JPH04357699A - Synchrotron radiation beam generating device - Google Patents

Synchrotron radiation beam generating device

Info

Publication number
JPH04357699A
JPH04357699A JP18911391A JP18911391A JPH04357699A JP H04357699 A JPH04357699 A JP H04357699A JP 18911391 A JP18911391 A JP 18911391A JP 18911391 A JP18911391 A JP 18911391A JP H04357699 A JPH04357699 A JP H04357699A
Authority
JP
Japan
Prior art keywords
orbit
electron beam
electrons
magnets
deflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18911391A
Other languages
Japanese (ja)
Inventor
Satoru Sukenobu
祐延 悟
Koichi Nakayama
光一 中山
Munehiro Ogasawara
宗博 小笠原
Toru Sugawara
亨 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18911391A priority Critical patent/JPH04357699A/en
Publication of JPH04357699A publication Critical patent/JPH04357699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To provide a synchrotron device in which stability of electron beams is secured and uniform radiation of SOR beams can be obtained over a wide range. CONSTITUTION:Beam track deflection means 37-46 are provided along an orbit 5 and by means of those deviation between an electron beam track and the orbit is controlled to be within a specified range so that both may be in coincidence with each other in one specified region (high frequency acceleration cavity 18), and the beam track is made to pass through without practical deflection in relation to the orbit. In other specified regions (deflecting magnets 1-4), the electron beam track is deflected in the orthogonal direction so as to be in parallel to a track surface formed by the orbit to emit SOR beams to stepper parts 19-26. With this construction, uniform radiation of SOR beams can be provided over a wide range and with high reliability without increase of emittance nor instability of electron beams.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えばX線リソグラフ
ィに使用されるシンクロトロン放射光発生装置に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchrotron radiation generating apparatus used, for example, in X-ray lithography.

【0002】0002

【従来の技術】周知の通り、半導体装置へのより高い高
集積度化の要求に伴い、この超LSI(Large S
cale Integrated circuit)の
製造における微細加工を実現するものの一つとしてX線
リソグラフィ技術が検討されている。そして近年、X線
リソグラフィ用の極めて強力なX線源としてシンクロト
ロン放射光(以下、SOR光と略記する)が注目され、
このSOR光を発生する装置としてシンクロトロン放射
光発生装置がある。
2. Description of the Related Art As is well known, with the demand for higher integration density in semiconductor devices, ultra-LSI (Large S
X-ray lithography technology is being considered as one of the methods for realizing microfabrication in the manufacture of integrated circuits. In recent years, synchrotron radiation (hereinafter abbreviated as SOR light) has attracted attention as an extremely powerful X-ray source for X-ray lithography.
There is a synchrotron radiation light generating device as a device that generates this SOR light.

【0003】以下、X線リソグラフィに用いられるシン
クロトロン放射光発生装置の従来例について図8を参照
して説明する。図8は概略構成図で、図において1〜4
は周回軌道5上に配設された偏向磁石であり、偏向磁石
1〜4は図示しない電子ビーム入射器から周回軌道5に
沿って入射された電子を周回軌道5に沿って周回させる
。6〜17は周回軌道5上に設けられた周回する電子を
収束させるための4極磁石、18は周回軌道5上に設け
られた周回する電子を加速するための高周波加速空胴、
19〜26はX線リソグラフィを行うステッパ部、27
〜34はステッパ部19〜26に偏向磁石1〜4で放出
されたSOR光を導くビームラインである。また、35
は偏向磁石1〜4内に電子の周回軌道5が形成されよう
に配設された偏向部ビームダクトであり、36は各偏向
磁石1〜4間に電子の周回軌道5が形成されように配設
された直線部ビームダクトである。なお電子ビーム入射
器から入射して周回する電子の中心軌道は周回軌道5に
一致し、周回軌道5の軌道面は水平面上に形成されてい
る。
A conventional example of a synchrotron radiation light generating apparatus used in X-ray lithography will be described below with reference to FIG. Figure 8 is a schematic configuration diagram, and in the figure, 1 to 4
Denotes deflection magnets disposed on the orbit 5, and the deflection magnets 1 to 4 cause electrons incident along the orbit 5 from an electron beam injector (not shown) to orbit along the orbit 5. 6 to 17 are quadrupole magnets provided on the orbit 5 for converging the orbiting electrons; 18 are high frequency acceleration cavities provided on the orbit 5 for accelerating the orbiting electrons;
19 to 26 are stepper units for performing X-ray lithography; 27
-34 are beam lines that guide the SOR light emitted by the deflection magnets 1-4 to the stepper sections 19-26. Also, 35
36 is a deflection part beam duct arranged so that an orbit 5 of electrons is formed in the deflection magnets 1 to 4; and 36 is a beam duct arranged so that an orbit 5 of electrons is formed between each deflection magnet 1 to 4. This is a straight section beam duct. Note that the center orbit of the electrons incident from the electron beam injector and circulating coincides with the orbit 5, and the orbital surface of the orbit 5 is formed on a horizontal plane.

【0004】このように構成されるものでは、周回軌道
5に沿って入射して周回する電子が偏向磁石1〜4内を
通過し方向を変える際に、SOR光を電子の軌道の接線
方向に放出する。放出されたSOR光は放出方向に極め
て鋭い指向性を持っており、このためビームライン27
〜34を通ってステッパ部19〜26に導かれたSOR
光は、ステッパ部19〜26に配置された基板上の限定
された水平方向の狭い帯状の範囲を照射することになる
。しかし半導体装置の製造に適用するためには、大径化
の進む半導体ウエハの全面に対応できるよう、より広い
範囲に安定したSOR光が照射できるようにすることが
必要となる。
[0004] With such a structure, when the electrons incident and circulating along the orbit 5 pass through the deflection magnets 1 to 4 and change direction, the SOR light is directed in the tangential direction of the orbit of the electrons. discharge. The emitted SOR light has extremely sharp directivity in the emission direction, and therefore the beamline 27
The SOR led to the stepper sections 19 to 26 through 34
The light irradiates a limited narrow band-shaped range in the horizontal direction on the substrates disposed in the stepper sections 19 to 26. However, in order to apply it to the manufacture of semiconductor devices, it is necessary to be able to irradiate a wider range with stable SOR light so that it can cover the entire surface of semiconductor wafers, which are becoming larger in diameter.

【0005】そこでSOR光の照射範囲を広げるために
ビームライン27〜34の途中にSOR光用の可動鏡を
配置し、この鏡を機械的に動かしてSOR光の進行方向
を周回軌道5の面に垂直な方向に変化させて照射範囲を
広げることが提案されている。しかしながら提案されて
いるものでは鏡でのSOR光の3〜4割に達する大きな
損失があり、また鏡の駆動系が高価で信頼性に劣るもの
となる上、さらに基板上のSOR光の照射角度が変化す
るため基板上での光強度分布の均一性に劣る等の問題が
ある。
Therefore, in order to expand the irradiation range of the SOR light, a movable mirror for the SOR light is placed in the middle of the beam lines 27 to 34, and this mirror is mechanically moved to align the traveling direction of the SOR light with the plane of the orbit 5. It has been proposed to widen the irradiation range by changing the direction perpendicular to . However, in the proposed method, there is a large loss of 30 to 40% of the SOR light in the mirror, the drive system for the mirror is expensive and unreliable, and the irradiation angle of the SOR light on the substrate is Since the light intensity changes, there are problems such as poor uniformity of light intensity distribution on the substrate.

【0006】また、特開昭60−70700号公報や特
開昭62−43100号公報には電子が周回する軌道上
に偏向器を設置して軌道を偏向させ、電子ビームの軌道
自体を移動させることにより照射範囲を広げることが示
されているが、例えば軌道上に配置された高周波加速空
胴では電子の軌道が高周波加速空胴の中心軌道から大き
くずれたものとなってしまいエミッタンスの増加や不安
定性を生じる虞がある。さらに、特開昭62−1417
21号公報には偏向磁石あるいは装置全体を電子の周回
軌道面に垂直な方向に移動させて照射範囲を広げること
が提案されているが、非常に重い偏向磁石あるいは装置
全体を精度良く制御して垂直方向に移動させることは大
掛かりな駆動機構が必要となる問題がある。
[0006] Furthermore, in Japanese Patent Laid-Open No. 60-70700 and Japanese Patent Laid-Open No. 62-43100, a deflector is installed on the orbit in which the electrons circulate to deflect the orbit and move the orbit of the electron beam itself. However, for example, in a high-frequency acceleration cavity placed in orbit, the electron trajectory deviates significantly from the center orbit of the high-frequency acceleration cavity, resulting in an increase in emittance and There is a risk of instability. Furthermore, JP-A-62-1417
Publication No. 21 proposes expanding the irradiation range by moving the deflecting magnet or the entire device in a direction perpendicular to the orbital plane of the electrons, but it is difficult to precisely control the extremely heavy deflecting magnet or the entire device. There is a problem in that vertical movement requires a large-scale drive mechanism.

【0007】[0007]

【発明が解決しようとする課題】上記のようなSOR光
の照射範囲を広げるのに際して光強度分布が均一ではな
く、信頼性が低くなる等の状況に鑑みて本発明はなされ
たもので、その目的とするところは安定した電子ビ−ム
が得られ、SOR光の均一な照射が広い範囲で、高い信
頼性のもとに得られるシンクロトロン放射光発生装置を
提供することにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the situation where when expanding the irradiation range of SOR light as described above, the light intensity distribution is not uniform and reliability is low. The object of the present invention is to provide a synchrotron radiation generating device that can provide a stable electron beam and uniformly irradiate SOR light over a wide range with high reliability.

【0008】[0008]

【課題を解決するための手段】本発明のシンクロトロン
放射光発生装置は、周回軌道上に配設され該周回軌道に
沿って電子を周回させるようにした偏向磁石と、周回す
る電子を収束させるように偏向磁石の間の周回軌道上に
配置した4極磁石と、周回軌道上に配置され周回する電
子を加速する高周波加速空胴とを備えたシンクロトロン
放射光発生装置において、周回軌道上に、該周回軌道に
沿った一の所定領域では電子のビーム軌道と周回軌道と
のずれを所定範囲以下として略一致させ、かつ他の所定
領域では電子のビーム軌道が周回軌道の形成する軌道面
に略平行となるように垂直方向に偏向するビーム軌道偏
向手段が設けられいることを特徴とするものであり、ま
た、周回軌道上に配設され該周回軌道に沿って電子を周
回させるようにした偏向磁石と、周回する前記電子を収
束させるように偏向磁石の間の周回軌道上に配置した4
極磁石とを備えたシンクロトロン放射光発生装置におい
て、偏向磁石で偏向された電子の周回に対応させて4極
磁石を電子の周回軌道の軌道面に対し垂直方向に往復動
させる可動手段が設けられていることを特徴とするもの
である。
[Means for Solving the Problems] The synchrotron radiation light generating device of the present invention includes a deflecting magnet arranged on an orbit so as to cause electrons to revolve along the orbit, and a deflecting magnet that converges the orbiting electrons. In a synchrotron synchrotron radiation generator equipped with a quadrupole magnet placed in an orbit between deflecting magnets and a high-frequency acceleration cavity placed in an orbit to accelerate the orbiting electrons, In one predetermined region along the orbit, the deviation between the electron beam orbit and the orbit is set to be within a predetermined range so that the electron beam orbit substantially matches the orbit, and in another predetermined region, the electron beam orbit is aligned with the orbital plane formed by the orbit. It is characterized by being provided with a beam trajectory deflecting means that deflects the beam in a vertical direction so as to be substantially parallel to each other, and is arranged on an orbit so as to cause electrons to orbit along the orbit. A deflecting magnet and a magnet 4 arranged on an orbit between the deflecting magnet so as to converge the orbiting electrons.
In the synchrotron radiation generation device equipped with a polar magnet, movable means is provided for reciprocating the quadrupole magnet in a direction perpendicular to the orbital surface of the electron orbit in response to the orbit of the electron deflected by the deflection magnet. It is characterized by being

【0009】[0009]

【作用】上記のように構成されたシンクロトロン放射光
発生装置は、周回軌道に沿った一の所定領域では電子の
ビーム軌道と周回軌道とのずれを所定範囲以下として略
一致させ、かつ他の所定領域では電子のビーム軌道が周
回軌道の形成する軌道面に略平行となるように垂直方向
に偏向するビーム軌道偏向手段を設けているので、電子
は一の所定領域で周回軌道の近傍の所定範囲を通過し、
ビーム軌道が周回軌道に対し実質的に移動することがな
く、他の所定領域で周回軌道の形成する軌道面に略平行
となるように垂直方向にビーム軌道が偏向され、このた
めエミッタンスの増加や電子ビームが不安定になること
もなく、SOR光の均一な照射が広い範囲で高い信頼性
のもとに得られる。また、4極磁石を電子の周回軌道の
軌道面に対し垂直方向に往復動させる可動手段を設けて
いるので、電子は4極磁石の往復動と共にビーム軌道が
垂直方向に移動し、SOR光の均一な照射が広い範囲で
高い信頼性のもとに安定的に得られる。
[Operation] The synchrotron synchrotron radiation generator configured as described above makes the deviation between the electron beam orbit and the orbit within a predetermined range in one predetermined region along the orbit, and substantially matches the orbit in other regions. Since a beam orbit deflecting means is provided that deflects the beam in a vertical direction so that the beam orbit of the electron is approximately parallel to the orbital plane formed by the orbit in a prescribed area, the electron beam is deflected in a prescribed area near the orbit in one prescribed area. pass through the range,
The beam trajectory does not substantially move relative to the orbit, and in other predetermined areas the beam trajectory is deflected in the vertical direction so as to be approximately parallel to the orbital plane formed by the orbit, which increases emittance and The electron beam does not become unstable, and uniform irradiation of SOR light can be achieved over a wide range with high reliability. In addition, since a movable means is provided for reciprocating the quadrupole magnet in a direction perpendicular to the orbital surface of the orbit of the electrons, the electron beam trajectory moves in the perpendicular direction with the reciprocation of the quadrupole magnet, and the SOR light is Uniform irradiation can be stably obtained over a wide range with high reliability.

【0010】0010

【実施例】以下、本発明の実施例を図面を参照して説明
する。なお、従来と同一部分には同一符号を付して説明
を省略し、従来と異なる本発明の構成に付いて説明する
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that parts that are the same as those in the prior art are denoted by the same reference numerals and explanations are omitted, and the configuration of the present invention that is different from the prior art will be explained.

【0011】先ず、第1の実施例を図1及び図2により
説明する。図1は概略構成図であり、図2は電子軌道の
垂直方向の座標を示すグラフである。図において37〜
46は周回軌道5に沿って配置されたビーム軌道偏向手
段を形成する電子ビーム軌道偏向器で、これらは電子ビ
ームの軌道を周回軌道5の軌道面に対し垂直な方向に所
定の偏向角度の偏向を行うものであり、電子ビーム軌道
偏向器37〜46を作用させないときには電子ビームの
軌道が周回軌道5と同じ面上にあるように形成されてい
る。そして各電子ビーム軌道偏向器37〜46は偏向磁
石1〜4から放出されるSOR光のステッパ部19〜2
6での照射位置が所定の値となっているようにするもの
で、その偏向角度の設定は予め適正な偏向角度が得られ
るように設定されているか、あるいは対応する偏向磁石
1〜4中での電子の軌道を測定したり、ビームライン2
7〜34を通じて放射されるSOR光を測定したりして
、その測定結果に基づいて制御される。
First, a first embodiment will be explained with reference to FIGS. 1 and 2. FIG. 1 is a schematic configuration diagram, and FIG. 2 is a graph showing vertical coordinates of electron orbits. In the figure, 37~
Reference numeral 46 denotes an electron beam trajectory deflector that forms a beam trajectory deflection means arranged along the orbit 5, and these deflect the orbit of the electron beam at a predetermined deflection angle in a direction perpendicular to the orbital plane of the orbit 5. The electron beam orbit is formed so that the orbit of the electron beam is on the same plane as the orbit 5 when the electron beam orbit deflectors 37 to 46 are not operated. Each electron beam trajectory deflector 37 to 46 serves as a stepper section 19 to 2 for the SOR light emitted from the deflection magnets 1 to 4.
This is to ensure that the irradiation position at 6 is a predetermined value, and the deflection angle is set in advance to obtain an appropriate deflection angle, or is set in the corresponding deflection magnets 1 to 4. Beamline 2
The SOR light emitted through the channels 7 to 34 is measured and controlled based on the measurement results.

【0012】電子ビーム軌道偏向器37〜44はそれぞ
れ偏向磁石1〜4と、これら偏向磁石1〜4に隣接して
配置された4極磁石6〜13との間の周回軌道5上に設
けられ、偏向磁石1〜4に入出する電子ビームを偏向し
ている。すなわち電子ビーム軌道偏向器37〜40は偏
向磁石1〜4の電子の周回方向入口側に配置され、偏向
磁石1〜4中での電子ビームの軌道が周回軌道5の軌道
面に略平行となるように、電子ビーム軌道偏向器37〜
40から出る電子ビームの軌道を周回軌道5の軌道面に
略平行となるように偏向する。そして電子ビーム軌道偏
向器41〜44は偏向磁石1〜4の電子の周回方向出口
側に配置され、偏向磁石1〜4中で周回軌道5の軌道面
に略平行であった電子ビームの軌道を周回軌道5に周回
方向で交差するように垂直方向に偏向するものである。
The electron beam trajectory deflectors 37 to 44 are provided on the orbit 5 between the deflection magnets 1 to 4 and the quadrupole magnets 6 to 13 arranged adjacent to the deflection magnets 1 to 4, respectively. , deflects the electron beam entering and exiting the deflection magnets 1 to 4. That is, the electron beam trajectory deflectors 37 to 40 are arranged on the inlet side of the deflection magnets 1 to 4 in the electron orbit direction, so that the trajectory of the electron beam in the deflection magnets 1 to 4 is approximately parallel to the orbital plane of the orbit 5. As shown, the electron beam trajectory deflector 37~
The trajectory of the electron beam emitted from the electron beam 40 is deflected so as to be substantially parallel to the orbital plane of the orbit 5. The electron beam trajectory deflectors 41 to 44 are arranged on the exit side of the electron orbiting direction of the deflecting magnets 1 to 4, and are arranged to deflect the electron beam trajectory which is approximately parallel to the orbital plane of the orbiting orbit 5 in the deflecting magnets 1 to 4. It is deflected in the vertical direction so as to intersect the orbit 5 in the circumferential direction.

【0013】また、電子ビーム軌道偏向器45,46は
高周波加速空胴18が配置された偏向磁石4と偏向磁石
1の間の周回軌道5上に配設され、電子ビーム軌道偏向
器45は4極磁石9と高周波加速空胴18の間の周回軌
道5上に設けられ、高周波加速空胴18中での電子ビー
ムの軌道が高周波加速空胴18の中心軸を通る周回軌道
5に一致するように偏向する。そして電子ビーム軌道偏
向器46は高周波加速空胴18の電子の周回方向出口側
に隣接して設けられた4極磁石17と4極磁石13の間
の周回軌道5上に設けられ、高周波加速空胴18中で加
速され周回軌道5に一致して4極磁石17から出た電子
ビームの軌道を周回方向で周回軌道5から離れるように
垂直方向に偏向する。これにより電子ビームの軌道を周
回軌道5の近傍に限定する必要のある一の所定領域、例
えば高周波加速空胴18中で周回軌道5に一致したもの
となり、電子ビームの軌道を周回軌道5に略平行である
ことが必要な他の所定領域、例えばSOR光を取り出す
偏向磁石1〜4中で周回軌道5の軌道面に略平行したも
のとなる。図2は周回軌道5の一部の区間における電子
ビームの軌道の偏向状態を示すもので、上記の偏向磁石
4と偏向磁石1の間における電子の軌道の垂直方向の座
標を示すグラフである。グラフは横軸に位置、縦軸に垂
直方向の座標zをとっており、横軸には対応した位置に
それぞれ構成する要素を図示し、縦軸は周回軌道5を0
として上側を正、下側を負にとってあり、図中の47は
電子の軌道である。また周回軌道5の他の区間において
は、高周波加速空胴18及びそれにともない配設された
電子ビーム軌道偏向器45,46がそれぞれ設けられて
いない点で異なるのみである。
Further, the electron beam trajectory deflectors 45 and 46 are arranged on the orbit 5 between the deflection magnet 4 and the deflection magnet 1 in which the high frequency acceleration cavity 18 is arranged, and the electron beam trajectory deflector 45 is It is provided on the orbit 5 between the polar magnet 9 and the high frequency acceleration cavity 18 so that the trajectory of the electron beam in the high frequency acceleration cavity 18 coincides with the orbit 5 passing through the central axis of the high frequency acceleration cavity 18. to be deflected. The electron beam trajectory deflector 46 is provided on the orbit 5 between the quadrupole magnets 17 and 13 provided adjacent to the exit side of the electron orbiting direction of the high frequency acceleration cavity 18, and The trajectory of the electron beam accelerated in the shell 18 and emitted from the quadrupole magnet 17 in accordance with the orbit 5 is deflected in the vertical direction away from the orbit 5 in the orbit direction. As a result, the orbit of the electron beam coincides with the orbit 5 in one predetermined area where it is necessary to limit the orbit to the vicinity of the orbit 5, for example, the high frequency acceleration cavity 18, and the orbit of the electron beam is approximately aligned with the orbit 5. In other predetermined areas that need to be parallel, for example, the deflecting magnets 1 to 4 for extracting the SOR light, the area is approximately parallel to the orbital surface of the orbit 5. FIG. 2 shows the deflection state of the electron beam trajectory in a part of the orbit 5, and is a graph showing the coordinates of the electron trajectory in the vertical direction between the deflection magnet 4 and the deflection magnet 1. The graph shows the position on the horizontal axis and the vertical coordinate z on the vertical axis.The horizontal axis shows the constituent elements at the corresponding positions, and the vertical axis shows the orbit 5 as 0.
The upper side is taken as positive and the lower side as negative, and 47 in the figure is the orbit of the electron. Further, in other sections of the orbit 5, the only difference is that the high frequency acceleration cavity 18 and the electron beam trajectory deflectors 45 and 46 disposed accordingly are not provided.

【0014】このように構成された本実施例において、
図示しない電子ビーム入射器から周回軌道5に沿って電
子を入射させ、周回軌道5に沿って周回させる。入射し
た電子は高周波加速空胴18中で加速され、周回しなが
ら各電子ビーム軌道偏向器37〜46によって周回軌道
5の軌道面に垂直な方向に偏向される。すなわち偏向磁
石1〜4に入る電子は軌道が電子ビーム軌道偏向器37
〜40で周回軌道5に略平行となるように偏向され、偏
向磁石1〜4に入った電子は偏向磁石1〜4中の任意の
位置での軌道が周回軌道5に略平行に維持され、そのま
ま電子ビーム軌道偏向器41〜44に入る。電子ビーム
軌道偏向器41,42,43で電子は、軌道がそれぞれ
周回軌道5上に順に配置された4極磁石6,14、10
、7、15、11、8、16,12を通り、次の電子ビ
ーム軌道偏向器38,39,40に、周回軌道5に対し
逆側に偏位されて入るように偏向される。一方、電子ビ
ーム軌道偏向器44で電子は軌道が周回軌道5に交差す
るように偏向され、4極磁石9を通り、電子ビーム軌道
偏向器45で周回軌道5に一致するように偏向されて高
周波加速空胴18に入る。高周波加速空胴18中で電子
は周回軌道5に一致した軌道で加速される。高周波加速
空胴18を出た電子は周回軌道5に一致した軌道で4極
磁石17を通り、電子ビーム軌道偏向器46で軌道が高
周波加速空胴18に入る前の状態とは逆側に周回軌道5
から離れるように偏向され、4極磁石13を経て電子ビ
ーム軌道偏向器37に入る。以上を繰り返しながら電子
は周回軌道5を周回する。そして、各偏向磁石1〜4に
接続されたビームライン27〜34を通してステッパ部
19〜26にSOR光を導き、そのSOR光を各ステッ
パ部19〜26に配置した基板等の表面に照射させる。
[0014] In this embodiment configured as described above,
Electrons are made to enter along the orbit 5 from an electron beam injector (not shown) and circulate along the orbit 5. The incident electrons are accelerated in the high-frequency acceleration cavity 18 and deflected in a direction perpendicular to the orbital plane of the orbit 5 by each of the electron beam trajectory deflectors 37 to 46 while circulating. In other words, the orbits of the electrons entering the deflection magnets 1 to 4 are the electron beam trajectory deflector 37.
~ 40, the electrons are deflected so as to be substantially parallel to the orbit 5, and the electrons entering the deflecting magnets 1 to 4 maintain their orbits at arbitrary positions in the deflecting magnets 1 to 4 to be substantially parallel to the orbit 5, The electron beams enter the electron beam trajectory deflectors 41 to 44 as they are. The electron beam orbit deflectors 41, 42, 43 move the electrons to quadrupole magnets 6, 14, 10 whose orbits are arranged in order on the orbit 5, respectively.
, 7, 15, 11, 8, 16, 12, and is deflected into the next electron beam trajectory deflector 38, 39, 40 so as to be deflected to the opposite side to the orbit 5. On the other hand, the electrons are deflected by the electron beam orbit deflector 44 so that their orbits intersect with the orbit 5, pass through the quadrupole magnet 9, and are deflected by the electron beam orbit deflector 45 so that they coincide with the orbit 5, thereby transmitting high-frequency waves. Enter acceleration cavity 18. Electrons are accelerated in the high frequency acceleration cavity 18 in a trajectory that coincides with the orbit 5. The electrons exiting the high-frequency acceleration cavity 18 pass through the quadrupole magnet 17 on a trajectory that matches the orbit 5, and are rotated by the electron beam trajectory deflector 46 in a direction opposite to the state before entering the high-frequency acceleration cavity 18. Orbit 5
The electron beam is deflected away from the electron beam and enters the electron beam trajectory deflector 37 via the quadrupole magnet 13. The electrons circulate in the orbit 5 while repeating the above steps. Then, the SOR light is guided to the stepper sections 19-26 through the beam lines 27-34 connected to each of the deflecting magnets 1-4, and the surface of the substrate etc. arranged in each stepper section 19-26 is irradiated with the SOR light.

【0015】以上の本実施例によれば、偏向磁石1〜4
に接続されたステッパ部19〜26を照射するSOR光
の照射範囲は、周回軌道5の軌道面に平行な水平方向で
は従来と同様十分な広がりが得られると共に、偏向磁石
1〜4中での電子の軌道が周回軌道5の軌道面に略平行
であるため垂直方向にも所定の範囲のものが得られ、得
られた照射範囲内での光強度は一様なものとなり、歪み
のない照射が実現できる。また、高周波加速空胴18で
の電子の軌道が周回軌道5と一致しているため、これを
通過する電子は偏向磁石1〜4等で軌道を変更されても
常に高周波加速空胴18の中では軌道の位置を変えず中
心軸上を通過する。すなわち高周波加速空胴18内では
電子は偏向されることがなく、従って偏向を受けること
によるエミッタンスの増加がなく、また高次モードの励
起によって電子ビームが不安定になることもない。さら
に、SOR光の光路中に鏡を配置することがないため、
SOR光の大きな損失や高価な鏡の駆動系がなく、また
駆動系等の機械的部分が介在することによる信頼性の低
下を招くことがない。そして、半導体ウエハの大径化に
も十分対応できる。
According to the above embodiment, the deflection magnets 1 to 4
The irradiation range of the SOR light that irradiates the stepper parts 19 to 26 connected to the orbiting path 5 is sufficiently wide in the horizontal direction parallel to the orbital surface of the orbiting orbit 5, as in the conventional case, and is Since the electron orbit is approximately parallel to the orbital plane of the orbit 5, a predetermined range of light can be obtained in the vertical direction, and the light intensity within the obtained irradiation range is uniform, resulting in distortion-free irradiation. can be realized. In addition, since the orbit of the electron in the high-frequency acceleration cavity 18 matches the orbit 5, the electrons passing through this are always inside the high-frequency acceleration cavity 18 even if the orbit is changed by the deflection magnets 1 to 4. Then, the orbit passes on the central axis without changing its position. That is, the electrons are not deflected within the high-frequency acceleration cavity 18, so there is no increase in emittance due to deflection, and the electron beam does not become unstable due to excitation of higher-order modes. Furthermore, since there is no need to place a mirror in the optical path of the SOR light,
There is no large loss of SOR light, there is no expensive mirror drive system, and there is no reduction in reliability due to the intervention of mechanical parts such as a drive system. Moreover, it can sufficiently cope with the increase in the diameter of semiconductor wafers.

【0016】次に、本発明の第2の実施例を図3により
説明する。図3は電子軌道の垂直方向の座標を示すグラ
フで、第1の実施例の図2に対応するものである。図に
おいて48は電子の軌道であり、49,50は周回軌道
5に沿って高周波加速空胴18の設けられた偏向磁石4
と偏向磁石1の間に配置された電子ビーム軌道偏向器で
、これらは他の電子ビーム軌道偏向器37〜44と同様
に電子ビームの軌道を周回軌道5の軌道面に対し垂直な
方向に制御されて所定の偏向を行うものであり、作用さ
せないときには電子ビームの軌道が周回軌道5と同じ面
上にあるように形成されている。
Next, a second embodiment of the present invention will be explained with reference to FIG. FIG. 3 is a graph showing the coordinates of the electron trajectory in the vertical direction, and corresponds to FIG. 2 of the first embodiment. In the figure, 48 is an electron orbit, and 49 and 50 are deflection magnets 4 provided with a high frequency acceleration cavity 18 along the orbit 5.
and the deflection magnet 1, which, like the other electron beam trajectory deflectors 37 to 44, control the trajectory of the electron beam in a direction perpendicular to the orbital plane of the orbit 5. It is designed so that the orbit of the electron beam is on the same plane as the orbit 5 when it is not acting.

【0017】また、電子ビーム軌道偏向器49は4極磁
石9と高周波加速空胴18の間の周回軌道5上に設けら
れ、高周波加速空胴18中で電子ビームを軌道が周回軌
道5に微小角度をもって交差するように偏向する。交差
角度は電子ビームが高周波加速空胴18を通過する際に
、エミッタンスの増加や電子ビームが不安定になること
等が生じない実質的に中心部を通過するように設定され
ていて、高周波加速空胴18中での周回軌道5に対する
電子ビームの軌道のずれは微小なものとなっている。 そして電子ビーム軌道偏向器50は高周波加速空胴18
の電子の周回方向出口側に隣接して設けられた4極磁石
17と4極磁石13の間の周回軌道5上に設けられ、高
周波加速空胴18中で加速されて4極磁石17を通過し
た電子ビームの軌道を周回方向で周回軌道5から離れる
ように垂直方向に偏向する。これにより電子ビームの軌
道は周回軌道5に沿った一の所定領域である高周波加速
空胴18中で周回軌道5に微小角度で交差したものとな
り、他の所定領域である偏向磁石1〜4中で周回軌道5
の軌道面に略平行したものとなる。
Further, the electron beam trajectory deflector 49 is provided on the orbit 5 between the quadrupole magnet 9 and the high-frequency acceleration cavity 18, and the electron beam orbit in the high-frequency acceleration cavity 18 is minutely aligned with the orbit 5. Deflect to intersect at an angle. The intersection angle is set so that when the electron beam passes through the high-frequency acceleration cavity 18, it passes through the center of the high-frequency acceleration cavity 18 without increasing emittance or making the electron beam unstable. The deviation of the trajectory of the electron beam from the orbit 5 in the cavity 18 is minute. The electron beam trajectory deflector 50 is the high frequency acceleration cavity 18.
The electrons are provided on the orbit 5 between the quadrupole magnet 17 and the quadrupole magnet 13 provided adjacent to the exit side in the orbiting direction of the electrons, and are accelerated in the high frequency acceleration cavity 18 and pass through the quadrupole magnet 17. The orbit of the electron beam is deflected in the vertical direction so as to move away from the orbit 5 in the orbiting direction. As a result, the trajectory of the electron beam intersects the orbit 5 at a small angle in the high frequency acceleration cavity 18, which is one predetermined region along the orbit 5, and in the deflection magnets 1 to 4, which are other predetermined regions. Orbit 5
is approximately parallel to the orbital plane.

【0018】このように構成された本実施例においても
、第1の実施例と同様に図示しない電子ビーム入射器か
ら周回軌道5に沿って電子を入射させ、周回軌道5に沿
って周回させる。入射した電子は高周波加速空胴18中
で加速され、周回しながら各電子ビーム軌道偏向器37
〜44,49,50によって周回軌道5の軌道面に垂直
な方向に偏向される。すなわち電子ビーム軌道偏向器3
7〜44は第1の実施例と同様に作用する。一方、偏向
磁石4と偏向磁石1の間では、電子ビーム軌道偏向器4
4で電子は軌道が周回軌道5に交差するように偏向され
、4極磁石9を通り、さらに電子ビーム軌道偏向器49
で電子の軌道が、高周波加速空胴18内でその中心部近
傍の所定範囲内を通過するよう、周回軌道5に対して微
小交差角を持つように偏向される。そして高周波加速空
胴18中で電子は周回軌道5に対して微小交差角を持つ
軌道で加速される。高周波加速空胴18を出た電子は4
極磁石17を通り、電子ビーム軌道偏向器50で軌道が
高周波加速空胴18に入る前の状態とは逆側に周回軌道
5から離れるように偏向され、4極磁石13を経て電子
ビーム軌道偏向器37に入る。以上を繰り返しながら電
子は周回軌道5を周回する。そして、各偏向磁石1〜4
に接続されたステッパ部19〜26にSOR光を導き、
各ステッパ部19〜26に配置した基板等の表面にSO
R光を照射させる。
In this embodiment configured as described above, electrons are incident along the orbit 5 from an electron beam injector (not shown) and made to orbit along the orbit 5, as in the first embodiment. The incident electrons are accelerated in the high frequency acceleration cavity 18, and while circulating, each electron beam trajectory deflector 37
44, 49, and 50 in a direction perpendicular to the orbital surface of the orbiting orbit 5. In other words, the electron beam trajectory deflector 3
7 to 44 operate in the same manner as in the first embodiment. On the other hand, between the deflection magnet 4 and the deflection magnet 1, an electron beam orbit deflector 4
4, the electrons are deflected so that their orbit intersects the orbit 5, pass through a quadrupole magnet 9, and then pass through an electron beam orbit deflector 49.
The electron trajectory is deflected at a small crossing angle with respect to the circular orbit 5 so that the electron trajectory passes within a predetermined range near the center of the high-frequency acceleration cavity 18 . In the high frequency acceleration cavity 18, the electrons are accelerated in a trajectory having a small crossing angle with respect to the orbit 5. The number of electrons leaving the high frequency acceleration cavity 18 is 4
The electron beam passes through the polar magnet 17 and is deflected by the electron beam trajectory deflector 50 so as to be away from the orbit 5 in the opposite direction to the state before entering the high frequency acceleration cavity 18, and then passes through the quadrupole magnet 13 to deflect the electron beam trajectory. Enter vessel 37. The electrons circulate in the orbit 5 while repeating the above steps. And each deflection magnet 1 to 4
The SOR light is guided to the stepper sections 19 to 26 connected to the
SO
Irradiate R light.

【0019】以上の本実施例によっても、高周波加速空
胴18での電子の軌道が周回軌道5と一致していないも
のの、高周波加速空胴18を通過する電子は常に高周波
加速空胴18の中を軌道の位置を大きく移動することな
く略中心部を通過し、このため第1の実施例と同様の作
用と効果が得られる。
Even in this embodiment, although the electron orbit in the high frequency acceleration cavity 18 does not coincide with the orbit 5, the electrons passing through the high frequency acceleration cavity 18 are always in the high frequency acceleration cavity 18. passes through substantially the center of the trajectory without significantly moving the position of the trajectory, and therefore the same operation and effect as in the first embodiment can be obtained.

【0020】次に、本発明の第3の実施例を図4により
説明する。図4は概略構成図で、第1の実施例の図1に
対応するものである。図において51〜54は周回軌道
5上に配設された偏向磁石で、これらは磁場勾配がない
ように形成されている。そして偏向磁石51〜54は周
回軌道5に沿って図示しない電子ビーム入射器から入射
された電子を周回軌道5に沿って周回させる。また55
〜62は周回軌道5に沿って配置された電子ビーム軌道
偏向器で、これらは第1の実施例のものと同様に制御さ
れ、電子ビームの軌道を周回軌道5の軌道面に対し垂直
な方向に所定量だけ偏向し、偏向磁石55〜62からス
テッパ部19〜26に放出されるSOR光の照射位置が
所定の値となっているように作用するものである。なお
、電子ビーム軌道偏向器45,46,55〜62を作用
させないときには電子ビームの軌道が周回軌道5と同じ
面上にあるように形成されている。
Next, a third embodiment of the present invention will be explained with reference to FIG. FIG. 4 is a schematic configuration diagram, and corresponds to FIG. 1 of the first embodiment. In the figure, 51 to 54 are deflection magnets disposed on the orbit 5, and these are formed so that there is no magnetic field gradient. The deflection magnets 51 to 54 cause electrons incident from an unillustrated electron beam injector to revolve along the orbit 5. Also 55
-62 are electron beam trajectory deflectors disposed along the orbit 5, which are controlled in the same manner as in the first embodiment, and which direct the electron beam trajectory in a direction perpendicular to the orbital plane of the orbit 5. The SOR light is deflected by a predetermined amount, and the irradiation position of the SOR light emitted from the deflection magnets 55 to 62 to the stepper sections 19 to 26 is set to a predetermined value. It should be noted that the electron beam trajectory is formed so as to be on the same plane as the orbit 5 when the electron beam trajectory deflectors 45, 46, 55-62 are not activated.

【0021】電子ビーム軌道偏向器55〜62はそれぞ
れ偏向磁石51〜54と、これら偏向磁石51〜54に
隣接して配置された4極磁石6〜13との間の周回軌道
5上に設けられ、偏向磁石51〜54に入出する電子ビ
ームを偏向している。すなわち電子ビーム軌道偏向器5
5〜58は偏向磁石51〜54の電子の周回方向入口側
に配置され、偏向磁石51〜54中での電子ビームの軌
道が周回軌道5の軌道面に平行となるように、電子ビー
ム軌道偏向器55〜58から出る電子ビームの軌道を周
回軌道5の軌道面に平行となるように偏向する。そして
電子ビーム軌道偏向器59〜62は偏向磁石51〜54
の電子の周回方向出口側に配置され、偏向磁石51〜5
4中で周回軌道5の軌道面に平行であった電子ビームの
軌道を周回軌道5に周回方向で交差するように垂直方向
に偏向するものである。これにより電子ビームの軌道は
周回軌道5に沿った一の所定領域である高周波加速空胴
18中で第1の実施例と同じく周回軌道5に一致したも
のとなり、他の所定領域である偏向磁石51〜54中で
周回軌道5の軌道面に平行したものとなる。
The electron beam trajectory deflectors 55 to 62 are provided on the orbit 5 between the deflection magnets 51 to 54 and the quadrupole magnets 6 to 13 arranged adjacent to the deflection magnets 51 to 54, respectively. , deflects the electron beam entering and exiting the deflection magnets 51 to 54. That is, the electron beam trajectory deflector 5
5 to 58 are arranged on the entrance side of the electron orbiting direction of the deflecting magnets 51 to 54, and deflect the electron beam orbit so that the orbit of the electron beam in the deflecting magnets 51 to 54 becomes parallel to the orbital surface of the orbiting orbit 5. The orbits of the electron beams emitted from the devices 55 to 58 are deflected so as to be parallel to the orbital plane of the orbit 5. The electron beam trajectory deflectors 59-62 are deflection magnets 51-54.
The deflection magnets 51 to 5 are arranged on the exit side in the direction of electron circulation.
4, the orbit of the electron beam, which was parallel to the orbital plane of the orbit 5, is deflected in the perpendicular direction so as to intersect the orbit 5 in the orbit direction. As a result, the trajectory of the electron beam coincides with the orbit 5 in the high frequency acceleration cavity 18, which is one predetermined area along the orbit 5, and in the deflection magnet, which is another predetermined area, as in the first embodiment. 51 to 54 are parallel to the orbital surface of the circulating orbit 5.

【0022】このように構成された本実施例において、
図示しない電子ビーム入射器から周回軌道5に沿って電
子を入射させ、周回軌道5に沿って周回させる。入射し
た電子は高周波加速空胴18中で加速され、周回しなが
ら各電子ビーム軌道偏向器45,46,55〜62によ
って周回軌道5の軌道面に垂直な方向に偏向される。す
なわち偏向磁石51〜54に入る電子は軌道が電子ビー
ム軌道偏向器55〜58で周回軌道5に平行となるよう
に偏向され、磁場勾配のない偏向磁石51〜54に入っ
た電子は偏向磁石51〜54中の任意の位置での軌道が
周回軌道5に平行に維持され、そのまま電子ビーム軌道
偏向器59〜62に入る。電子ビーム軌道偏向器59,
60,61で電子は、軌道がそれぞれ周回軌道5上に順
に配置された4極磁石6,14、10、7、15、11
、8、16,12を通り、次の電子ビーム軌道偏向器5
6,57,58に、周回軌道5に対し逆側に偏位されて
入るように偏向される。一方、電子ビーム軌道偏向器6
2で電子は軌道が周回軌道5に交差するように偏向され
、4極磁石9を通り、電子ビーム軌道偏向器45で周回
軌道5に一致するように偏向されて高周波加速空胴18
に入る。高周波加速空胴18中で加速された電子は、高
周波加速空胴18を出た後、周回軌道5に一致した軌道
で4極磁石17を通り、電子ビーム軌道偏向器46で軌
道が高周波加速空胴18に入る前の状態とは逆側に周回
軌道5から離れるように偏向され、4極磁石13を経て
電子ビーム軌道偏向器55に入る。以上を繰り返しなが
ら電子は周回軌道5を周回する。そして、各偏向磁石5
1〜54に接続されたビームライン27〜34を通して
ステッパ部19〜26に導かれたSOR光を、各ステッ
パ部19〜26に配置した基板等の表面に照射させる。
[0022] In this embodiment configured as described above,
Electrons are made to enter along the orbit 5 from an electron beam injector (not shown) and circulate along the orbit 5. The incident electrons are accelerated in the high-frequency acceleration cavity 18 and deflected in a direction perpendicular to the orbital plane of the orbit 5 by each electron beam trajectory deflector 45, 46, 55-62 while circulating. That is, the electrons entering the deflection magnets 51 to 54 are deflected so that their orbits are parallel to the orbit 5 by the electron beam trajectory deflectors 55 to 58, and the electrons entering the deflection magnets 51 to 54 with no magnetic field gradient are deflected by the deflection magnets 51 to 58. The orbit at any position among the electron beams 54 to 54 is maintained parallel to the orbit 5, and the electron beams enter the electron beam trajectory deflectors 59 to 62 as they are. electron beam trajectory deflector 59,
At 60 and 61, the electrons move through quadrupole magnets 6, 14, 10, 7, 15, and 11 whose orbits are arranged in order on the orbit 5, respectively.
, 8, 16, 12, and the next electron beam trajectory deflector 5
6, 57, and 58, it is deflected so as to be deflected to the opposite side to the orbit 5. On the other hand, the electron beam trajectory deflector 6
At step 2, the electrons are deflected so that their orbits intersect with the orbit 5, pass through the quadrupole magnet 9, and are deflected by the electron beam orbit deflector 45 so as to coincide with the orbit 5, and then enter the high frequency acceleration cavity 18.
to go into. After the electrons accelerated in the high-frequency acceleration cavity 18 exit the high-frequency acceleration cavity 18, they pass through the quadrupole magnet 17 on a trajectory that matches the orbit 5, and are changed by the electron beam trajectory deflector 46 to change the orbit into the high-frequency acceleration space. The electron beam is deflected away from the orbit 5 in the opposite direction to the state before entering the shell 18, and enters the electron beam orbit deflector 55 via the quadrupole magnet 13. The electrons circulate in the orbit 5 while repeating the above steps. And each deflection magnet 5
The SOR light guided to the stepper sections 19 to 26 through the beam lines 27 to 34 connected to the beam lines 1 to 54 is irradiated onto the surface of a substrate or the like disposed in each stepper section 19 to 26.

【0023】以上の本実施例によれば、第1の実施例と
同様な作用、効果が得られると共に、偏向磁石51〜5
4中での電子の軌道が周回軌道5の軌道面に平行である
ため、ステッパ部19〜26の照射範囲内での光強度は
より一様なものとなり、歪みのない向上した照射が実現
できる。
According to the present embodiment described above, the same functions and effects as those of the first embodiment can be obtained, and the deflection magnets 51 to 5
Since the orbit of the electron in stepper part 4 is parallel to the orbital plane of orbit 5, the light intensity within the irradiation range of stepper parts 19 to 26 becomes more uniform, and improved irradiation without distortion can be realized. .

【0024】次に、本発明の第4の実施例を図5により
説明する。図5は要部のみを示す正面図で、図において
偏向磁石63,64は、磁場勾配がないように形成され
ていて、略半截円柱状のヨーク65,66と、コイル6
7,68及びヨーク65,66の円柱状外面に沿うよう
に形成された溝69,70を有しており、溝69,70
に円弧状曲管の偏向部ビームダクト71,72が配設さ
れ、架台73,74の上に固定されている。また2つの
偏向磁石63,64の間には環状の4極磁石75,76
が、各々の中心軸を一致させ、その中心軸に電子の平衡
軌道を形成するようにして、可動架台77の取付台78
上に配着されている。可動架台77は取付台78を上下
方向に油圧駆動によって直線的に往復動作させる駆動機
構79を基台80上に設けて構成され、取着された4極
磁石75,76を平衡軌道を一致させたまま上下させる
。さらに2つの偏向磁石63,64に設けられた偏向部
ビームダクト71,72のそれぞれの一端の間には、真
空ベローズ81,82を介し、環状の4極磁石75,7
6の平衡軌道部分の近傍を貫通するようにして直管状の
直線部ビームダクト83が配設されている。一方、偏向
部ビームダクト71,72のそれぞれの他端の間にも、
同様に4極磁石75,76に対をなすように設けられた
図示しない環状の4極磁石の平衡軌道部分の近傍を貫通
するようにして図示しない直線部ビームダクトが配設さ
れ、4極磁石は図示しない可動架台により上下されるよ
うに設けられており、また偏向部ビームダクト71,7
2及び直線部ビームダクト83と図示しない直線部ビー
ムダクトは連通し、これらの連通したダクトの内部に電
子の周回軌道5が形成される。
Next, a fourth embodiment of the present invention will be explained with reference to FIG. FIG. 5 is a front view showing only the main parts. In the figure, the deflection magnets 63 and 64 are formed so that there is no magnetic field gradient, and the deflection magnets 63 and 64 are formed with approximately half-cylindrical yokes 65 and 66, and the coil 6.
It has grooves 69, 70 formed along the cylindrical outer surfaces of the yokes 65, 66.
Deflector beam ducts 71 and 72, which are arc-shaped curved tubes, are disposed on and fixed on frames 73 and 74, respectively. Also, between the two deflection magnets 63 and 64 are annular quadrupole magnets 75 and 76.
The mounting base 78 of the movable pedestal 77 is arranged so that the center axes of the movable bases 77 coincide with each other, and an equilibrium trajectory of electrons is formed around the center axes.
It is placed on top. The movable frame 77 is constructed by installing a drive mechanism 79 on a base 80 that linearly reciprocates a mounting base 78 in the vertical direction by hydraulic drive, and aligns the attached quadrupole magnets 75 and 76 with balanced trajectories. Move it up and down. Furthermore, annular quadrupole magnets 75 and 7 are connected via vacuum bellows 81 and 82 between one end of each of the deflection unit beam ducts 71 and 72 provided in the two deflection magnets 63 and 64, respectively.
A straight section beam duct 83 in the form of a straight tube is disposed so as to pass through the vicinity of the balanced orbit section 6. On the other hand, also between the other ends of the deflection section beam ducts 71 and 72,
Similarly, a straight beam duct (not shown) is disposed so as to pass through the vicinity of the balanced orbit of annular quadrupole magnets (not shown) provided in pairs with the quadrupole magnets 75 and 76. is provided to be raised and lowered by a movable stand (not shown), and deflection section beam ducts 71, 7
2 and the straight beam duct 83 communicate with a straight beam duct (not shown), and an orbit 5 of electrons is formed inside these communicating ducts.

【0025】このように構成された本実施例において、
図示しない電子ビーム入射器から周回軌道5に沿って電
子を入射させ、周回軌道5に沿って周回させる。なお4
極磁石75,76の平衡軌道が周回軌道5に一致する位
置にあるとき電子のビーム軌道は周回軌道5に一致した
ものとなる。ここで電子を周回させながら4極磁石75
,76を可動架台77の駆動機構79によって周回軌道
5の軌道面に垂直な方向に数十cm/秒以下の速度で往
復動させると、電子は周回して4極磁石75,76に再
び戻ってきたときには先の軌道から微小距離ずれた位置
に移ることになる。そして電子は微小距離ずれた位置を
初期値としてベータトロン振動が始めるが、4極磁石7
5,76を上下させる振動速度が高速でないため、通常
、数ミリ秒程度で減衰してしまい、電子ビームの軌道は
4極磁石75,76が可動架台77により上下されるこ
とによって周回軌道5の軌道面に平行なまま上下するよ
うになる。一方、磁場勾配のない偏向磁石63,64の
磁場内においては、横方向の磁束がないために上下方向
の集束力を与えることがなく、電子ビームが上下方向に
移動しても電子ビームの位置の変化に対し何等影響を与
えることがない。これにより偏向磁石63,64内にお
ける電子ビームの軌道を4極磁石75,76を上下させ
ることによって上下に振られることとなり、さらに偏向
磁石63,64内の電子ビームの軌道変化によって発生
するSOR光も上下に振られ、図示しないステッパ部に
配置された基板等の所定の範囲の照射を行う。
In this embodiment configured as described above,
Electrons are made to enter along the orbit 5 from an electron beam injector (not shown) and circulate along the orbit 5. Note 4
When the equilibrium orbits of the pole magnets 75 and 76 are at a position that coincides with the orbit 5, the electron beam orbit coincides with the orbit 5. Here, while the electrons are orbiting, the quadrupole magnet 75
, 76 are reciprocated in a direction perpendicular to the orbital surface of the orbit 5 by the drive mechanism 79 of the movable frame 77 at a speed of several tens of cm/second or less, the electrons circulate and return to the quadrupole magnets 75, 76 again. When it arrives, it will move to a position that is slightly shifted from its previous orbit. Then, the electrons start betatron oscillation with the initial value at a position shifted by a small distance, but the quadrupole magnet 7
Since the vibration speed that moves the magnets 5 and 76 up and down is not high, it usually attenuates in about a few milliseconds, and the orbit of the electron beam is changed to the orbit 5 as the quadrupole magnets 75 and 76 are moved up and down by the movable frame 77. It will move up and down while remaining parallel to the orbital plane. On the other hand, in the magnetic fields of the deflection magnets 63 and 64, which have no magnetic field gradient, there is no horizontal magnetic flux, so no vertical focusing force is applied, and even if the electron beam moves in the vertical direction, the position of the electron beam It has no effect on changes in As a result, the trajectory of the electron beam in the deflecting magnets 63, 64 is swung up and down by moving the quadrupole magnets 75, 76 up and down, and SOR light is generated by the change in the trajectory of the electron beam in the deflecting magnets 63, 64. The beam is also swung up and down to irradiate a predetermined range of a substrate, etc. placed in a stepper section (not shown).

【0026】以上の本実施例によれば、偏向磁石63,
64に接続されたステッパ部を照射するSOR光の照射
範囲は、周回軌道5の軌道面に平行な水平方向では従来
と同様十分な広がりが得られると共に、偏向磁石63,
64中での電子の軌道が、4極磁石75,76の平衡軌
道に電子ビームの軌道が集束され、周回軌道5の軌道面
に平行な状態のままで垂直な方向に上下するように振ら
れるので、垂直方向にも所定の範囲の広がりを安定的に
得ることができ、得られた照射範囲内での光強度は一様
なものとなり、歪みのない信頼性の高い照射が実現でき
る。また、例えば偏向磁石63,64の半径が1mの装
置の総重量が10tを超える重さとなるのに対し、1個
の重量が約100kgと比較的軽量の4極磁石75,7
6を周回軌道5の軌道面に垂直な方向に往復動させるた
め、可動架台77は安価なものにでき、駆動機構79も
精度の良い制御が行える。
According to the above embodiment, the deflecting magnets 63,
The irradiation range of the SOR light that irradiates the stepper section connected to the deflecting magnet 63,
The orbit of the electron beam in 64 is focused on the equilibrium orbit of quadrupole magnets 75 and 76, and is swung up and down in a perpendicular direction while remaining parallel to the orbital plane of orbit 5. Therefore, it is possible to stably spread a predetermined range in the vertical direction, and the light intensity within the obtained irradiation range is uniform, making it possible to realize highly reliable irradiation without distortion. Furthermore, for example, while the total weight of a device in which the deflecting magnets 63 and 64 have a radius of 1 m exceeds 10 tons, the quadrupole magnets 75 and 7 each weigh approximately 100 kg, which is relatively lightweight.
6 is reciprocated in a direction perpendicular to the orbital surface of the orbit 5, the movable pedestal 77 can be made inexpensive, and the drive mechanism 79 can also be controlled with high precision.

【0027】次に、本発明の第5の実施例を図6により
説明する。図6は要部のみを示す正面図で、図において
可動架台84の取付台85には環状の4極磁石86,8
7が、各々の中心軸を一致させて配着されており、同時
に取付台85には4極磁石86,87の中心部近傍を貫
通する直線部ビームダクト83が支持部材88によって
配着されている。また直線部ビームダクト83の両端は
偏向部ビームダクト71,72のそれぞれの一端に可撓
性を有する真空ベローズ89,90を介して取着されて
いる。そして可動架台84は取付台85を上下方向に往
復動作させる駆動機構79を基台91上に設けて構成さ
れ、取付台85に取着された4極磁石86,87及び直
線部ビームダクト83を互いの位置を変動させない状態
で上下させる。一方、偏向部ビームダクト71,72の
それぞれの他端の間にも、同様に4極磁石86,87に
対をなすように設けられた図示しない4極磁石を貫通す
るようにして図示しない直線部ビームダクトが配設され
、4極磁石と直線部ビームダクトは同様に図示しない可
動架台により上下されるように設けられており、また偏
向部ビームダクト71,72及び直線部ビームダクト8
3と図示しない直線部ビームダクトは連通し、これらの
連通したダクトの内部に電子の周回軌道5が形成される
Next, a fifth embodiment of the present invention will be explained with reference to FIG. FIG. 6 is a front view showing only the main parts.
7 are arranged with their central axes aligned, and at the same time, a straight beam duct 83 passing through near the center of quadrupole magnets 86 and 87 is arranged on the mounting base 85 by a support member 88. There is. Further, both ends of the linear beam duct 83 are attached to one end of each of the deflecting beam ducts 71 and 72 via flexible vacuum bellows 89 and 90. The movable pedestal 84 is constructed by installing a drive mechanism 79 on the base 91 that reciprocates the mount 85 in the vertical direction. Move them up and down without changing their positions. On the other hand, a straight line (not shown) is also provided between the other ends of the deflection section beam ducts 71, 72, passing through the quadrupole magnets (not shown) provided in a similar manner to form a pair with the quadrupole magnets 86, 87. The quadrupole magnet and the straight beam duct are similarly arranged to be moved up and down by a movable frame (not shown), and the deflection part beam ducts 71 and 72 and the straight part beam duct 8
3 communicates with a straight beam duct (not shown), and an orbit 5 of electrons is formed inside these communicating ducts.

【0028】このように構成された本実施例において、
第4の実施例と同様に入射させた電子を周回軌道5に沿
って周回させ、電子を周回させながら4極磁石86,8
7と直線部ビームダクト83を可動架台84の駆動機構
79によって周回軌道5の軌道面に垂直な方向に数十c
m/秒以下の速度で往復動させる。この往復動により電
子ビームの軌道は周回軌道5の軌道面に平行に上下する
ようになり、磁場勾配のない偏向磁石63,64の磁場
内においても上下に振られることとなる。そして偏向磁
石63,64内の電子ビームの軌道変化によって発生す
るSOR光も上下に振られ、図示しないステッパ部に配
置された基板等の所定の範囲の照射を行う。
In this embodiment configured as described above,
Similar to the fourth embodiment, the incident electrons are made to orbit along the orbit 5, and the quadrupole magnets 86, 8 are rotated while the electrons are orbiting.
7 and the straight beam duct 83 are moved several tens of centimeters in the direction perpendicular to the orbital surface of the orbiting orbit 5 by the drive mechanism 79 of the movable frame 84.
Reciprocate at a speed of m/s or less. Due to this reciprocating motion, the trajectory of the electron beam is made to move up and down parallel to the orbital surface of the orbiting orbit 5, and is also swung up and down in the magnetic fields of the deflecting magnets 63 and 64, which have no magnetic field gradient. The SOR light generated by changing the trajectory of the electron beams in the deflection magnets 63 and 64 is also swung up and down, and irradiates a predetermined range of a substrate, etc. placed in a stepper section (not shown).

【0029】以上の本実施例によれば、4極磁石86,
87及び直線部ビームダクト83が互いの位置を変動さ
せない状態で上下に振られることになるため、第4の実
施例と同様の作用、効果が得られると共に、4極磁石8
6,87の中央開口径をここを貫通する直線部ビームダ
クト83の外径寸法に略一致する程度にまで十分小さく
することができて、4極磁石86,87の起磁力を小さ
なものとすることができ、安価でより軽量のものとする
ことができる。また、例えば偏向磁石63,64の半径
が1mの装置の総重量が10tを超える重さとなるのに
対し、直線部ビームダクト83と4極磁石86,87と
を合わせた重量は約200数十kgと比較的軽量で安価
な可動架台84で、周回軌道5の軌道面に垂直な方向の
往復動を精度の良く制御することができる。
According to the above embodiment, the quadrupole magnet 86,
87 and the straight beam duct 83 are swung up and down without changing their positions, the same actions and effects as in the fourth embodiment can be obtained, and the quadrupole magnet 8
The central opening diameter of the magnets 6 and 87 can be made sufficiently small to approximately match the outer diameter dimension of the straight beam duct 83 passing through it, and the magnetomotive force of the quadrupole magnets 86 and 87 can be made small. It can be made cheaper and lighter. Furthermore, for example, while the total weight of a device in which the deflection magnets 63 and 64 have a radius of 1 m exceeds 10 tons, the combined weight of the straight beam duct 83 and the quadrupole magnets 86 and 87 is approximately 200 tons. The movable pedestal 84, which is relatively lightweight and inexpensive (kg), can control the reciprocating movement of the orbit 5 in a direction perpendicular to the orbital surface with high precision.

【0030】次に、本発明の第6の実施例を図7により
説明する。図7は要部のみを示す平面図で、図において
偏向磁石63,64に設けられた偏向部ビームダクト7
1,72のそれぞれの他端の間には、一端と同様に可撓
性を有する真空ベローズ92,93を介し、環状の4極
磁石94,95の中心部近傍を貫通するようにして直線
部ビームダクト96が配設されている。これにより偏向
部ビームダクト71,72及び直線部ビームダクト83
,96とは連通し、ダクト内部に電子の周回軌道5が形
成される。また全ての4極磁石86,87,94,95
は可動架台97の取付台98に取着されており、同時に
取付台98には直線部ビームダクト83,99が図示し
ない支持部材によって配着されている。そして可動架台
97は取付台98を上下方向に往復動作させる駆動機構
79を図示しない基台上に設けて構成され、取付台98
に取着された4極磁石86,87,94,95及び直線
部ビームダクト83,96を互いの位置を変動させない
状態で上下させる。
Next, a sixth embodiment of the present invention will be explained with reference to FIG. FIG. 7 is a plan view showing only the main parts.
1 and 72, a linear portion is inserted through vacuum bellows 92 and 93, which are flexible similarly to the one end, and passes through the vicinity of the center of the annular quadrupole magnets 94 and 95. A beam duct 96 is provided. As a result, the deflection section beam ducts 71 and 72 and the straight section beam duct 83
, 96, and an electron orbit 5 is formed inside the duct. Also, all four-pole magnets 86, 87, 94, 95
is attached to a mounting base 98 of a movable frame 97, and at the same time, straight beam ducts 83 and 99 are attached to the mounting base 98 by support members (not shown). The movable pedestal 97 is constructed by providing a drive mechanism 79 on a base (not shown) for reciprocating the mount 98 in the vertical direction.
The quadrupole magnets 86, 87, 94, 95 and the straight beam ducts 83, 96 attached to the magnets are moved up and down without changing their positions.

【0031】このように構成された本実施例において、
第5の実施例と同様に入射させた電子を周回軌道5に沿
って周回させ、電子を周回させながら4極磁石86,8
7,94,95と直線部ビームダクト83,96を可動
架台97の駆動機構79によって周回軌道5の軌道面に
垂直な方向に数十cm/秒以下の速度で往復動させる。 この往復動により電子ビームの軌道は周回軌道5の軌道
面に平行に上下するようになり、磁場勾配のない偏向磁
石63,64の磁場内においても上下に振られることと
なる。そして偏向磁石63,64内の電子ビームの軌道
変化によって発生するSOR光も上下に振られ、図示し
ないステッパ部に配置された基板等の所定の範囲の照射
を行う。
In this embodiment configured as described above,
Similar to the fifth embodiment, the incident electrons are made to orbit along the orbit 5, and the quadrupole magnets 86, 8 are rotated while the electrons are orbiting.
7, 94, 95 and the straight beam ducts 83, 96 are reciprocated by a drive mechanism 79 of a movable frame 97 in a direction perpendicular to the orbital surface of the orbit 5 at a speed of several tens of cm/second or less. Due to this reciprocating motion, the trajectory of the electron beam is made to move up and down parallel to the orbital surface of the orbiting orbit 5, and is also swung up and down in the magnetic fields of the deflecting magnets 63 and 64, which have no magnetic field gradient. The SOR light generated by changing the trajectory of the electron beams in the deflection magnets 63 and 64 is also swung up and down, and irradiates a predetermined range of a substrate, etc. placed in a stepper section (not shown).

【0032】以上の本実施例によれば、全ての4極磁石
86,87,94,95及び直線部ビームダクト83,
96が同時に上下に振られることになるため、第5の実
施例と同様の作用、効果が得られると共に、可動架台9
7が1台のため、各4極磁石86,87,94,95の
間の位置の変動を起こさずに、同時に上下させることが
できる。また、装置全体の重量に比べ4極磁石86,8
7,94,95等の上下させる部分の重量は軽く、可動
架台97の往復動は精度良く制御することができる。
According to this embodiment, all the quadrupole magnets 86, 87, 94, 95 and the straight beam duct 83,
96 are swung up and down at the same time, the same actions and effects as in the fifth embodiment can be obtained, and the movable frame 9
Since there is only one magnet 7, the four-pole magnets 86, 87, 94, and 95 can be moved up and down at the same time without changing their positions. Also, compared to the weight of the entire device, the 4-pole magnets 86, 8
The weight of the parts 7, 94, 95, etc. that are moved up and down is light, and the reciprocating motion of the movable pedestal 97 can be controlled with high precision.

【0033】尚、本発明は上記の各実施例に限定される
ものではなく、電子の周回軌道への入射部分などにおい
ても電子の軌道の移動が周回軌道に対し実用上問題とな
らない範囲に限定されるように電子ビーム軌道偏向器を
配する等、要旨を逸脱しない範囲内で適宜変更して実施
し得るものである。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but is limited to the range where the movement of the electron orbit does not pose a practical problem with respect to the orbit, even in the part where the electron enters the orbit. It may be implemented with appropriate modifications within the scope of the gist, such as arranging an electron beam trajectory deflector so as to

【0034】[0034]

【発明の効果】以上の説明から明らかなように、本発明
は、周回軌道に沿った一の所定領域では電子のビーム軌
道と周回軌道とのずれを所定範囲以下として略一致させ
、かつ他の所定領域では電子のビーム軌道が周回軌道の
形成する軌道面に略平行となるように垂直方向に偏向す
るビーム軌道偏向手段を設ける構成としたり、あるいは
4極磁石を電子の周回軌道面に対し垂直方向に往復動さ
せる可動手段を設ける構成としたことにより、安定した
電子ビームが確保でき、SOR光の均一な照射が広い範
囲で高い信頼性のもとに得ることができる等の効果が得
られる。
[Effects of the Invention] As is clear from the above description, the present invention allows the deviation between the electron beam orbit and the orbit to be within a predetermined range in one predetermined region along the orbit, and to substantially match the orbit. In a predetermined area, a beam orbit deflecting means for deflecting the beam in a vertical direction so that the electron beam orbit becomes approximately parallel to the orbital plane formed by the orbiting orbit may be provided, or a quadrupole magnet may be installed perpendicular to the orbital plane formed by the electron orbit. By adopting a configuration in which a movable means for reciprocating in the direction is provided, a stable electron beam can be ensured, and effects such as uniform irradiation of SOR light can be obtained over a wide range with high reliability can be obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例を示す概略構成図である
FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】図1における電子軌道の垂直方向の座標を示す
グラフである。
FIG. 2 is a graph showing vertical coordinates of electron trajectories in FIG. 1;

【図3】本発明の第2の実施例における電子軌道の垂直
方向の座標を示すグラフである。
FIG. 3 is a graph showing vertical coordinates of electron trajectories in a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す概略構成図である
FIG. 4 is a schematic configuration diagram showing a third embodiment of the present invention.

【図5】本発明の第4の実施例を示す正面図である。FIG. 5 is a front view showing a fourth embodiment of the present invention.

【図6】本発明の第5の実施例を示す正面図である。FIG. 6 is a front view showing a fifth embodiment of the present invention.

【図7】本発明の第6の実施例を示す平面図である。FIG. 7 is a plan view showing a sixth embodiment of the present invention.

【図8】従来例を示す概略構成図である。FIG. 8 is a schematic configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1〜4…偏向磁石(他の所定領域) 5…周回軌道 6〜14…4極磁石 18…高周波加速空胴(一の所定領域)37〜46…電
子ビーム軌道偏向器(ビーム軌道偏向手段)
1 to 4... Deflection magnet (another predetermined area) 5... Orbit 6 to 14... Quadrupole magnet 18... High frequency acceleration cavity (one predetermined area) 37 to 46... Electron beam trajectory deflector (beam trajectory deflection means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  周回軌道上に配設され該周回軌道に沿
って電子を周回させるようにした偏向磁石と、周回する
前記電子を収束させるように前記偏向磁石の間の前記周
回軌道上に配置した4極磁石と、前記周回軌道上に配置
され周回する前記電子を加速する高周波加速空胴とを備
えたシンクロトロン放射光発生装置において、前記周回
軌道上に、該周回軌道に沿った一の所定領域では前記電
子のビーム軌道と前記周回軌道とのずれを所定範囲以下
として略一致させ、かつ他の所定領域では前記電子のビ
ーム軌道が前記周回軌道の形成する軌道面に略平行とな
るように垂直方向に偏向するビーム軌道偏向手段が設け
られていることを特徴とするシンクロトロン放射光発生
装置。
1. A deflecting magnet disposed on an orbit so as to cause electrons to orbit along the orbit, and a deflecting magnet disposed on the orbit between the deflecting magnets so as to converge the orbiting electrons. In the synchrotron radiation generation device, the synchrotron synchrotron radiation generator includes a quadrupole magnet arranged on the orbit and a high frequency acceleration cavity that accelerates the orbiting electrons. In a predetermined region, the electron beam trajectory and the orbital orbit are made to substantially match each other by keeping the deviation within a predetermined range, and in another predetermined region, the electron beam trajectory is substantially parallel to the orbital plane formed by the orbital orbit. 1. A synchrotron synchrotron radiation generating device, characterized in that a beam trajectory deflecting means for deflecting the beam in a vertical direction is provided.
【請求項2】  周回軌道上に配設され該周回軌道に沿
って電子を周回させるようにした偏向磁石と、周回する
前記電子を収束させるように前記偏向磁石の間の前記周
回軌道上に配置した4極磁石とを備えたシンクロトロン
放射光発生装置において、前記偏向磁石で偏向された電
子の周回に対応させて前記4極磁石を電子の前記周回軌
道の軌道面に対し垂直方向に往復動させる可動手段が設
けられていることを特徴とするシンクロトロン放射光発
生装置。
2. A deflecting magnet disposed on an orbit so as to cause electrons to orbit along the orbit, and a deflecting magnet disposed on the orbit between the deflecting magnets so as to converge the orbiting electrons. In a synchrotron radiation generation device comprising a quadrupole magnet, the quadrupole magnet is reciprocated in a direction perpendicular to the orbital plane of the orbit of the electrons in response to the orbit of the electrons deflected by the deflection magnet. What is claimed is: 1. A synchrotron radiation light generating device, characterized in that a synchrotron radiation light generating device is provided with movable means for moving the synchrotron radiation.
JP18911391A 1991-03-28 1991-07-30 Synchrotron radiation beam generating device Pending JPH04357699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18911391A JPH04357699A (en) 1991-03-28 1991-07-30 Synchrotron radiation beam generating device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-90090 1991-03-28
JP9009091 1991-03-28
JP18911391A JPH04357699A (en) 1991-03-28 1991-07-30 Synchrotron radiation beam generating device

Publications (1)

Publication Number Publication Date
JPH04357699A true JPH04357699A (en) 1992-12-10

Family

ID=26431600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18911391A Pending JPH04357699A (en) 1991-03-28 1991-07-30 Synchrotron radiation beam generating device

Country Status (1)

Country Link
JP (1) JPH04357699A (en)

Similar Documents

Publication Publication Date Title
JP6571092B2 (en) Beam delivery apparatus and method
JP4988516B2 (en) Particle beam therapy system
US7326941B2 (en) Apparatus and methods for ion beam implantation using ribbon and spot beams
US7675050B2 (en) Apparatus and method for ion beam implantation using ribbon and spot beams
JPS63502707A (en) Masked ion beam lithography system and method
KR100479374B1 (en) Ion beam implantation using conical magnetic scanning
JP4276929B2 (en) Charged particle beam chromatic aberration correction apparatus and charged particle beam apparatus equipped with the aberration correction apparatus
WO2018138801A1 (en) Particle acceleration system and particle acceleration system adjustment method
US20070176123A1 (en) Ion implanter having a superconducting magnet
US6744225B2 (en) Ion accelerator
US6770890B2 (en) Stage devices including linear motors that produce reduced beam-perturbing stray magnetic fields, and charged-particle-beam microlithography systems comprising same
JP3857096B2 (en) Charged particle beam extraction apparatus, circular accelerator, and circular accelerator system
JP2021032611A (en) Charged particle beam irradiation device and charged particle beam irradiation method
JPH04357699A (en) Synchrotron radiation beam generating device
WO2021260988A1 (en) Particle accelerator and particle beam therapy device
TWI643531B (en) Particle acceleration system and method for adjusting particle acceleration system
JPH06269439A (en) X-ray ct apparatus and x-ray generator
JPH04230000A (en) Exposure of sor beam
JP6712461B2 (en) Particle acceleration system and method for adjusting particle acceleration system
JPH0636895A (en) Converging electromagnet of synchrotron and synchrotron having this converging electromagnet
JPH05181000A (en) Converging electromagnet device in particle accelerator
JP2023084781A (en) Circular accelerator and particle beam treatment system
JPH0668988A (en) Revolver type multi-rfq ion accelerator
JP2002305100A (en) Microtron electron accelerator
JP2022092936A (en) Laser ion source, circular accelerator, and particle beam therapy system