electron-injecting metal and the organic substance is homogeneous, dense, and has a very small and good sheet resistance value even if the organic substance is in a small amount of about 1/30 by weight of the metal. A thin metal film (cathode) can be produced. The weight ratio of the organic substance to the metal can be preferably used up to 30%, since the substance as a metal has priority. Particularly preferably, the weight ratio is 1 to 10, which can maintain a particularly good sheet resistance value.
% range. The above 1/30 is about 1% or less when converted to a molar ratio, which means that only a small amount of organic matter can give the above good results. Usually, an organic substance is one component, but if necessary, it is also possible to produce an electrode made of two or more components and a metal. It is also possible to use a plurality of metal components (for example, Mg and Yb). The film thickness is preferably 10 nm to 500 nm.
It is. If it is too thin (10 nm or less), the sheet resistance value will increase and it will be easily oxidized. Moreover, if it is too thick, it will take time to manufacture it. Particularly preferably from 50nm to 300nm
It is. Further, the metal vapor deposition rate is preferably 0.1 nm.
/second to 10nm/second, particularly preferably 0.5 to 5nm/second
Seconds. Additionally, some metals degas during processing, and the composition of this degas was determined by quadrupole mass spectrometry to be adsorbed gases such as CO, CO2, H2O, and H2. . Since H2O, CO, CO2, etc. are undesirable because they oxidize the metal during vapor deposition, it is desirable to remove the adsorbed gas by cleaning, melting, etc. the metal vapor deposition source in advance.
【0038】ここで本発明の薄膜電極の生成メカニズム
を述べれば、次のとおりである。易電子注入性金属の特
に好ましい例であるMg,Zn,希土類金属(Yb,E
u等)などを単独に蒸着した場合、有機薄膜やガラス等
には殆ど付着せず、電極として適当な金属薄膜が得られ
ない。一方、これらの金属に付着または結合する性質を
もつ有機低分子、好ましくはアクセプター性化合物また
は錯体形成性の化合物を用い、これと金属の二源共蒸着
を行うと、有機薄膜やガラス上にも容易に付着し完全な
る金属薄膜を生成することができる。これは金属単独で
は付着しない表面であっても、有機化合物がまず付着し
た後、この有機化合物と金属が付着または結合を行い、
薄膜が生成すると推定される。また、金属単独では、凝
集し著しく不連続かつ不均一な膜になりやすいが、有機
物はこの凝集性を妨害し、均一かつ緻密な膜の生成を与
える。尚、有機薄膜,ガラス等に容易に付着する金属(
例えばAlなど)であっても、本発明の方法を用いるこ
とにより緻密性を増し、面抵抗値が低下し、良好な金属
薄膜を得ることができる。 また均一緻密な易電子注
入性金属及び有機物からなる薄膜は、金属単独膜に比べ
著しく酸化されにくい膜となる。さらに易電子注入性金
属及び有機物からなる薄膜の作製上の利点として、有機
物の蒸着源温度が500℃以下であるため、この蒸着源
の輻射熱による有機膜の損傷は全くない。なお、易電子
注入性金属には、Mg,Yb,Euなど蒸着源温度の低
いものが存在するため、金属種の選定をすれば有機膜の
損傷をほぼ完全に防止することも可能である。The production mechanism of the thin film electrode of the present invention will now be described as follows. Mg, Zn, rare earth metals (Yb, E
When a metal such as u, etc. is deposited alone, it hardly adheres to an organic thin film or glass, and a metal thin film suitable as an electrode cannot be obtained. On the other hand, if we use an organic low molecule that has the property of adhering to or bonding to these metals, preferably an acceptor compound or a complex-forming compound, and perform two-source co-evaporation of this and the metal, it can also be deposited on organic thin films or glass. It is easy to adhere and can produce complete metal films. This means that even if metal alone does not adhere to the surface, an organic compound will first adhere to it, and then this organic compound and metal will adhere or bond.
It is estimated that a thin film will be formed. Further, metal alone tends to aggregate and form a significantly discontinuous and non-uniform film, but organic substances inhibit this cohesiveness and produce a uniform and dense film. In addition, metals that easily adhere to organic thin films, glass, etc.
By using the method of the present invention, even if the metal film is made of aluminum (for example, Al), the density will be increased, the sheet resistance value will be reduced, and a good metal thin film can be obtained. Further, a uniformly dense thin film made of an electron-injecting metal and an organic substance is significantly less likely to be oxidized than a metal-only film. Furthermore, as an advantage in producing a thin film made of an electron-injectable metal and an organic substance, since the temperature of the organic substance vapor deposition source is 500° C. or lower, the organic film is not damaged at all by the radiant heat of this vapor deposition source. Note that, since there are metals with easy electron injection properties such as Mg, Yb, and Eu, which have a low evaporation source temperature, it is possible to almost completely prevent damage to the organic film by selecting the metal type.
【0039】本発明の薄膜電極を陰極として用いたEL
素子の構成は、各種の態様があるが、基本的には、一対
の電極(陽極と陰極)間に、発光層を挟持した構成とし
、これに必要に応じて、正孔注入層や電子注入層を介在
させればよい。具体的には(1)陽極/発光層/陰極,
(2)陽極/正孔注入層/発光層/陰極,(3)陽極/
正孔注入層/発光層/電子注入層/陰極,(4)陽極/
発光層/電子注入層/陰極などの構成を挙げることがで
きる。該正孔注入層や電子注入層は、必ずしも必要では
ないが、これらの層があると発光性能が一段と向上する
。また、前記構成の素子においては、いずれも基板に支
持されていることが好ましく、該基板については特に制
限はなく、従来EL素子に慣用されているもの、例えば
ガラス,透明プラスチック,石英などから成るものを用
いることができる。EL using the thin film electrode of the present invention as a cathode
There are various configurations of the device, but basically, a light emitting layer is sandwiched between a pair of electrodes (anode and cathode), and if necessary, a hole injection layer or an electron injection layer is added. A layer may be provided. Specifically, (1) anode/emitting layer/cathode,
(2) Anode/hole injection layer/light emitting layer/cathode, (3) anode/
Hole injection layer/light emitting layer/electron injection layer/cathode, (4) anode/
Examples include structures such as a light emitting layer/electron injection layer/cathode. Although the hole injection layer and electron injection layer are not necessarily required, the presence of these layers further improves the light emitting performance. In addition, in the above-mentioned elements, it is preferable that each element is supported by a substrate, and the substrate is not particularly limited, and is made of a material conventionally used for EL elements, such as glass, transparent plastic, quartz, etc. can be used.
【0040】本発明のEL素子における発光層は、従来
から用いられている各種の発光材料を公知な方法(真空
蒸着,LB法,スピンコート,キャスト法等)で成膜す
ることにより形成することができる。この発光層は、電
界印加時に正孔注入輸送層より正孔を注入することがで
き、陰極又は電子注入輸送層より電子を注入することが
できる注入機能、注入した電荷(電子と正孔)を電界の
力で移動させる輸送機能、電子と正孔の再結合の場を提
供し、これを発光につなげる発光機能の三つの機能を併
せ持つものである。The light-emitting layer in the EL device of the present invention can be formed by forming a film using various conventionally used light-emitting materials by a known method (vacuum deposition, LB method, spin coating, casting method, etc.). I can do it. This light-emitting layer has an injection function that can inject holes from the hole injection transport layer when an electric field is applied, and electrons from the cathode or electron injection transport layer. It has three functions: a transport function that moves by the force of an electric field, and a light emitting function that provides a field for recombination of electrons and holes, which leads to light emission.
【0041】但し、正孔の注入されやすさと電子の注入
されやすさに違いがあってもよく、また正孔と電子の移
動度で表わされる輸送能に大小があってもよいが、どち
らか一方の電荷を移動することが好ましい。前述の発光
材料に対しては、以上の機能を併せ持ち、固体状態で蛍
光を有するものなら各種のものを発光材料として用いる
ことができる。公知の種々のものがあるが、例えば3−
(2’−N−メチルベンゾイミダゾリル)−7−N,N
−ジエチルアミノクマリン(クマリン30)に代表され
るクマリン系(特開平2−191694号公報参照),
フタロペリノン系(J.Appln.Phys. 第2
7巻,L713(1988年)参照),ベンツオキサゾ
リル又はベンツチアゾール系(特開昭59−19439
3号公報参照),金属キレート化オキシノイド化合物(
特開昭63−295695号公報参照),スチルベン化
合物(EP031988号公報又はEP0373582
号公報参照),ジメチリディン化合物(EP03887
68号公報参照)及びペリレン系化合物等が挙げられる
。[0041] However, there may be a difference in the ease with which holes are injected and the ease with which electrons are injected, and there may also be a difference in the transport capacity expressed by the mobility of holes and electrons, but either It is preferable to move one charge. Regarding the above-mentioned light-emitting materials, various materials can be used as the light-emitting materials as long as they have both the above-mentioned functions and exhibit fluorescence in a solid state. There are various known ones, for example 3-
(2'-N-methylbenzimidazolyl)-7-N,N
- Coumarins represented by diethylaminocoumarin (Coumarin 30) (see JP-A-2-191694),
Phthaloperinone series (J. Appln. Phys. 2nd
7, L713 (1988)), benzoxazolyl or benzthiazole series (JP-A-59-19439)
3), metal chelated oxinoid compounds (see Publication No. 3), metal chelated oxinoid compounds (
JP-A-63-295695), stilbene compounds (EP031988 or EP0373582)
(see Publication No.), dimethylidine compound (EP03887)
68) and perylene compounds.
【0042】発光層の厚さも状況に応じて適宜に定める
ことができるが、通常は5nm〜5μmの範囲である。
また、陽極としては、仕事関数の大きい(4.1eV以
上)金属,合金,電気伝導性化合物及びこれらの混合物
を電極物質とするものが好ましく用いられる。このよう
な電極物質の具体例としてはAuなどの金属,CuI,
ITO,SnO2 , ZnOなどの誘電性透明材料が
挙げられる。該陽極は、これらの電極物質を蒸着やスパ
ッタリングなどの方法により、薄膜を形成させることに
より作製することができる。この電極より発光を取り出
す場合には、透過率を10%より大きくすることが望ま
しく、また、電極としてのシート抵抗は数百Ω/□以下
が好ましい。さらに膜厚は材料にもよるが、通常10n
mないし1μm,好ましくは10〜200nmの範囲で
選ばれる。なお、このEL素子においては、該陽極又は
陰極のいずれか一方が透明又は半透明であることが、発
光を透過するため、発光の取出し効率がよく好都合であ
る。[0042] The thickness of the light-emitting layer can also be appropriately determined depending on the situation, but is usually in the range of 5 nm to 5 μm. Further, as the anode, an electrode material containing a metal having a large work function (4.1 eV or more), an alloy, an electrically conductive compound, or a mixture thereof is preferably used. Specific examples of such electrode materials include metals such as Au, CuI,
Examples include dielectric transparent materials such as ITO, SnO2, and ZnO. The anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When emitting light from this electrode, it is desirable that the transmittance be greater than 10%, and the sheet resistance of the electrode is preferably several hundred Ω/□ or less. Furthermore, the film thickness depends on the material, but is usually 10nm.
m to 1 μm, preferably from 10 to 200 nm. Note that in this EL element, it is advantageous for either the anode or the cathode to be transparent or semi-transparent so that the emitted light is transmitted through the element, and the efficiency of extracting the emitted light is high.
【0043】本発明のEL素子の構成は、前記したよう
に、各種の態様があり、前記(2)又は(3)の構成の
EL素子における正孔注入層(正孔注入輸送層)は、正
孔伝達化合物からなる層であって、陽極より注入された
正孔を発光層に伝達する機能を有し、この正孔注入層を
陽極と発光層との間に介在させることにより、より低い
電界で多くの正孔が発光層に注入され、その上、発光層
に陰極又は電子注入層より注入された電子は、発光層と
正孔注入層の界面に存在する電子の障壁により、この発
光層内の界面付近に蓄積され発光効率が向上するなど、
発光性能の優れた素子となる。As described above, the structure of the EL device of the present invention has various aspects, and the hole injection layer (hole injection transport layer) in the EL device having the structure (2) or (3) above is: This layer is made of a hole transport compound and has the function of transmitting holes injected from the anode to the light emitting layer. By interposing this hole injection layer between the anode and the light emitting layer, Many holes are injected into the emissive layer by the electric field, and electrons injected into the emissive layer from the cathode or electron injection layer are suppressed by the electron barrier existing at the interface between the emissive layer and the hole injection layer. It accumulates near the interface within the layer and improves luminous efficiency, etc.
This results in an element with excellent light-emitting performance.
【0044】前記正孔注入層に用いられる正孔伝達化合
物は、電界を与えられた2個の電極間に配置されて陽極
から正孔が注入された場合、該正孔を適切に発光層へ伝
達しうる化合物であって、例えば104 〜106 V
/cmの電界印加時に、少なくとも10 −6 cm2
/V・秒の正孔移動度をもつものが好適である。この
ような正孔伝達化合物については、前記の好ましい性質
を有するものであれば特に制限はなく、従来、光導電材
料において、正孔の電荷輸送材として慣用されているも
のやEL素子の正孔注入層に使用される公知のものの中
から任意のものを選択して用いることができる。該電荷
輸送材としては、例えばトリアゾール誘導体(米国特許
第3,112,197号明細書などに記載のもの)、オ
キサジアゾール誘導体(米国特許第3,189,447
号明細書などに記載のもの)、イミダゾール誘導体(特
公昭37−16096号公報などに記載のもの)、ポリ
アリールアルカン誘導体(米国特許第3,615,40
2 号明細書,同3,820,989 号明細書,同3
,542,544 号明細書,特公昭45−555号公
報,同51−10983号公報,特開昭51−9322
4号公報,同55−17105号公報,同56−414
8号公報,同55−108667号公報,同55−15
6953号公報,同56−36656号公報などに記載
のもの)、ピラゾリン誘導体及びピラゾロン誘導体(米
国特許第3,180,729 号明細書,同4,278
,746 号明細書,特開昭55−88064号公報,
同55−88065号公報,同49−105537号公
報,同55−51086号公報,同56−80051号
公報,同56−88141号公報,同57−45545
号公報,同54−112637号公報,同55−745
46号公報などに記載のもの)、フェニレンジアミン誘
導体(米国特許第3,615,404 号明細書,特公
昭51−10105号公報,同46−3712号公報,
同47−25336号公報,特開昭54−53435号
公報,同54−110536号公報,同54−1199
25号公報などに記載のもの)、アリールアミン誘導体
(米国特許第3,567,450 号明細書,同3,1
80,703 号明細書,同3,240,597 号明
細書,同3,658,520 号明細書,同4,232
,103 号明細書,同4,175,961 号明細書
,同4,012,376号明細書,特公昭49−357
02号公報,同39−27577号公報,特開昭55−
144250号公報,同56−119132号公報,同
56−22437号公報,西独特許第1,110,51
8 号明細書などに記載のもの)、アミノ置換カルコン
誘導体(米国特許第3,526,501 号明細書など
に記載のもの)、オキサゾール誘導体(米国特許第3,
257,203 号明細書などに記載のもの)、スチリ
ルアントラセン誘導体(特開昭56−46234号公報
などに記載のもの)、フルオレノン誘導体(特開昭54
−110837号公報などに記載のもの)、ヒドラゾン
誘導体(米国特許第3,717,462 号明細書,特
開昭54−59143号公報,同55− 52063
号公報,同55−52064号公報,同55−4676
0号公報,同55−85495号公報,同57−113
50号公報,同57−148749号公報などに記載さ
れているもの)、スチルベル誘導体(特開昭61−21
0363号公報,同61−228451号公報,同61
−14642号公報,同61−72255号公報,同6
2−47646号公報,同62−36674号公報,同
62−10652号公報,同62− 30255号公
報,同60−93445号公報,同60−94462号
公報,同60−174749号公報,同60−1750
52号公報などに記載のもの)などを挙げることができ
る。[0044] When the hole transfer compound used in the hole injection layer is placed between two electrodes to which an electric field is applied and holes are injected from the anode, the hole transfer compound is used to properly transfer the holes to the light emitting layer. A compound capable of transmitting, for example 104 to 106 V
/cm when an electric field of at least 10 −6 cm2 is applied.
A material having a hole mobility of /V·sec is preferable. There are no particular limitations on such hole transport compounds as long as they have the above-mentioned preferable properties. Any material can be selected from among the known materials used for the injection layer. Examples of the charge transport material include triazole derivatives (described in U.S. Pat. No. 3,112,197, etc.), oxadiazole derivatives (U.S. Pat. No. 3,189,447), etc.
(described in Japanese Patent Publication No. 37-16096), imidazole derivatives (described in Japanese Patent Publication No. 37-16096), polyarylalkane derivatives (U.S. Pat. No. 3,615,40)
Specification No. 2, Specification No. 3,820,989, No. 3
, 542,544 specification, Japanese Patent Publication No. 45-555, Japanese Patent Publication No. 51-10983, Japanese Patent Publication No. 51-9322
Publication No. 4, Publication No. 55-17105, Publication No. 56-414
Publication No. 8, Publication No. 55-108667, Publication No. 55-15
6953, US Pat. No. 56-36656), pyrazoline derivatives and pyrazolone derivatives (US Pat. No. 3,180,729, US Pat. No. 4,278)
, 746 specification, JP-A-55-88064,
No. 55-88065, No. 49-105537, No. 55-51086, No. 56-80051, No. 56-88141, No. 57-45545
Publication No. 54-112637, Publication No. 55-745
46), phenylenediamine derivatives (U.S. Patent No. 3,615,404, Japanese Patent Publication No. 51-10105, Japanese Patent Publication No. 46-3712,
JP-A No. 47-25336, JP-A No. 54-53435, JP-A No. 54-110536, JP-A No. 54-1199
No. 25, etc.), arylamine derivatives (U.S. Pat. No. 3,567,450, No. 3, 1)
Specification No. 80,703, Specification No. 3,240,597, Specification No. 3,658,520, Specification No. 4,232
, Specification No. 103, Specification No. 4,175,961, Specification No. 4,012,376, Japanese Patent Publication No. 49-357
Publication No. 02, Publication No. 39-27577, Japanese Unexamined Patent Publication No. 1983-
No. 144250, No. 56-119132, No. 56-22437, West German Patent No. 1,110,51
8), amino-substituted chalcone derivatives (as described in U.S. Pat. No. 3,526,501, etc.), oxazole derivatives (as described in U.S. Pat. No. 3,501, etc.),
257,203, etc.), styryl anthracene derivatives (described in JP-A-56-46234, etc.), fluorenone derivatives (described in JP-A-56-46234, etc.), fluorenone derivatives (described in JP-A-56-46234, etc.),
-110837, etc.), hydrazone derivatives (U.S. Pat. No. 3,717,462, JP-A-54-59143, JP-A-55-52063)
Publication No. 55-52064, Publication No. 55-4676
Publication No. 0, Publication No. 55-85495, Publication No. 57-113
50, 57-148749, etc.), stilbel derivatives (JP-A-61-21
No. 0363, No. 61-228451, No. 61
-14642 publication, 61-72255 publication, 6
No. 2-47646, No. 62-36674, No. 62-10652, No. 62-30255, No. 60-93445, No. 60-94462, No. 60-174749, No. 60 -1750
Examples include those described in Publication No. 52, etc.).
【0045】これらの化合物を正孔伝達化合物として使
用することができるが、次に示すポリフィリン化合物(
特開昭63−295695号公報などに記載のもの)及
び芳香族第三級アミン化合物及びスチリルアミン化合物
(米国特許第4,127,412号明細書,特開昭53
−27033号公報,同54−58445号公報,同5
4−149634号公報,同54−64299号公報,
同55−79450号公報,同55−144250号公
報,同56−119132号公報,同61−29555
8号公報,同61−98353号公報,同63−295
695号公報などに記載のもの)、特に該芳香族第三級
アミン化合物を用いることが好ましい。Although these compounds can be used as hole transport compounds, the following porphyrin compounds (
those described in JP-A No. 63-295695, etc.) and aromatic tertiary amine compounds and styrylamine compounds (U.S. Pat. No. 4,127,412, JP-A-Sho 53)
-27033 publication, 54-58445 publication, 5
No. 4-149634, No. 54-64299,
No. 55-79450, No. 55-144250, No. 56-119132, No. 61-29555
Publication No. 8, Publication No. 61-98353, Publication No. 63-295
It is preferable to use the aromatic tertiary amine compound (described in Japanese Patent No. 695, etc.), especially the aromatic tertiary amine compound.
【0046】該ポリフィリン化合物の代表例としては、
ポルフィリン;1,10,15,20−テトラフェニル
−21H,23H−ポルフィリン銅(II);1,10
,15,20−テトラフェニル−21H,23H−ポル
フィリン亜鉛(II);5,10,15,20−テトラ
キス(ペンタフルオロフェニル)−21H,23H−ポ
ルフィリン;シリコンフタロシアニンオキシド;アルミ
ニウムフタロシアニンクロリド;フタロシアニン(無金
属);ジリチウムフタロシアニン;銅テトラメチルフタ
ロシアニン;銅フタロシアニン;クロムフタロシアニン
;亜鉛フタロシアニン;鉛フタロシアニン;チタニウム
フタロシアニンオキシド;マグネシウムフタロシアニン
;銅オクタメチルフタロシアニンなどが挙げられる。
また該芳香族第三級化合物及びスチリルアミン化合物の
代表例としては、N,N,N’,N’−テトラフェニル
−4,4’−ジアミノビフェニル;N,N’−ジフェニ
ル−N,N’−ジ(3−メチルフェニル)−4,4’−
ジアミノビフェニル;2,2−ビス(4−ジ−p−トリ
ルアミノフェニル)プロパン;1,1−ビス(4−ジ−
p−トリルアミノフェニル)シクロヘキサン;N,N,
N’,N’−テトラ−p−トリル−4,4’−ジアミノ
ビフェニル;1,1−ビス(4−ジ−p−トリルアミノ
フェニル)−4−フェニルシクロヘキサン;ビス(4−
ジメチルアミノ−2−メチルフェニル)フェニルメタン
;ビス(4−ジ−p−トリルアミノフェニル)フェニル
メタン;N,N’−ジフェニル−N,N’−ジ(4−メ
トキシフェニル)−4,4’−ジアミノビフェニル;N
,N,N’,N’−テトラフェニル−4,4’−ジアミ
ノジフェニルエーテル;4,4’−ビス(ジフェニルア
ミノ)クォーターフェニル;N,N,N−トリ(p−ト
リル)アミン;4−(ジ−p−トリルアミン)−4’
−〔4(ジ−p−トリルアミン)スチリル〕スチルベン
;4−N,N−ジフェニルアミノ−(2−ジフェニルビ
ニル)ベンゼン;3−メトキシ−4’−N,N−ジフェ
ニルアミノスチルベン;N−フェニルカルバゾールなど
が挙げられる。Representative examples of the porphyrin compounds include:
Porphyrin; 1,10,15,20-tetraphenyl-21H,23H-porphyrin copper(II); 1,10
, 15,20-tetraphenyl-21H,23H-porphyrin zinc (II); 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin; silicon phthalocyanine oxide; aluminum phthalocyanine chloride; metal); dilithium phthalocyanine; copper tetramethyl phthalocyanine; copper phthalocyanine; chromium phthalocyanine; zinc phthalocyanine; lead phthalocyanine; titanium phthalocyanine oxide; magnesium phthalocyanine; copper octamethyl phthalocyanine. Representative examples of the aromatic tertiary compound and styrylamine compound include N,N,N',N'-tetraphenyl-4,4'-diaminobiphenyl;N,N'-diphenyl-N,N'-di(3-methylphenyl)-4,4'-
Diaminobiphenyl;2,2-bis(4-di-p-tolylaminophenyl)propane; 1,1-bis(4-di-
p-tolylaminophenyl)cyclohexane; N, N,
N',N'-tetra-p-tolyl-4,4'-diaminobiphenyl;1,1-bis(4-di-p-tolylaminophenyl)-4-phenylcyclohexane; bis(4-
Dimethylamino-2-methylphenyl)phenylmethane; bis(4-di-p-tolylaminophenyl)phenylmethane; N,N'-diphenyl-N,N'-di(4-methoxyphenyl)-4,4'-diaminobiphenyl; N
,N,N',N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis(diphenylamino)quaterphenyl;N,N,N-tri(p-tolyl)amine; 4-( di-p-tolylamine)-4'
-[4(di-p-tolylamine)styryl]stilbene; 4-N,N-diphenylamino-(2-diphenylvinyl)benzene; 3-methoxy-4'-N,N-diphenylaminostilbene; N-phenylcarbazole Examples include.
【0047】上記EL素子における該正孔注入層は、こ
れらの正孔伝達化合物一種又は二種以上からなる一層で
構成されてもよいし、あるいは、前記層とは別種の化合
物からなる正孔注入層を積層したものであってもよい。The hole injection layer in the EL element may be composed of a single layer made of one or more of these hole transfer compounds, or may be composed of a hole injection layer made of a compound different from the above layer. It may also be one in which layers are laminated.
【0048】一方、前記(3)の構成のEL素子におけ
る電子注入層(電子注入輸送層)は、電子伝達化合物か
らなるものであって、陰極より注入された電子を発光層
に伝達する機能を有している。このような電子伝達化合
物について特に制限はなく、従来公知の化合物の中から
任意のものを選択して用いることができる。該電子伝達
化合物の好ましい例としては、On the other hand, the electron injection layer (electron injection transport layer) in the EL element having the configuration (3) is made of an electron transfer compound and has the function of transferring electrons injected from the cathode to the light emitting layer. have. There are no particular limitations on such electron transfer compounds, and any one can be selected and used from conventionally known compounds. Preferred examples of the electron transfer compound include:
【0049】[0049]
【化15】[Chemical formula 15]
【0050】などのニトロ置換フルオレノン誘導体、Nitro-substituted fluorenone derivatives such as
【
0051】[
0051
【化16】[Chemical formula 16]
【0052】などのチオピランジオキシド誘導体,Thiopyrane dioxide derivatives such as
【0
053】0
053]
【化17】[Chemical formula 17]
【0054】などのジフェニルキノン誘導体〔「ポリマ
ー・プレプリント(Polymer Preprint
秒),ジャパン」第37巻,第3号,第681ページ(
1988年)などに記載のもの〕、あるいはDiphenylquinone derivatives such as [Polymer Preprint
Second), Japan” Volume 37, No. 3, Page 681 (
(1988)], or
【0055】[0055]
【化18】[Chemical formula 18]
【0056】などの化合物〔「ジャーナル・オブ・アプ
ライド・フィジックス(J.Apply.Physic
s)」第27巻,第269頁(1988年)などに記載
のもの〕や、アントラキノジメタン誘導体(特開昭57
−149259号公報,同58−55450号公報,同
61−225151号公報,同61−233750号公
報,同63−104061号公報などに記載のもの)、
フレオレニリデンメタン誘導体(特開昭60−6965
7号公報,同61−143764号公報,同61−14
8159号公報などに記載のもの)、アントロン誘導体
(特開昭61−225151号公報,同61−2337
50号公報などに記載のもの)などを挙げることができ
る。また、ジオキサゾール誘導体である式Compounds such as [J.Apply.Physics]
s), Vol. 27, p. 269 (1988)], anthraquinodimethane derivatives (Japanese Patent Application Laid-Open No.
-149259, 58-55450, 61-225151, 61-233750, 63-104061, etc.)
Fleorenylidene methane derivative (JP-A-60-6965
Publication No. 7, Publication No. 61-143764, Publication No. 61-14
8159), anthrone derivatives (JP-A-61-225151, JP-A-61-2337)
Examples include those described in Japanese Patent No. 50, etc.). Also, the formula which is a dioxazole derivative
【0057】[0057]
【化19】[Chemical formula 19]
【0058】で表される化合物も用いることができる。
次に、本発明の薄膜電極を用いたEL素子を作製する好
適な方法の例を、各構成の素子それぞれについて説明す
る。前記の陽極/発光層/陰極からなるEL素子の作製
法について説明すると、まず適当な基板上に、所望の電
極物質、例えば陽極用物質からなる薄膜を、1μm以下
、好ましくは10〜200nmの範囲の膜厚になるよう
に、蒸着やスパッタリングなどの方法により形成させ、
陽極を作製したのち、この上に発光材料である一般式(
I)で表わされる化合物の薄膜を形成させ、発光層を設
ける。該発光材料の薄膜化の方法としては、例えばスピ
ンコート法,キャスト法,蒸着法などがあるが、均質な
膜が得られやすく、かつピンホールが生成しにくいなど
の点から、蒸着法が好ましい。該発光材料の薄膜化に、
この蒸着法を採用する場合、その蒸着条件は、使用する
発光層に用いる有機化合物の種類,分子堆積膜の目的と
する結晶構造,会合構造などにより異なるが、一般にボ
ート加熱温度50〜400℃,真空度10−5〜10−
3Pa,蒸着速度0.01〜50nm/sec ,基板
温度−50〜+300℃,膜厚5nmないし5μmの範
囲で適宜選ぶことが望ましい。次にこの発光層の形成後
、その上に前述の易電子注入性金属と有機物とからなる
薄膜を、1μm以下、好ましくは50〜200nmの範
囲の膜厚になるように形成し、陰極を設けることにより
、所望のEL素子が得られる。なお、このEL素子の作
製においては、作製順序を逆にして、陰極,発光層,陽
極の順に作製することも可能である。Compounds represented by the following can also be used. Next, an example of a suitable method for manufacturing an EL element using the thin film electrode of the present invention will be explained for each element of each structure. To explain the method for manufacturing the EL device consisting of the above-mentioned anode/emitting layer/cathode, first, a thin film of a desired electrode material, for example, an anode material, is deposited on a suitable substrate to a thickness of 1 μm or less, preferably in the range of 10 to 200 nm. Formed by a method such as vapor deposition or sputtering to have a film thickness of
After creating the anode, a luminescent material with the general formula (
A thin film of the compound represented by I) is formed to provide a light-emitting layer. Methods for making the luminescent material into a thin film include, for example, spin coating, casting, and vapor deposition, but the vapor deposition method is preferable because a homogeneous film is easily obtained and pinholes are less likely to be generated. . To make the luminescent material thinner,
When this vapor deposition method is adopted, the vapor deposition conditions vary depending on the type of organic compound used in the light-emitting layer, the intended crystal structure and association structure of the molecular deposited film, but generally the boat heating temperature is 50 to 400°C, Vacuum degree 10-5 to 10-
It is preferable to appropriately select a film thickness of 3 Pa, a deposition rate of 0.01 to 50 nm/sec, a substrate temperature of -50 to +300° C., and a film thickness of 5 nm to 5 μm. Next, after forming this light-emitting layer, a thin film made of the above-mentioned electron-injecting metal and an organic substance is formed thereon to a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a cathode is provided. In this way, a desired EL element can be obtained. Note that in manufacturing this EL element, it is also possible to reverse the manufacturing order and manufacture the cathode, the light emitting layer, and the anode in this order.
【0059】次に、陽極/正孔注入層/発光層/陰極か
らなるEL素子の作製法について説明すると、まず、陽
極を前記のEL素子の場合と同様にして形成したのち、
その上に、正孔伝達化合物からなる薄膜を蒸着法などに
より形成し、正孔注入層を設ける。この際の蒸着条件は
、前記発光材料の薄膜形成の蒸着条件に準じればよい。
次に、この正孔注入層の上に、順次発光層及び陰極を、
前記EL素子の作製の場合と同様にして設けることによ
り、所望のEL素子が得られる。なお、このEL素子の
作製においても、作製順序を逆にして、陰極,発光層,
正孔注入層,陽極の順に作製することも可能である。さ
らに、陽極/正孔注入層/発光層/電子注入層/陰極か
らなるEL素子の作製法について説明すると、まず、前
記のEL素子の作製の場合と同様にして、陽極,正孔注
入層,発光層を順次設けたのち、この発光層の上に、電
子伝達化合物からなる薄膜を蒸着法などにより形成し、
電子注入層を設け、次いでこの上に、陰極を前記EL素
子の作製の場合と同様にして設けることにより、所望の
EL素子が得られる。なお、このEL素子の作製におい
ても、作製順序を逆にして、陰極,電子注入層,発光層
,正孔注入層,陽極の順に作製してもよい。このように
して得られたEL素子に、直流電圧を印加する場合には
、陽極を+,陰極を−の極性として電圧5〜40V程度
を印加すると、発光が透明又は半透明の電極側より観測
できる。また、逆の極性で電圧を印加しても電流は流れ
ずに発光は全く生じない。さらに、交流電圧を印加する
場合には、陽極が+,陰極が−の状態になったときのみ
発光する。なお、印加する交流の波形は任意でよい。Next, a method for manufacturing an EL device consisting of an anode/hole injection layer/light emitting layer/cathode will be explained. First, the anode is formed in the same manner as in the case of the EL device described above, and then,
A hole injection layer is provided thereon by forming a thin film made of a hole transport compound by vapor deposition or the like. The vapor deposition conditions at this time may be based on the vapor deposition conditions for forming a thin film of the luminescent material. Next, on this hole injection layer, a light emitting layer and a cathode are sequentially placed.
A desired EL element can be obtained by providing it in the same manner as in the case of manufacturing the EL element. Note that in the fabrication of this EL element, the fabrication order is reversed, and the cathode, light emitting layer,
It is also possible to fabricate the hole injection layer and the anode in this order. Furthermore, to explain the method for manufacturing an EL device consisting of an anode/hole injection layer/light emitting layer/electron injection layer/cathode, first, the anode, hole injection layer, After sequentially providing the light-emitting layers, a thin film made of an electron transfer compound is formed on the light-emitting layer by a vapor deposition method, etc.
A desired EL device can be obtained by providing an electron injection layer and then providing a cathode thereon in the same manner as in the production of the EL device. Note that in the production of this EL element, the production order may be reversed and the cathode, electron injection layer, light emitting layer, hole injection layer, and anode may be produced in this order. When applying a DC voltage to the EL element obtained in this way, when applying a voltage of about 5 to 40 V with the anode as + and the cathode as -, light emission can be observed from the transparent or translucent electrode side. can. Furthermore, even if a voltage with the opposite polarity is applied, no current flows and no light is emitted at all. Furthermore, when applying an alternating voltage, light is emitted only when the anode is in a positive state and the cathode is in a negative state. Note that the waveform of the applied alternating current may be arbitrary.
【0060】以上説明したように、本発明の薄膜電極は
、均一性,緻密度が高まり、体積抵抗率を大幅に低減す
ることが可能となり、下地となる有機膜やガラスへの付
着性が向上するとともに、蒸着法により容易に製膜でき
、さらに製膜する際にも有機膜に損傷を与えることがな
い。特にEL素子用の陰極として用いることにより、そ
の発光効率を高め、発光の均一性を与えることができ、
低電圧で高輝度、高効率のEL発光が得られる。したが
って、本発明の薄膜電極を用いたEL素子は、各種表示
装置の発光材料として、有効な利用が期待される。As explained above, the thin film electrode of the present invention has increased uniformity and density, can significantly reduce volume resistivity, and has improved adhesion to the underlying organic film and glass. In addition, it can be easily formed into a film by a vapor deposition method, and furthermore, the organic film is not damaged during film formation. In particular, by using it as a cathode for an EL element, it can increase its luminous efficiency and provide uniformity of luminescence.
High brightness and high efficiency EL light emission can be obtained at low voltage. Therefore, the EL element using the thin film electrode of the present invention is expected to be effectively used as a light emitting material for various display devices.
【0061】[0061]
【実施例】次に本発明を実施例及び比較例に基いてさら
に詳しく説明する。EXAMPLES Next, the present invention will be explained in more detail based on Examples and Comparative Examples.
【0062】実施例1
白板ガラスをイソプロピルアルコールを用いて30分間
超音波洗浄し、イソプロピルアルコールに浸した後取出
し、乾燥窒素ガスにてブロー乾燥した。これを基板とし
て、日本真空技術( 株)製蒸着装置の基板ホルダーに
取付けた。また、モリブデン製の抵抗加熱ボートに、希
塩酸で洗浄したMg リボンを入れ、この抵抗加熱ボー
トを蒸着装置の端子に取付けた。また別のモリブデン製
の抵抗加熱ボートに前述のTNFを200mg入れて別
の端子に取付けた。そして、真空槽を6×10−6To
rrまで排気し、まずTNFの入っているボートに通電
し、これを加熱して0.1nm/秒の蒸着速度にした。
次にMg の入っている抵抗加熱ボートを加熱し、1〜
1.5nm/秒の蒸着速度になるようにした。この後、
基板を覆っていたシャッターを開いて蒸着を開始し、補
正した水晶振動子により膜厚が120nmになるまで蒸
着した。真空槽を大気圧に戻し、Mg:TNFからなる
薄膜を取出した。
均一な鏡面であることを確認した後、4端子法により面
抵抗値の測定を行った結果、0.85Ω/□の極めて優
れた値を得た。また触針式膜厚計により測定点付近の膜
厚は130nmであることがわかった。これより得た体
積抵抗率は、1.1×10−5Ω・cmであり、TNF
が核になり均一,緻密な薄膜を作製することができた。
なお、「化学便覧」第3版;基礎編II,丸善,昭和5
9年によれば、Mg多結晶体で得られる体積抵抗率は、
4.45×10−6Ω・cmである。したがって、この
実施例で得た金属薄膜は、これに比べ約2倍の良好な値
を保有している。また、EP0278757号に記載さ
れたMg:Ag膜における面抵抗値は、3.36Ω/□
(100nm換算)である。Example 1 A white plate glass was ultrasonically cleaned using isopropyl alcohol for 30 minutes, immersed in isopropyl alcohol, taken out, and blown dry with dry nitrogen gas. This was used as a substrate and attached to the substrate holder of a vapor deposition apparatus manufactured by Japan Vacuum Technology Co., Ltd. Further, an Mg ribbon cleaned with dilute hydrochloric acid was placed in a resistance heating boat made of molybdenum, and this resistance heating boat was attached to a terminal of a vapor deposition apparatus. In addition, 200 mg of the above-mentioned TNF was placed in another resistance heating boat made of molybdenum and attached to another terminal. Then, the vacuum chamber was set to 6×10-6To
After evacuation to rr, the boat containing TNF was first energized and heated to a deposition rate of 0.1 nm/sec. Next, heat the resistance heating boat containing Mg, and
The deposition rate was set to 1.5 nm/sec. After this,
Vapor deposition was started by opening the shutter covering the substrate, and the film was deposited using a corrected crystal oscillator until the film thickness reached 120 nm. The vacuum chamber was returned to atmospheric pressure and a thin film made of Mg:TNF was taken out. After confirming that the mirror surface was uniform, the sheet resistance value was measured by the four-probe method, and as a result, an extremely excellent value of 0.85Ω/□ was obtained. Further, the film thickness near the measurement point was found to be 130 nm using a stylus type film thickness meter. The volume resistivity obtained from this is 1.1 x 10-5 Ωcm, and TNF
As a core, we were able to create a uniform, dense thin film. In addition, "Chemistry Handbook" 3rd edition; Basic Edition II, Maruzen, 1932.
According to 1999, the volume resistivity obtained from Mg polycrystals is
It is 4.45×10 −6 Ω·cm. Therefore, the metal thin film obtained in this example has a value about twice as good as this. Also, the sheet resistance value of the Mg:Ag film described in EP0278757 is 3.36Ω/□
(100 nm conversion).
【0063】比較例1
TNFの入ったボートに通電を行わなかった以外は実施
例1と同様にして、Mg単独の蒸着を行った。得られた
Mg薄膜は黒灰色であり、面抵抗値は1kΩ/□以上で
あった。Mg単独では、ガラス上に付着しにくく、また
均一な薄膜が生成できにくいことを示している。Comparative Example 1 Mg alone was evaporated in the same manner as in Example 1, except that the boat containing TNF was not energized. The obtained Mg thin film was blackish gray in color and had a sheet resistance value of 1 kΩ/□ or more. This indicates that Mg alone is difficult to adhere to glass and is difficult to form a uniform thin film.
【0064】実施例2〜10
有機物の種類(アクセプター性化合物及び錯体形成性化
合物)およびMg/有機物の蒸着レート比、膜厚を第1
表に示す条件としたこと以外は実施例1と同様にしてM
g:有機物からなる薄膜を作製した。この結果を第1表
に示す。Examples 2 to 10 The type of organic substance (acceptor compound and complex-forming compound), the vapor deposition rate ratio of Mg/organic substance, and the film thickness were
M
g: A thin film made of an organic substance was produced. The results are shown in Table 1.
【0065】[0065]
【表1】[Table 1]
【0066】[0066]
【表2】[Table 2]
【0067】第1表に示すように、各種のアクセプター
性化合物及び錯体形成性の有機化合物を用いてMg:有
機物からなる優れた電極用薄膜を得ることができた。As shown in Table 1, excellent thin films for electrodes made of Mg:organic substance could be obtained using various acceptor compounds and complex-forming organic compounds.
【0068】実施例11
有機物を前述のTCNQとし、膜厚を18〜19nmと
したこと以外は実施例1と同様にしてMg:有機物から
なる薄膜を作製した。その結果、膜厚が極度に薄いにも
かかわらず面抵抗値は4.3Ω/□であり極めて低く、
優れた値を示した。これより換算した体積抵抗率は、7
.9×10−6Ω・cmであり、極度に薄い膜厚におい
ても良好な値を得られた。これは得られた薄膜が均一か
つ緻密であることを示している。なお、通常、よく知ら
れているように、蒸着膜においては、膜厚が薄い場合に
は島状構造となりやすい等の理由で体積抵抗率がバルク
の値とは著しく異なり大きい場合が多い(例えば金原著
「薄膜」第4版、裳華房出版,p166〜175参照)
。Example 11 A thin film consisting of Mg:organic material was prepared in the same manner as in Example 1 except that the above-mentioned TCNQ was used as the organic material and the film thickness was 18 to 19 nm. As a result, despite the extremely thin film thickness, the sheet resistance was extremely low at 4.3Ω/□.
It showed excellent value. The volume resistivity converted from this is 7
.. It was 9×10 −6 Ω·cm, and a good value was obtained even with an extremely thin film thickness. This indicates that the obtained thin film is uniform and dense. As is well known, the volume resistivity of vapor deposited films is often significantly different from the bulk value (for example, because thin films tend to form island-like structures). (See “Thin Film” by Kanehara, 4th edition, Shokabo Publishing, p.166-175)
.
【0069】実施例12〜14
有機物をTCNQ、金属を第2表に示すようにYb,Z
n,Inとしたこと以外は実施例1と同様にして易電子
注入性金属:有機物からなる薄膜を作製した。結果を第
2表に示す。なお、Yb,Zn,Inの体積抵抗率は前
記「化学便覧」よれば、それぞれ、2.9×10−6,
8.92×10−6,8.37×10−6Ω・cmであ
る。Examples 12 to 14 The organic substance was TCNQ, and the metal was Yb, Z as shown in Table 2.
A thin film made of an electron-injecting metal/organic substance was prepared in the same manner as in Example 1 except that n and In were used. The results are shown in Table 2. According to the above-mentioned "Chemical Handbook," the volume resistivity of Yb, Zn, and In is 2.9 x 10-6, respectively.
They are 8.92×10 −6 and 8.37×10 −6 Ω·cm.
【0070】[0070]
【表3】[Table 3]
【0071】実施例15
ITO付白板ガラス(HOYA社製)をイソプロピルア
ルコールにて超音波洗浄を30分間行った後、純水にて
超音波洗浄を1分行い、さらにイソプロピルアルコール
に浸漬し、これより取出し乾燥N2 にてブロー乾燥し
た。さらに(株)サムコインターナショナル製UV,オ
ゾン洗浄装置にてこの基板を120秒間洗浄した。この
基板を日本真空技術社製の真空蒸着装置の基板ホルダー
に取付けた。また、Mo製抵抗加熱ボートにTPD(下
記構造式の化合物)Example 15 A white plate glass with ITO (manufactured by HOYA) was ultrasonically cleaned with isopropyl alcohol for 30 minutes, then ultrasonically cleaned with pure water for 1 minute, and further immersed in isopropyl alcohol. It was taken out and blown dry with N2. Furthermore, this substrate was cleaned for 120 seconds using a UV and ozone cleaning device manufactured by Samco International Co., Ltd. This substrate was attached to a substrate holder of a vacuum evaporation device manufactured by Nippon Vacuum Technology Co., Ltd. In addition, TPD (a compound with the structural formula below) is added to the Mo resistance heating boat.
【0072】[0072]
【化20】[C20]
【0073】を200mg入れ、これを通電用端子に取
付けた。さらに別のMo製ボートにAl(Ox)3 (
下記構造式の化合物)200 mg of [0073] was added and attached to the current terminal. Furthermore, another Mo boat has Al(Ox)3 (
Compounds with the following structural formula)
【0074】[0074]
【化21】[C21]
【0075】を200mg入れこれを別の通電用端子に
取付けた。真空槽を10−5Torrまで排気し、上記
TPDの入ったMo製ボートに通電し、0.1〜0.3
nm/秒の蒸着速度で600Åの膜厚になるまで蒸着し
た。 次にAl(Ox)3 の入ったボートに通電し
、これを0.1〜0.3nm/秒の蒸着速度で600Å
の膜厚になるまで蒸着した。次に真空槽を大気下に戻し
、基板/TPD槽/Al(Ox)3 層の上にステンレ
ス製蒸着マスクを取付けさらに前記基板ホルダーに取付
けた。また、Mo製抵抗加熱ボートに希塩酸処理して表
面を清浄化したMgを入れ、さらに別のMo製抵抗加熱
ボートにPTDI(下記構造式の化合物)200 mg of [0075] was put in and attached to another current-carrying terminal. The vacuum chamber was evacuated to 10-5 Torr, and the Mo boat containing the TPD was energized to a temperature of 0.1 to 0.3 Torr.
The film was deposited to a film thickness of 600 Å at a deposition rate of nm/sec. Next, electricity was applied to the boat containing Al(Ox)3, which was deposited at a deposition rate of 0.1 to 0.3 nm/sec to a thickness of 600 Å.
The film was deposited to a film thickness of . Next, the vacuum chamber was returned to the atmosphere, and a stainless steel vapor deposition mask was attached on the substrate/TPD bath/Al(Ox) layer, and further attached to the substrate holder. In addition, Mg whose surface was cleaned by dilute hydrochloric acid treatment was placed in a Mo resistance heating boat, and PTDI (a compound with the following structural formula) was placed in another Mo resistance heating boat.
【0076】[0076]
【化22】[C22]
【0077】を200mg入れ、これらボートをそれぞ
れ通電用端子に取付けた。真空槽を10−5Torrま
で排気した後、前記端子に通電し、Mgの蒸着速度が1
.3〜1.4nm/秒、PTDIの蒸着速度が0.1〜
0.3nm/秒になるように調節し、Mg:PTDIか
らなる電極薄膜が100nmになるまで2元同時蒸着蒸
着を行い、再び真空槽を大気下に戻し、ガラス/ITO
/TPD層/Al(Ox)3 /Mg:有機物よりなる
EL素子を作製した。この素子のITOを正極,Mg:
PTDIからなる電極を負極にし、6Vを印加した結果
、電流が7.3mA/cm2 流れ、輝度330cd/
m2 の黄緑色発光を得た。このときの発光効率は2.
4ルーメン/ワット(lm/W)であった。さらに電圧
を8Vまで増加したところ、電流が37mA/cm2
流れ、1570cd/m2 の輝度を得た(発光効率1
.7(lm/W))。200 mg of [0077] was added, and each of these boats was attached to a current terminal. After evacuating the vacuum chamber to 10-5 Torr, the terminal is energized and the Mg deposition rate is 1.
.. 3-1.4 nm/sec, PTDI deposition rate 0.1-1.
The rate was adjusted to 0.3 nm/sec, and binary simultaneous evaporation was performed until the electrode thin film consisting of Mg:PTDI reached a thickness of 100 nm, and the vacuum chamber was returned to the atmosphere and the glass/ITO
/TPD layer/Al(Ox)3/Mg: An EL element made of an organic substance was produced. The ITO of this element is the positive electrode, Mg:
As a result of applying 6V to an electrode made of PTDI as a negative electrode, a current of 7.3mA/cm2 flows and a brightness of 330cd/
A yellow-green luminescence of m2 was obtained. The luminous efficiency at this time is 2.
It was 4 lumens/watt (lm/W). When the voltage was further increased to 8V, the current was 37mA/cm2.
brightness of 1570 cd/m2 (luminous efficiency 1
.. 7 (lm/W)).
【0078】比較例2
実施例15と同様にして基板/ITO層/Al(Ox)
3 層を作製した後、Mg:PTDIからなる電極に代
えてMg:Ag電極を作製した。蒸着速度は、Mgが1
.2〜1.4nm/秒、Agが0.09〜0.11nm
/秒であり、膜厚は100nmであった。実施例13と
同様にして通電試験を行った結果、6Vを印加したとき
に15.7mA/cm2 の電流が流れ、輝度324c
d/m2 を得た。発光効率は 1.1(lm/W)
であった。Comparative Example 2 Similar to Example 15, substrate/ITO layer/Al(Ox)
After producing the three layers, an Mg:Ag electrode was produced in place of the Mg:PTDI electrode. The deposition rate is Mg 1
.. 2-1.4 nm/sec, Ag 0.09-0.11 nm
/second, and the film thickness was 100 nm. As a result of conducting a current test in the same manner as in Example 13, when 6V was applied, a current of 15.7mA/cm2 flowed, and the brightness was 324c.
d/m2 was obtained. Luminous efficiency is 1.1 (lm/W)
Met.
【0079】実施例16
有機物がオキシン3配位のアルミニウム錯体であるAl
(Ox)3 であり、Mgと有機物の蒸着レートがそれ
ぞれ2nm/秒,0.1〜0.3nm/秒であり、膜厚
が100nmであること以外は、実施例1と同様にMg
:有機物からなる陰極薄膜を作成した。得られた薄膜の
面抵抗値は2Ω/□であった。Example 16 Al in which the organic substance is an aluminum complex with three oxine coordinations
(Ox)3, the Mg and organic matter deposition rates were 2 nm/sec and 0.1 to 0.3 nm/sec, respectively, and the Mg
: A cathode thin film made of organic matter was created. The sheet resistance value of the obtained thin film was 2Ω/□.
【0080】実施例17
有機物がシアン置換されたスチルベン誘導体(下記構造
式の化合物)Example 17 Stilbene derivative in which the organic substance was substituted with cyanogen (compound with the following structural formula)
【0081】[0081]
【化23】[C23]
【0082】であり、Mgと有機物の蒸着レートがそれ
ぞれ1〜2nm/秒,0.1〜0.3nm/秒であり、
膜厚が120nmであること以外は、実施例16と同様
にMg:有機物からなる陰極薄膜を作成した。得られた
薄膜の面抵抗値は1.0Ω/□であった。##STR2## and the vapor deposition rates of Mg and organic matter are 1 to 2 nm/sec and 0.1 to 0.3 nm/sec, respectively,
A cathode thin film made of Mg:organic material was created in the same manner as in Example 16, except that the film thickness was 120 nm. The sheet resistance value of the obtained thin film was 1.0Ω/□.
【0083】実施例18
Mo製抵抗加熱ボートに銅フタロシアニン(CuPc)
,TPD及びDPVBi(下記構造式の化合物)Example 18 Copper phthalocyanine (CuPc) on Mo resistance heating boat
, TPD and DPVBi (compounds with the following structural formula)
【00
84】00
84]
【化24】[C24]
【0085】をそれぞれ200mg入れ、真空槽を10
−3Paまで排気し、CuPc,TPD及びDPVBi
の各槽がそれぞれ20nm,40nm,40nmの膜厚
になるまで蒸着した。次に、有機物としてAl(Ox)
3 を用い、Mg:有機物からなる陰極薄膜を作製した
。ここで、MgとAl(Ox)3 の蒸着レートは、そ
れぞれ1.0〜2.0nm/秒,0.1〜0.3nm/
秒であった。この素子のITOを正極,Mg:Al(O
x)3 からなる電極を負極にし、10Vを印加した結
果、電流が6.7mA/cm2 流れ、輝度230cd
/m2 の青色発光を得た。このときの発光効率は1.
1(lm/W)であった。
さらに電圧を15Vまで増加したところ、電流が93m
A/cm2 流れ、2040cd/m2 の輝度を得た
。Put 200 mg of each of [0085] into the vacuum chamber for 10
-3Pa, CuPc, TPD and DPVBi
Vapor deposition was carried out until each tank had a film thickness of 20 nm, 40 nm, and 40 nm, respectively. Next, Al(Ox) as an organic substance
A cathode thin film made of Mg:organic substance was prepared using Here, the vapor deposition rates of Mg and Al(Ox)3 are 1.0 to 2.0 nm/sec and 0.1 to 0.3 nm/sec, respectively.
It was seconds. ITO of this element is used as the positive electrode, Mg:Al(O
x) As a result of applying 10V to an electrode consisting of 3 as a negative electrode, a current of 6.7mA/cm2 flows and a brightness of 230cd.
/m2 blue luminescence was obtained. The luminous efficiency at this time is 1.
1 (lm/W). When the voltage was further increased to 15V, the current was 93m
A current of A/cm2 was obtained, and a brightness of 2040 cd/m2 was obtained.
【0086】比較例3
陰極を比較例2と同様にしてMg:Ag陰極としたこと
以外は、実施例15と同様にして陰極薄膜を作成した。
この素子のITOを正極,Mg:Agからなる電極を負
極にし、15Vを印加した結果、電流が231mA/c
m2 流れ、輝度1100cd/m2 の青色発光を得
た。このときの発光効率は0.1(lm/W)であった
。この時、発光は著しく不均一であった。これは、Mg
:Ag陰極がDPVBi層上には不均一に付着すること
を示している。上記において、実施例15と比較例2を
比べれば判るように、Mg:PTDIの電極を用いた素
子は発光効率が大幅に改善されている。また、実施例1
8と比較例3を比べれば判るように、Mg:PTDIの
陰極は有機層への付着製を著しく改善し、発光の均一性
と発光効率の向上を与えることができた。Comparative Example 3 A cathode thin film was prepared in the same manner as in Example 15, except that the cathode was made of Mg:Ag in the same manner as in Comparative Example 2. As a result of applying 15V to this device, with ITO as the positive electrode and the Mg:Ag electrode as the negative electrode, the current was 231mA/c.
m2 flow and blue luminescence with a brightness of 1100 cd/m2 was obtained. The luminous efficiency at this time was 0.1 (lm/W). At this time, the light emission was significantly non-uniform. This is Mg
: Indicates that the Ag cathode is non-uniformly deposited on the DPVBi layer. In the above, as can be seen by comparing Example 15 and Comparative Example 2, the luminous efficiency of the device using the Mg:PTDI electrode is significantly improved. In addition, Example 1
As can be seen by comparing Comparative Example 8 and Comparative Example 3, the Mg:PTDI cathode significantly improved the adhesion to the organic layer and was able to provide uniformity of light emission and improved luminous efficiency.
【0087】[0087]
【発明の効果】以上説明したように、本発明の薄膜電極
は、均一性,緻密度が高まり、体積抵抗率を大幅に低減
することが可能となり、下地となる有機膜やガラスへの
付着性が向上するとともに、蒸着法により容易に製膜で
き、さらに製膜する際にも有機膜に損傷を与えることが
ない。特にEL素子用の陰極として用いることにより、
その発光効率を高め、発光の均一性を与えることができ
、低電圧で高輝度、高効率のEL発光が得られる。した
がって、本発明の薄膜電極を用いたEL素子は、各種表
示装置の発光材料として、有効な利用が期待される。[Effects of the Invention] As explained above, the thin film electrode of the present invention has improved uniformity and density, can significantly reduce volume resistivity, and has good adhesion to underlying organic films and glass. In addition, the film can be easily formed by a vapor deposition method, and the organic film is not damaged during film formation. In particular, by using it as a cathode for EL elements,
The luminous efficiency can be increased and uniformity of luminescence can be provided, and high-luminance, high-efficiency EL luminescence can be obtained at low voltage. Therefore, the EL element using the thin film electrode of the present invention is expected to be effectively used as a light emitting material for various display devices.
Claims (8)
ことを特徴とする素子用薄膜電極。1. A thin film electrode for an element, comprising an electron-injecting metal and an organic substance.
ンス素子用薄膜電極である請求項1記載の素子用薄膜電
極。2. The thin film electrode for an element according to claim 1, wherein the thin film electrode is a thin film electrode for an organic electroluminescent element.
は結合する性質を有するものである請求項1記載の素子
用薄膜電極。3. The thin film electrode for an element according to claim 1, wherein the organic substance has a property of adhering to or bonding to a metal capable of injecting electrons.
ある請求項1記載の素子用薄膜電極。4. The thin film electrode for an element according to claim 1, wherein the organic substance is an acceptor compound.
成性を有するものである請求項1記載の素子用薄膜電極
。5. The thin film electrode for an element according to claim 1, wherein the organic substance has the ability to form a complex with a metal capable of injecting electrons.
することを特徴とする素子用薄膜電極の製造方法。6. A method for manufacturing a thin film electrode for an element, comprising co-evaporating an electron-injecting metal and an organic substance.
子用薄膜電極を、陰極として用いたことを特徴とするエ
レクトロルミネッセンス素子。7. An electroluminescent device characterized in that the thin film electrode for device according to any one of claims 1 to 5 is used as a cathode.
して陰極を形成することを特徴とするエレクトロルミネ
ッセンス素子の製造方法。8. A method for manufacturing an electroluminescent device, comprising forming a cathode by co-evaporating an electron-injecting metal and an organic substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3125908A JP2846503B2 (en) | 1990-06-14 | 1991-05-29 | Device thin film electrode, electroluminescent device having the same, and methods of manufacturing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15405990 | 1990-06-14 | ||
JP2-154059 | 1990-06-14 | ||
JP3125908A JP2846503B2 (en) | 1990-06-14 | 1991-05-29 | Device thin film electrode, electroluminescent device having the same, and methods of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04230997A true JPH04230997A (en) | 1992-08-19 |
JP2846503B2 JP2846503B2 (en) | 1999-01-13 |
Family
ID=26462207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3125908A Expired - Fee Related JP2846503B2 (en) | 1990-06-14 | 1991-05-29 | Device thin film electrode, electroluminescent device having the same, and methods of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2846503B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5747930A (en) * | 1994-05-17 | 1998-05-05 | Nec Corporation | Organic thin film electroluminescent device |
JPH10149884A (en) * | 1996-11-19 | 1998-06-02 | Nec Corp | Electrode for light emitting element, manufacture thereof, and manufacture of element having this electrode |
JPH10270172A (en) * | 1997-01-27 | 1998-10-09 | Junji Kido | Organic electroluminescent element |
JPH11233263A (en) * | 1997-11-17 | 1999-08-27 | Lg Electronics Inc | Organic el element |
JP2000091078A (en) * | 1998-09-09 | 2000-03-31 | Minolta Co Ltd | Organic electroluminescence element |
JP2000143569A (en) * | 1998-11-12 | 2000-05-23 | Samsung Sdi Co Ltd | Luminescent compound and display element adopting the compound as color-developing material |
WO2001058222A1 (en) * | 2000-02-02 | 2001-08-09 | Mitsubishi Chemical Corporation | Organic electroluminescent element and method of manufacture thereof |
JP2001267082A (en) * | 2000-01-13 | 2001-09-28 | Matsushita Electric Ind Co Ltd | Electrode body and thin film el element equipped with it, and its manufacturing method, and display device and lighting equipment equipped with thin film el element |
US6849346B2 (en) | 2000-01-13 | 2005-02-01 | Matsushita Electric Industrial Co., Ltd. | Electrode and thin film EL device including the same and methods of fabricating the same and display device and lighting system including the thin film EL device |
WO2005020643A1 (en) * | 2003-08-25 | 2005-03-03 | Semiconductor Energy Laboratory Co., Ltd. | Electrode for organic device and electronic device employing same |
WO2005027587A1 (en) * | 2003-08-25 | 2005-03-24 | Semiconductor Energy Laboratory Co., Ltd. | Electrode for organic device, electronic device using electrode for organic device, and method for forming electrode for organic device |
JP2005167175A (en) * | 2003-12-04 | 2005-06-23 | Novaled Gmbh | Method for doping organic semiconductor with quinone diimine derivative |
JP2006164937A (en) * | 2004-12-03 | 2006-06-22 | Samsung Sdi Co Ltd | Organic electroluminescent element and method of manufacturing the same |
JP2006332048A (en) * | 2005-05-20 | 2006-12-07 | Lg Phillips Lcd Co Ltd | Intermediate electrode for stacked oled |
JP2007073500A (en) * | 2005-08-11 | 2007-03-22 | Semiconductor Energy Lab Co Ltd | Light emitting element, light emitting device and electronic device |
WO2007058172A1 (en) * | 2005-11-17 | 2007-05-24 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2007116750A1 (en) * | 2006-03-30 | 2007-10-18 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent device and organic electroluminescent device using the same |
WO2007123061A1 (en) | 2006-04-20 | 2007-11-01 | Idemitsu Kosan Co., Ltd. | Organic light-emitting device |
US7388223B2 (en) | 2003-05-28 | 2008-06-17 | Samsung Sdi Co., Ltd. | Flat panel display device and method of fabricating the same |
JP2010016413A (en) * | 1997-01-27 | 2010-01-21 | Junji Kido | Organic electroluminescent element |
-
1991
- 1991-05-29 JP JP3125908A patent/JP2846503B2/en not_active Expired - Fee Related
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5747930A (en) * | 1994-05-17 | 1998-05-05 | Nec Corporation | Organic thin film electroluminescent device |
JPH10149884A (en) * | 1996-11-19 | 1998-06-02 | Nec Corp | Electrode for light emitting element, manufacture thereof, and manufacture of element having this electrode |
JPH10270172A (en) * | 1997-01-27 | 1998-10-09 | Junji Kido | Organic electroluminescent element |
JP2010016413A (en) * | 1997-01-27 | 2010-01-21 | Junji Kido | Organic electroluminescent element |
JPH11233263A (en) * | 1997-11-17 | 1999-08-27 | Lg Electronics Inc | Organic el element |
JP2000091078A (en) * | 1998-09-09 | 2000-03-31 | Minolta Co Ltd | Organic electroluminescence element |
JP2000143569A (en) * | 1998-11-12 | 2000-05-23 | Samsung Sdi Co Ltd | Luminescent compound and display element adopting the compound as color-developing material |
US6849346B2 (en) | 2000-01-13 | 2005-02-01 | Matsushita Electric Industrial Co., Ltd. | Electrode and thin film EL device including the same and methods of fabricating the same and display device and lighting system including the thin film EL device |
JP2001267082A (en) * | 2000-01-13 | 2001-09-28 | Matsushita Electric Ind Co Ltd | Electrode body and thin film el element equipped with it, and its manufacturing method, and display device and lighting equipment equipped with thin film el element |
US6534202B2 (en) | 2000-02-02 | 2003-03-18 | Mitsubishi Chemical Corporation | Organic electroluminescent device and process for producing the same |
WO2001058222A1 (en) * | 2000-02-02 | 2001-08-09 | Mitsubishi Chemical Corporation | Organic electroluminescent element and method of manufacture thereof |
US7388223B2 (en) | 2003-05-28 | 2008-06-17 | Samsung Sdi Co., Ltd. | Flat panel display device and method of fabricating the same |
WO2005020643A1 (en) * | 2003-08-25 | 2005-03-03 | Semiconductor Energy Laboratory Co., Ltd. | Electrode for organic device and electronic device employing same |
WO2005027587A1 (en) * | 2003-08-25 | 2005-03-24 | Semiconductor Energy Laboratory Co., Ltd. | Electrode for organic device, electronic device using electrode for organic device, and method for forming electrode for organic device |
US7504049B2 (en) | 2003-08-25 | 2009-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Electrode device for organic device, electronic device having electrode device for organic device, and method of forming electrode device for organic device |
JP2005167175A (en) * | 2003-12-04 | 2005-06-23 | Novaled Gmbh | Method for doping organic semiconductor with quinone diimine derivative |
JP2010021554A (en) * | 2003-12-04 | 2010-01-28 | Novaled Ag | Use of organic mesomeric compound, organic semiconductor material, and electronic component |
EP1596445B2 (en) † | 2003-12-04 | 2015-09-30 | Novaled AG | Process for doping organic semiconductors with derivatives of diiminoquinones |
JP2006164937A (en) * | 2004-12-03 | 2006-06-22 | Samsung Sdi Co Ltd | Organic electroluminescent element and method of manufacturing the same |
US8569945B2 (en) | 2004-12-03 | 2013-10-29 | Samsung Display Co., Ltd. | Organic light emitting device having cathode including a magnesium-calcium layer and method for fabricating the same |
JP2006332048A (en) * | 2005-05-20 | 2006-12-07 | Lg Phillips Lcd Co Ltd | Intermediate electrode for stacked oled |
JP4711424B2 (en) * | 2005-05-20 | 2011-06-29 | エルジー ディスプレイ カンパニー リミテッド | Intermediate electrode for stacked OLED |
JP2007073500A (en) * | 2005-08-11 | 2007-03-22 | Semiconductor Energy Lab Co Ltd | Light emitting element, light emitting device and electronic device |
WO2007058172A1 (en) * | 2005-11-17 | 2007-05-24 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2007116750A1 (en) * | 2006-03-30 | 2007-10-18 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent device and organic electroluminescent device using the same |
WO2007123061A1 (en) | 2006-04-20 | 2007-11-01 | Idemitsu Kosan Co., Ltd. | Organic light-emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP2846503B2 (en) | 1999-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2651233B2 (en) | Thin-film organic EL device | |
JP2651237B2 (en) | Thin-film electroluminescence device | |
JP2846571B2 (en) | Organic electroluminescence device | |
EP0461542B1 (en) | Thin film electrode for devices and electroluminescence device therewith and process for production thereof | |
JP2793383B2 (en) | Organic electroluminescence device | |
JP3366401B2 (en) | White organic electroluminescence device | |
US7745017B2 (en) | Organic electroluminescent device and method for producing the same | |
JP2846503B2 (en) | Device thin film electrode, electroluminescent device having the same, and methods of manufacturing the same | |
JPH02247278A (en) | Electroluminescence element | |
JPH03274693A (en) | Organic thin film electroluminescence (el) element and manufacture thereof | |
JP2838063B2 (en) | Organic electroluminescence device | |
WO2005099313A1 (en) | Organic electroluminescence element having two electroluminescent layers through electron barrier layer | |
JPH05159882A (en) | Manufacture of electron injectable electrode and manufacture of organic electroluminescence element therewith | |
JPH0517765A (en) | Organic electroluminescence element | |
JPH0726255A (en) | Organic el element | |
JPH07147189A (en) | Organic electroluminescent element | |
JPH02252793A (en) | Organic electroluminescent element | |
JPH0377299A (en) | Organic electroluminescense element | |
WO1994003032A1 (en) | Organic el device | |
JP3045799B2 (en) | Organic electroluminescence device | |
JPH06298758A (en) | Coumarin derivative | |
JP2809473B2 (en) | Organic electroluminescence device | |
JP3983405B2 (en) | Organic electroluminescence device and method for manufacturing the same | |
JPH06313168A (en) | Organic electroluminescent element | |
JP2774654B2 (en) | Organic electroluminescence device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081030 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081030 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091030 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101030 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |