JPH04229999A - Exposure of sor beam - Google Patents

Exposure of sor beam

Info

Publication number
JPH04229999A
JPH04229999A JP41501890A JP41501890A JPH04229999A JP H04229999 A JPH04229999 A JP H04229999A JP 41501890 A JP41501890 A JP 41501890A JP 41501890 A JP41501890 A JP 41501890A JP H04229999 A JPH04229999 A JP H04229999A
Authority
JP
Japan
Prior art keywords
sor
exposure
electron beam
superconducting
wiggler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41501890A
Other languages
Japanese (ja)
Inventor
Shinichi Bandai
萬代 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP41501890A priority Critical patent/JPH04229999A/en
Publication of JPH04229999A publication Critical patent/JPH04229999A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure a necessary exposure surface in the vertical direction in exposure using an SOR beam unit by deflecting an SOR beam vertically. CONSTITUTION:A superconductive wiggler 35 having magnetic poles facing each other with a linear part 31 of a storage ring 22 between them is disposed on the outer side of the linear part 31, so an electron beam 11 in the storage ring 22 is let to meander vertically. An SOR beam is thus sent from a turning position of each meander of the electron beam to be guided through a beam taking line 26 to an exposure device. At this time, an excitation quantity controlling device 52 changes an excitation quantity of the superconductive wiggler 35 by time. An amplitude of the meander of the electron beam 11 is thus changed, and the SOR beam is deflected vertically, thereby a necessary exposure surface in the vertical direction can be secured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、SOR光(シンクロ
トロン放射光)を用いた露光方法に関し、SOR光を超
電導ウィグラーを用いて垂直方向に振って露光を行なう
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure method using SOR light (synchrotron radiation), in which exposure is performed by swinging the SOR light in the vertical direction using a superconducting wiggler.

【0002】0002

【従来の技術】SOR光は、シンクロトロンにおいて蓄
積リングを周回している電子ビームの偏向位置から放射
されるX線等の強力な光線であり、超LSI製造過程に
おける露光用光源等への適用が期待されている。SOR
光を用いた露光は、一般にシンクロトロンの電子ビーム
偏向位置からその接線方向に分岐された光取り出しライ
ンにSOR光を導いて、この光取り出しラインの端部に
設けられた窓から出射させて、LSI露光用マスクの基
板を通して半導体ウェハに照射することにより行なわれ
る。この場合、SOR光は水平方向の幅は広いが、垂直
方向の幅は狭いので、SOR光を垂直方向に振ることに
より、垂直方向の露光面積を確保しなければならない。 SOR光を垂直方向に振る方法として、従来はミラー揺
動法、電子ビーム振動法があった。
[Prior Art] SOR light is a powerful light beam such as X-rays emitted from the deflection position of an electron beam orbiting a storage ring in a synchrotron, and is applied to light sources for exposure in the VLSI manufacturing process. is expected. SOR
Exposure using light generally involves guiding SOR light from the electron beam deflection position of a synchrotron to a light extraction line branched in the tangential direction, and emitting it from a window provided at the end of this light extraction line. This is done by irradiating the semiconductor wafer through the substrate of an LSI exposure mask. In this case, since the SOR light has a wide width in the horizontal direction but a narrow width in the vertical direction, the exposure area in the vertical direction must be ensured by swinging the SOR light in the vertical direction. Conventional methods for vertically swinging SOR light include a mirror swing method and an electron beam vibration method.

【0003】従来のミラー揺動法はSOR光取り出しラ
イン中に斜入射ミラーを配してSOR光を反射し、この
ミラーを揺動させることによりSOR光を垂直方向に振
るようにしたものである。また、電子ビーム振動法は、
蓄積リングに電子ビーム振動用の電磁石を配し、その励
磁方向および励磁量を変化させることにより、電子ビー
ムを垂直方向に振動させて、それにつれてSOR光が垂
直方向に振られるようにしたものである。
[0003] In the conventional mirror swing method, an oblique incidence mirror is arranged in the SOR light extraction line to reflect the SOR light, and by swinging this mirror, the SOR light is swung in the vertical direction. . In addition, the electron beam vibration method
An electromagnet for oscillating the electron beam is placed in the storage ring, and by changing the direction and amount of excitation, the electron beam is oscillated in the vertical direction, and the SOR light is accordingly swung vertically. be.

【0004】0004

【発明が解決しようとする課題】前記ミラー揺動法では
真空中でミラーを揺動させるため、ガス発生を防止する
ために揺動軸にグリースを使用できず、揺動軸が噛んで
動かなくなるおそれがあった。また、外部の揺動機構と
の真空シールが難しかった。また、SOR光強度を高め
ることはできなかった。また、前記電子ビーム揺動法で
は機械的に動く部分はないものの、ミラー揺動法と同じ
く、SOR光強度を高めることはできかった。
[Problems to be Solved by the Invention] In the mirror rocking method, since the mirror is rocked in a vacuum, it is not possible to use grease on the rocking shaft to prevent gas generation, and the rocking shaft gets stuck and does not move. There was a risk. Also, it was difficult to vacuum seal the external swing mechanism. Furthermore, it was not possible to increase the SOR light intensity. Furthermore, although there is no mechanically moving part in the electron beam swinging method, it was possible to increase the SOR light intensity as in the mirror swinging method.

【0005】この発明は、前記従来の技術における問題
点を解決して、SOR光を垂直方向に振るのに真空中で
動く部分を必要とせず、しかもSOR光強度を高めるこ
とができるSOR光の露光方法を提供しようとするもの
である。
[0005] The present invention solves the problems in the conventional technology, and provides an SOR light that does not require a moving part in a vacuum to vertically swing the SOR light, and can increase the SOR light intensity. The present invention attempts to provide an exposure method.

【0006】[0006]

【課題を解決するための手段】この発明は、蓄積リング
の直線部の外側に、この直線部を挾んで複数組の超電導
コイルを磁極を交互に反転させて略々水平方向に対向さ
せて構成した超電導ウィグラーを配し、この超電導ウィ
グラーの磁極間のギャップを時間とともに変化させなが
ら、この超電導ウィグラーから放出されるSOR光を前
記直線部の延長上に取り出して露光することを特徴とす
るものである。
[Means for Solving the Problems] The present invention comprises a plurality of sets of superconducting coils placed outside a straight section of a storage ring, sandwiching the straight section, and facing each other in a substantially horizontal direction with their magnetic poles alternately reversed. The method is characterized in that a superconducting wiggler is arranged, and the SOR light emitted from the superconducting wiggler is extracted and exposed on an extension of the straight portion while changing the gap between the magnetic poles of the superconducting wiggler over time. be.

【0007】[0007]

【作用】この発明によれば、蓄積リングを挾んでその外
側に超電導ウィグラーの磁極を略々水平方向に対向して
配置することにより、直線部の電子ビームは略々垂直方
向に蛇行し、その各折り返し位置でSOR光を放射し、
直線部の延長上に取り出されて露光が行なわれる。そし
て、この時超電導ウィグラーの励磁量を時間とともに変
化させることにより、電子ビームに作用する磁場の強さ
が変化し、電子ビームの蛇行する振幅が変化する。これ
により、SOR光が放射される垂直方向位置が変化して
SOR光が垂直方向に振られて、垂直方向の必要な露光
面積が確保される。
[Operation] According to the present invention, by arranging the magnetic poles of the superconducting wigglers on the outside of the storage ring so as to face each other in a substantially horizontal direction, the electron beam in the straight section meanders in a substantially vertical direction. Emit SOR light at each turning position,
Exposure is performed by taking out an extension of the straight part. At this time, by changing the amount of excitation of the superconducting wiggler over time, the strength of the magnetic field acting on the electron beam changes, and the amplitude of the meandering of the electron beam changes. As a result, the vertical position at which the SOR light is emitted changes, the SOR light is swayed in the vertical direction, and the necessary exposure area in the vertical direction is secured.

【0008】これによれば、超電導ウィグラーは蓄積リ
ングの外側に配されるので、真空中で動く部分は不要で
あり、しかも超電導ウィグラーを用いたので強力なSO
R光を得ることができ、露光速度を速めて露光能率を高
めることができる。
According to this, since the superconducting wiggler is placed outside the storage ring, there is no need for any parts that move in vacuum.Moreover, since the superconducting wiggler is used, a powerful SO
R light can be obtained, the exposure speed can be increased, and the exposure efficiency can be increased.

【0009】[0009]

【実施例】この発明の一実施例を以下説明する。図1は
、この発明を適用したSOR光装置の概要を示したもの
である。SOR光装置1において、電子発生装置(電子
銃等)10で発生した電子ビーム11は直線加速器(ラ
イナック)12で光速近くに加速され、ビーム輸送部1
4の偏向電磁石16で偏向されて、インフレクタ18を
介してシンクロトロンの蓄積リング22内に入射される
。蓄積リング22に入射された電子ビーム11は高周波
加速空洞21でエネルギを与えられながら各直線部31
〜34に配された収束電磁石(図示せず)で収束されて
蓄積リング22内の中心位置を通り、偏向電磁石24で
偏向されて真空ダクト22内を周回し続ける。直線部3
1には超電導ウィグラー35が配され、また直線部31
の延長上には光取り出しライン26が連結されて、露光
装置28に導かれている。
[Embodiment] An embodiment of the present invention will be described below. FIG. 1 shows an outline of an SOR optical device to which the present invention is applied. In the SOR optical device 1, an electron beam 11 generated by an electron generator (electron gun, etc.) 10 is accelerated to near the speed of light by a linear accelerator (linac) 12, and then transferred to the beam transport section 1.
The beam is deflected by the deflection electromagnet 16 of No. 4, and is incident into the storage ring 22 of the synchrotron via the inflector 18. The electron beam 11 incident on the storage ring 22 is energized by the high frequency acceleration cavity 21 and moves through each linear section 31.
It is focused by a focusing electromagnet (not shown) disposed at 34, passes through the center of the storage ring 22, is deflected by a deflecting electromagnet 24, and continues to circulate within the vacuum duct 22. Straight section 3
1 is provided with a superconducting wiggler 35, and a straight portion 31
A light extraction line 26 is connected to the extension of the line 26 and guided to an exposure device 28 .

【0010】超電導ウィグラー35の詳細構成を図2に
平面図で示す。また、図2のA−A矢視図を図3に示し
、B−B矢視図を図4に示す。超電導ウィグラー35は
蓄積リング22の直線部31の外側に、この直線部31
を挾んで極性の異なる超電導コイル40,41を奇数組
交互に極性を入れ替えて配置して構成され、蓄積リング
22内の電子ビーム11に交互に方向が変わる水平方向
の磁場37を印加する。これにより、電子ビーム11は
垂直方向に蛇行し、各蛇行の各折り返し位置すなわち振
動振幅の上下の各ピーク位置でそれぞれ光取り出しライ
ン26の方向にSOR光29,30を放射する。なお、
超電導コイル40,41の組合せを奇数組としたのは、
超電導ウィグラー35の出口で電子ビーム11を元の軌
道に戻すためである。各振動振幅のピーク位置で放射さ
れたSOR光29,30は蛇行を繰り返すごとに順次干
渉しあって増強されて、超電導ウィグラー35から出射
され、光取り出しライン26を通って露光装置28に導
かれて露光に使用される。
The detailed structure of the superconducting wiggler 35 is shown in a plan view in FIG. Further, a view taken along the line AA in FIG. 2 is shown in FIG. 3, and a view taken along the line BB in FIG. 2 is shown in FIG. The superconducting wiggler 35 is attached to the outside of the straight part 31 of the storage ring 22.
An odd number of superconducting coils 40 and 41 with different polarities are arranged with the polarities alternately placed between the storage ring 22 to apply a horizontal magnetic field 37 whose direction changes alternately to the electron beam 11 in the storage ring 22. As a result, the electron beam 11 meanders in the vertical direction, and emits SOR lights 29 and 30 in the direction of the light extraction line 26 at each turning position of each meandering, that is, at each upper and lower peak position of the vibration amplitude. In addition,
The reason why the superconducting coils 40 and 41 are set to an odd number is as follows.
This is to return the electron beam 11 to its original orbit at the exit of the superconducting wiggler 35. The SOR lights 29 and 30 emitted at the peak position of each vibration amplitude are successively interfered and intensified each time they meander, and are emitted from the superconducting wiggler 35 and guided to the exposure device 28 through the light extraction line 26. used for exposure.

【0011】超電導ウィグラー35を構成する超電導コ
イル40,41はその励磁量が励磁量制御装置(図1)
により時間とともに変更可能とされている。
The amount of excitation of the superconducting coils 40 and 41 constituting the superconducting wiggler 35 is controlled by an excitation amount control device (FIG. 1).
can be changed over time.

【0012】励磁量を変更すると、蓄積リング22の電
子ビーム11に作用する磁場37の強さが変化し、これ
により電子ビーム11の蛇行の振幅が変化する。すなわ
ち、励磁量が大きい時は電子ビーム11に磁場37が強
く作用し、蛇行の振幅が大きくなる。また、励磁量が小
さい時は電子ビームに磁場37が弱く作用し、蛇行の振
幅が小さくなる。これにより、SOR光29,30の発
生が垂直方向位置も変化する。したがって、励磁量制御
装置52により励磁量を時間とともに変化させればSO
R光29,30は垂直方向に振られて垂直方向の露光面
積を確保することができる。
When the amount of excitation is changed, the strength of the magnetic field 37 acting on the electron beam 11 in the storage ring 22 changes, thereby changing the amplitude of the meandering of the electron beam 11. That is, when the amount of excitation is large, the magnetic field 37 acts strongly on the electron beam 11, and the amplitude of the meandering becomes large. Furthermore, when the amount of excitation is small, the magnetic field 37 acts weakly on the electron beam, and the amplitude of meandering becomes small. As a result, the vertical position of the generation of the SOR lights 29 and 30 also changes. Therefore, if the excitation amount is changed over time by the excitation amount control device 52, the SO
The R light beams 29 and 30 are swung in the vertical direction to ensure an exposed area in the vertical direction.

【0013】励磁量を変化させた時の電子ビーム11の
蛇行の様子および露光の様子を図5に示す。励磁量が大
きい時は磁場37が強く作用するので、電子ビームは実
線11で示すように大きな振幅で蛇行し、上下のピーク
位置でSOR光29,30を放射する。この時X線マス
ク基板および半導体ウエハ54上での垂直方向の光量分
布は右側に実線で示すように上下で大光量、中央部で小
光量となる。これに対し、励磁量が小さい時は磁場37
が弱く作用するので電子ビームは点線11′で示すよう
に小さな振幅で蛇行し、上下のピーク位置でSOR光2
9′,30′を放射する。このSOR光29′,30′
間の上下方向距離は短いので、この時X線マスク基板お
よび半導体ウエハ54上での垂直方向の光量分布は右側
に点線で示すように上下で小光量、中央部で大光量とな
る。したがって、励磁量制御装置32による励磁量制御
の変化幅および励磁量の変化速度を都合よく設定するこ
とにより、X線マスク基板および半導体ウエハ54の上
下方向全面にわたって均一に露光することができる。な
お、1枚の半導体ウエハの露光は励磁量を大→小にまた
は小→大に1行程または複数行程変化させることにより
完了する。
FIG. 5 shows the meandering state of the electron beam 11 and the exposure state when the amount of excitation is changed. When the amount of excitation is large, the magnetic field 37 acts strongly, so the electron beam meanderes with a large amplitude as shown by the solid line 11, and emits SOR lights 29 and 30 at the upper and lower peak positions. At this time, the light intensity distribution in the vertical direction on the X-ray mask substrate and the semiconductor wafer 54 has a large light intensity at the top and bottom and a small light intensity at the center, as shown by the solid line on the right side. On the other hand, when the amount of excitation is small, the magnetic field 37
acts weakly, so the electron beam meanders with a small amplitude as shown by the dotted line 11', and the SOR light 2 at the upper and lower peak positions.
9' and 30' are emitted. This SOR light 29', 30'
Since the distance between them in the vertical direction is short, the light intensity distribution in the vertical direction on the X-ray mask substrate and semiconductor wafer 54 at this time is small at the top and bottom and large at the center, as shown by the dotted line on the right. Therefore, by conveniently setting the range of change in excitation amount control and the rate of change in the excitation amount by the excitation amount control device 32, it is possible to uniformly expose the entire surface of the X-ray mask substrate and the semiconductor wafer 54 in the vertical direction. Note that exposure of one semiconductor wafer is completed by changing the excitation amount from large to small or from small to large in one step or multiple steps.

【0014】[0014]

【変更例】前記実施例では1つの直線部31にのみ超電
導ウィグラー35を配置したが、他の直線部32,33
,34にも配置して、これらを同期させてまたは非同期
で励磁量の変更制御をすることもできる。
[Modification example] In the above embodiment, the superconducting wiggler 35 was arranged only in one straight part 31, but the superconducting wiggler 35 was arranged only in one straight part 31,
, 34, and the excitation amount can be changed and controlled synchronously or asynchronously.

【0015】[0015]

【発明の効果】以上説明したように、この発明によれば
、蓄積リングを挾んでその外側に超電導ウィグラーの磁
極を略々水平方向に対向して配置し、その励磁量を時間
とともに変化させるようにしたので、SOR光が垂直方
向に振られて、垂直方向の必要な露光面積を確保するこ
とができる。これによれば、超電導ウィグラーは蓄積リ
ングの外側に配されるので、真空中で動く部分は不要で
あり、しかも超電導ウィグラーを用いたので強力なSO
R光を得ることができ、露光速度を速めて露光能率を高
めることができる。
[Effects of the Invention] As explained above, according to the present invention, the magnetic poles of the superconducting wigglers are placed on the outside of the storage ring so as to face each other in a substantially horizontal direction, and the amount of excitation thereof is changed over time. Therefore, the SOR light is swayed in the vertical direction, and the necessary exposure area in the vertical direction can be secured. According to this, since the superconducting wiggler is placed outside the storage ring, there is no need for any parts that move in vacuum.Moreover, since the superconducting wiggler is used, a powerful SO
R light can be obtained, the exposure speed can be increased, and the exposure efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例を示す図で、SOR光装置
の概要を示す平面図である。
FIG. 1 is a diagram showing an embodiment of the present invention, and is a plan view showing an outline of an SOR optical device.

【図2】図1の超電導ウィグラーの詳細構成を示す平面
図である。
FIG. 2 is a plan view showing the detailed configuration of the superconducting wiggler in FIG. 1;

【図3】図2のA−A矢視図である。FIG. 3 is a view taken along the line AA in FIG. 2;

【図4】図2のB−B矢視図である。FIG. 4 is a view taken along the line BB in FIG. 2;

【図5】超電導ウィグラーの励磁量を変化させた時の電
子ビームの蛇行の様子および露光の様子を示す図である
FIG. 5 is a diagram showing the meandering state of an electron beam and the state of exposure when the amount of excitation of the superconducting wiggler is changed.

【符号の説明】[Explanation of symbols]

1  SOR光装置 22  蓄積リング 26  光取り出しライン 28  露光装置 29  SOR光 30  SOR光 31  直線部 32  直線部 33  直線部 34  直線部 35  超電導ウィグラー 40,41  超電導コイル 52  励磁量制御装置 G  ギャップ 1 SOR optical device 22 Storage ring 26 Light extraction line 28 Exposure device 29 SOR light 30 SOR light 31 Straight section 32 Straight section 33 Straight section 34 Straight section 35 Superconducting wiggler 40,41 Superconducting coil 52 Excitation amount control device G Gap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  蓄積リングの直線部の外側に、この直
線部を挾んで複数組の超電導コイルを磁極を交互に反転
させて略々水平方向に対向させて構成した超電導ウィグ
ラーを配し、この超電導ウィグラーの磁極間のギャップ
を時間とともに変化させながら、この超電導ウィグラー
から放出されるSOR光を前記直線部の延長上に取り出
して露光することを特徴とするSOR光の露光方法。
[Claim 1] A superconducting wiggler is disposed outside the straight part of the storage ring, and the superconducting wiggler is composed of a plurality of sets of superconducting coils with their magnetic poles alternately reversed and facing each other in a substantially horizontal direction, sandwiching the straight part. A method for exposing SOR light, which comprises extracting and exposing the SOR light emitted from the superconducting wiggler onto an extension of the straight portion while changing the gap between the magnetic poles of the superconducting wiggler over time.
JP41501890A 1990-12-27 1990-12-27 Exposure of sor beam Pending JPH04229999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41501890A JPH04229999A (en) 1990-12-27 1990-12-27 Exposure of sor beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41501890A JPH04229999A (en) 1990-12-27 1990-12-27 Exposure of sor beam

Publications (1)

Publication Number Publication Date
JPH04229999A true JPH04229999A (en) 1992-08-19

Family

ID=18523429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41501890A Pending JPH04229999A (en) 1990-12-27 1990-12-27 Exposure of sor beam

Country Status (1)

Country Link
JP (1) JPH04229999A (en)

Similar Documents

Publication Publication Date Title
US4631743A (en) X-ray generating apparatus
JPH08257148A (en) Rotary gantry
JPH04229999A (en) Exposure of sor beam
JPH021999A (en) X-ray laser beam generating method and device thereof
JPH04229998A (en) Exposure of sor beam
JP2002139758A (en) Device for shortening light wavelength
JP2600075B2 (en) X-ray generator
JPH04230000A (en) Exposure of sor beam
US5892810A (en) X-ray source for lithography
JPH05114548A (en) X-ray mask manufacturing device
JPH04155295A (en) Synchrotoron radiation exposure
JPH0514400B2 (en)
JPH0513200A (en) Method for enlarging exposed area of sor
JPH0372173B2 (en)
JPH04249900A (en) Exposure of sor light
JPH02299200A (en) Apparatus for generating synchrotron radiant light
JPH0372172B2 (en)
JPS61200700A (en) Electronic wave ring
JPS63284817A (en) Projecting method of synchrotron radiation
JPS60146500A (en) Synchrotron radiating light generator
JPH088100A (en) Electron-beam accelerator
JPH04308699A (en) Sor device for angiography
JPH04155296A (en) Synchrotoron radiation exposure
JPH0689800A (en) Particle accelerator
JPH04357699A (en) Synchrotron radiation beam generating device