JPH0422554A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH0422554A
JPH0422554A JP12583890A JP12583890A JPH0422554A JP H0422554 A JPH0422554 A JP H0422554A JP 12583890 A JP12583890 A JP 12583890A JP 12583890 A JP12583890 A JP 12583890A JP H0422554 A JPH0422554 A JP H0422554A
Authority
JP
Japan
Prior art keywords
mold
slab
cooling water
continuous casting
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12583890A
Other languages
Japanese (ja)
Inventor
Akihiro Yamanaka
章裕 山中
Takaharu Nakajima
敬治 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12583890A priority Critical patent/JPH0422554A/en
Publication of JPH0422554A publication Critical patent/JPH0422554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a cast slab without any surface defect by using dummy bar setting suitable number of thermocouples at the upper end so that the temp. sensing contacts come to the specific depth from outer peripheral surface of the cast slab and the specific position at the upper part thereof, detecting temp. signals and controlling cooling water flow rates. CONSTITUTION:A mold wall is formed by dividing into two or more steps and downstream side mold wall 2 except the most upstream side mold wall 1 is constituted by dividing to width direction of the cast slab with plural cooling water guide plates 3, and the cooling water guide plate constituting pair of the downstream side mold wall is constituted mutually as attachable/detachable. A slit 8 for gas blowing is arranged at between the upstream side mold 1 and the downstream side mold 2. The dummy bar 9 setting the suitable number of thermocouples 10 at the upper end so that the temp. sensing contacts come to at the position of 0.5-20mm depth to inside from the outer peripheral surface of cast slab and 10mm apart from the upper end thereof upward, is used. The thermocouples are intermally chilled in solidified shell at the initial stage of casting and temp. signals from the thermocouples are detected and cooling water flow rates in the downstream side mold are controlled. By this method, the cast slab without any surface defect can be stably produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造方法に係り、特に鋳込み開始時にお
ける方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a continuous casting method, and particularly to a method at the start of casting.

(従来の技術) 連続鋳造用鋳型は通常600 =1200mmの長さを
有するもので鋳型内壁は高い熱伝導率を有する材料、す
なわち銅または銅合金等により構成されている。
(Prior Art) A continuous casting mold usually has a length of 600 mm = 1200 mm, and the inner wall of the mold is made of a material having high thermal conductivity, such as copper or a copper alloy.

このような鋳型を用いて鋳造を行う場合、溶鋼は鋳型壁
内部に供給される冷却媒体(例えば水)により間接的に
冷却作用を受け、鋳型壁に接する部分から漸次凝固が進
行し、凝固シェルの厚さが内部溶鋼の流体静力学的圧力
に耐え得る程度まで成長するに伴い凝固シェルは収縮し
、鋳型壁と凝固シェルの間に空隙を生じる事になる。
When casting is performed using such a mold, the molten steel is indirectly cooled by a cooling medium (e.g. water) supplied inside the mold wall, and solidification progresses gradually from the part in contact with the mold wall, forming a solidified shell. As the thickness of the solidified shell grows to the extent that it can withstand the hydrostatic pressure of the internal molten steel, the solidified shell contracts, creating a void between the mold wall and the solidified shell.

特に矩形断面を有する鋳型においては、鋳型の広面壁中
央部と接する鋳片凝固シェルは内部の溶鋼圧力により外
側に膨出し易く鋳型壁面と比較的よく接触し易いが、鋳
型広面側端部および狭面側の下部においては空隙が顕著
に現れ易い傾向がある。
Particularly in a mold with a rectangular cross section, the solidified slab shell that contacts the center of the broad wall of the mold tends to bulge outward due to the internal molten steel pressure and comes into relatively good contact with the mold wall, but There is a tendency for voids to appear conspicuously in the lower part of the surface side.

この空隙発生は鋳片から鋳型壁への熱伝導効率を著しく
低下させ、鋳片の凝固シェル成長を大きく阻害し、凝固
シェル厚さの不均一による表面縦割れ等品質欠陥の誘因
となり、さらには凝固シェル破損によるブレークアウト
の大きな要因となる場合が多い。これは現状連続鋳造設
備の大きな基本的問題点となっており、特に高速鋳造化
指向への最大の障害になっている。
This generation of voids significantly reduces the efficiency of heat transfer from the slab to the mold wall, greatly inhibits the growth of the solidified shell of the slab, and causes quality defects such as surface vertical cracks due to uneven thickness of the solidified shell. This is often a major cause of breakout due to damage to the solidified shell. This is a major fundamental problem with the current continuous casting equipment, and is the biggest obstacle to achieving high-speed casting.

そこで本出願人は、 ■ 平成1年特許願第36643号明細書及び図面にお
いて、鋳型下部に形成される鋳片と鋳型間の空隙による
鋳型冷却能の低下を防止することによって凝固シェルの
形成を増進均一化し、潤滑の改善による鋳型壁の甚だし
い摩耗防止を目的として、「矩形断面を有する連続鋳造
組立鋳型において、相対する2対の鋳型壁のうちの何れ
か一方もしくは両方の鋳型壁を鋳片鋳込方向に2段以上
に分割形成すると共に、最上流側鋳型壁を除く下流側鋳
型壁を複数の冷却水ガイド板で鋳片幅方向に分割構成し
、対を成す下流側鋳型壁を構成する前記夫々の冷却水ガ
イド板を互いに接離移動可能に構成した連続鋳造用鋳型
」を提案した。
Therefore, in the specification and drawings of Patent Application No. 36643 of 1999, the present applicant proposes a method to prevent the formation of a solidified shell by preventing the mold cooling ability from decreasing due to the gap between the slab formed at the bottom of the mold and the mold. In order to prevent severe wear on the mold walls by increasing uniformity and improving lubrication, "In continuous casting assembly molds with a rectangular cross section, one or both of the two opposing mold walls are covered with slabs. The mold is divided into two or more stages in the casting direction, and the downstream mold wall except the most upstream mold wall is divided in the width direction of the slab by a plurality of cooling water guide plates, forming a pair of downstream mold walls. We have proposed a continuous casting mold in which the cooling water guide plates are movable toward and away from each other.

さらに本出願人は、 ■ 平成1年特許願第229895号明細書及び図面に
おいて、「相対する2対の鋳型壁のうちの何れか一方も
しくは両方の鋳型壁を鋳片鋳込方向に2段以上に分割形
成した組立鋳型の、上流側鋳型と下流側鋳型の間、ある
いは上流側鋳型下部にガスの吹き出し用スリットを、水
平面より30’以上90’未満下向きに設けたことを特
徴とする連続鋳造用鋳型及び更に下流側鋳型の少なくと
も最上部に、大気圧より減圧された真空系に連結する排
水・排ガス用の吸引スリットを設けたことを特徴とする
連続鋳造用鋳型」を提案した。
Furthermore, the applicant has stated that: ■ In the specification and drawings of Patent Application No. 229895 of 1999, ``any one or both of the two pairs of opposing mold walls are arranged in two or more stages in the slab casting direction. Continuous casting characterized in that a slit for blowing out gas is provided between the upstream mold and the downstream mold or at the bottom of the upstream mold in an assembled mold that is divided into two parts, and is located 30' or more and less than 90' downward from the horizontal plane. ``Continuous casting mold'' characterized in that a suction slit for drainage and exhaust gas is provided at least at the top of the casting mold and the downstream mold, which is connected to a vacuum system reduced from atmospheric pressure.

(発明が解決しようとする課題) 本出願人が提案した■の発明を使用すれば、全般的には
ほぼ問題なく操業可能となったが、以下に示すような改
善すべき点が見出された。すなわち、鋳片の表面性状は
下部鋳型内の冷却条件に強く依存し、その設定において
下記の問題があることが判明した。
(Problems to be Solved by the Invention) If the invention of item (2) proposed by the present applicant is used, it is possible to operate the system without any problems in general, but the following points to be improved have been found. Ta. That is, it has been found that the surface quality of the slab strongly depends on the cooling conditions in the lower mold, and that the following problems arise in setting these conditions.

鋳片表面の冷却が不均一であると、表面縦割れ等の品質
欠陥の誘因となり、さらには凝固シェル破損によるブレ
ークアウトの大きな要因となる事は、先の発明において
も記述している。これを防止する方法としては、冷却水
ガイド板と鋳片の距離をオンラインで設定したり、冷却
水の流量制御という方法があるが、鋳片の冷却状況を直
接に検知してアクションをとっていないため、時として
不十分な場合がある。すなわち、鋳片の冷却状況は、鋳
片表面と冷却水ガイド板の間に形成される水膜条件(流
速、厚さ)によって大きく左右される。
It has been described in the previous invention that non-uniform cooling of the slab surface causes quality defects such as surface vertical cracks, and is also a major factor in breakout due to solidified shell damage. Methods to prevent this include setting the distance between the cooling water guide plate and the slab online or controlling the flow rate of the cooling water, but it is not possible to directly detect the cooling status of the slab and take action. Because there is no such thing, it is sometimes insufficient. That is, the cooling condition of the slab is greatly influenced by the conditions (flow rate, thickness) of the water film formed between the slab surface and the cooling water guide plate.

ところが、鋳片が冷却されると熱収縮のために水膜の厚
さは変化し、それに伴い水膜の流速も変化するため、冷
却条件も変化する。そして、更には再び水膜の厚さが変
化することになる。
However, when the slab is cooled, the thickness of the water film changes due to thermal contraction, and the flow rate of the water film changes accordingly, so the cooling conditions also change. Furthermore, the thickness of the water film changes again.

従って、この2つの要因を制御するのみで間接的に冷却
条件を決定することは非常に困難であり、その保証がな
い。
Therefore, it is very difficult to indirectly determine cooling conditions by only controlling these two factors, and there is no guarantee.

本発明は、かかる問題点に鑑みて成されたものであり、
下流側鋳型内での鋳片の冷却状況を直接的に検知してこ
れを制御することにより、安定した操業を可能とし、品
質欠陥のない鋳片を鋳造する方法を提供することを目的
とする。
The present invention has been made in view of such problems,
The purpose is to directly detect and control the cooling status of slabs in the downstream mold, thereby enabling stable operations and providing a method for casting slabs without quality defects. .

(課題を解決するための手段) 本発明者は、上記目的を達成するために種々実験・研究
を行った結果、 (1)ダミーバー上端部に熱電対を適数個設置し、この
熱電対を鋳込みと共に凝固シェルに鋳ぐるみ、鋳造初期
の間すなわち鋳片引抜き開始より上流側鋳型内から下流
側鋳型を出るまでの間連続してその温度を測定する。
(Means for Solving the Problem) As a result of conducting various experiments and research to achieve the above object, the inventor has found that (1) an appropriate number of thermocouples are installed at the upper end of the dummy bar; The temperature of the solidified shell is continuously measured during the initial stage of casting, that is, from the start of drawing of the slab to the time when it exits the downstream mold.

(2)熱電対の感温接点の位置を、ダミーパーの上端よ
り上方へ10m1以上離した位置とし、かつ鋳込んだ鋳
片の外周表面より内側に0.5〜20IIII11の深
さとなるように熱電対をダミーバーの上端に配置する。
(2) The thermocouple's temperature-sensing contact should be located at least 10 m1 above the upper end of the dummy par, and the thermocouple should be placed at a depth of 0.5 to 20III11 inward from the outer peripheral surface of the cast slab. Place the pair at the top of the dummy bar.

(3)前記(1)に示す鋳込み初期の間、各熱電対から
の出力信号(温度)から、該熱電対に対応する冷却水ガ
イド板部分の冷却水流量を制御して各部の冷却条件を制
御する。
(3) During the initial period of casting shown in (1) above, the cooling conditions of each part are determined by controlling the cooling water flow rate of the cooling water guide plate portion corresponding to the thermocouple based on the output signal (temperature) from each thermocouple. Control.

(4)鋳片の表面冷却条件は、鋳込み初期においてほぼ
定常に達しており、鋳造中に条件の大きな変更がない限
りその初期の設定により冷却条件は大きく変化しない。
(4) The surface cooling conditions of the slab reach a nearly steady state at the initial stage of casting, and unless there is a major change in the conditions during casting, the cooling conditions will not change significantly depending on the initial setting.

ということが判った。It turned out that.

すなわち、本発明に係る連続鋳造方法は、矩形断面を有
する連続鋳造組立鋳型の相対する2対の鋳型壁のうちの
何れか一方もしくは両方の鋳型壁を鋳片鋳込方向に2段
以上に分割形成すると共に、最上流側鋳型壁を除く下流
側鋳型壁を複数の冷却水ガイド板で鋳片幅方向に分割構
成し、対を成す下流側鋳型壁を構成する前記夫々の冷却
ガイド板を互いに接離移動可能に構成すると共に、上流
側鋳型と下流側鋳型の間、あるいは上流側鋳型の下部に
ガス吹き出し用のスリットを、水平面より30゜以−h
90°未満下向きに設けて成る連続鋳造用鋳型、あるい
は、更に下流側鋳型の少なくとも最上部に、大気圧より
減圧された真空系に連結する排水・排ガス用の吸引スリ
ットを設けた連続鋳造用鋳型を用いて連続鋳造する方法
であって、鋳込んだ鋳片の外周表面より内側に0.5〜
20凱の深さで、かつその上端から少なくとも10mm
離した位置に感温接点がくるように適数の熱電対をその
上端に設置したダミーパーを使用し、鋳込初期に前記熱
電対を凝固シェルに鋳くるみ、熱電対からの温度信号を
検知して下流側鋳型内の冷却水流量を制御することを要
旨とするものである。
That is, the continuous casting method according to the present invention divides one or both of two pairs of opposing mold walls of a continuous casting assembly mold having a rectangular cross section into two or more stages in the slab casting direction. At the same time, the downstream mold wall excluding the most upstream mold wall is divided in the slab width direction by a plurality of cooling water guide plates, and the respective cooling guide plates constituting the pair of downstream mold walls are separated from each other. In addition to being movable toward and away from the upstream mold, a slit for gas blowing is provided between the upstream mold and the downstream mold, or at the bottom of the upstream mold at a distance of 30° or more from the horizontal plane.
Continuous casting molds with a downward angle of less than 90 degrees, or continuous casting molds with suction slits for drainage and exhaust gas connected to a vacuum system that is lower than atmospheric pressure, at least at the top of the downstream mold. It is a method of continuous casting using
20 kats deep and at least 10mm from its upper edge
Using a dummy par with an appropriate number of thermocouples installed on its upper end so that the temperature-sensing contacts are placed at separate positions, the thermocouples are wrapped in the solidified shell at the early stage of casting, and the temperature signals from the thermocouples are detected. The gist of this is to control the flow rate of cooling water in the downstream mold.

本発明において、熱電対の感温接点の位置が鋳込んだ鋳
片の外周表面より内側に0.5〜20−の深さとなるよ
うにダミーパーの上端に設置するのは、0.5閣未満の
場合には鋳片の表皮より熱電対が露出して凝固シェルの
温度以外に冷却水の温度を測定する可能性が高くなるか
らである。一方、20m1を超した場合は凝固シェルの
熱抵抗により鋳片表面の冷却状況の変化に対する応答が
鈍くなり冷却の制御精度が悪くなるからである。
In the present invention, it is less than 0.5 degrees to install the thermocouple at the upper end of the dummy so that the temperature-sensing contact point of the thermocouple is located at a depth of 0.5 to 20 degrees inside the outer peripheral surface of the cast slab. In this case, there is a high possibility that the thermocouple will be exposed from the skin of the slab and will measure the temperature of the cooling water in addition to the temperature of the solidified shell. On the other hand, if it exceeds 20 m1, the thermal resistance of the solidified shell will slow down the response to changes in the cooling status of the slab surface, resulting in poor cooling control accuracy.

また、本発明において、熱電対の感温接点の位置がダミ
ーバーの上端より少なくとも10m離した位置となるよ
うに設置するのは、10m未満であるとダミーバーの顕
熱変化の影響が現れるため、真の凝固シェルの温度を検
出できないからである。
In addition, in the present invention, the temperature-sensitive junction of the thermocouple is installed at a distance of at least 10 m from the upper end of the dummy bar, because if the distance is less than 10 m, the influence of sensible heat changes of the dummy bar will appear. This is because the temperature of the solidified shell cannot be detected.

なお、この感温接点の位置は可能な限りダミーパーの上
端から離してもよいが、あまり離しすぎると溶湯熱によ
って熱電対が溶損したり、また折損や曲がり変形を起こ
す可能性が高くなるため、この距離は、鋳片の引抜きに
より熱電対の先端が下流側鋳型内に入る時に鋳造速度が
定常になっているように決定すべきで、これを最大とし
それ以上離さない方が好ましい。
Note that the temperature-sensitive contact may be located as far away from the top of the dummy as possible, but if it is too far away, the thermocouple may melt due to the heat of the molten metal, and there is a high possibility that it will break or bend. This distance should be determined so that the casting speed is constant when the tip of the thermocouple enters the downstream mold due to drawing of the slab, and it is preferable to set this distance to a maximum and not to separate it any further.

(実 施 例) 以下本発明方法を添付図面に基づいて説明する。(Example) The method of the present invention will be explained below based on the accompanying drawings.

第1図は本発明方法を、本出願人が特願平1〜2298
95号明細書及び図面で提案した鋳型に適用した場合を
示し、(イ)は断面して示す正面図、(ロ)は同しく側
面図、(ハ)は熱電対のダミーバーへの取付状態を示す
図面である。
Figure 1 shows the method of the present invention, which was filed in Japanese Patent Application No. 1-2298 by the applicant.
It shows the case where it is applied to the mold proposed in the specification and drawings of No. 95, where (a) is a front view in cross section, (b) is a side view, and (c) shows how the thermocouple is attached to the dummy bar. FIG.

先ず、本発明方法を適用する前記鋳型について簡単に説
明する。
First, the mold to which the method of the present invention is applied will be briefly explained.

第1図において、1は上流側鋳型、2は下流側鋳型であ
り、このうち上流側鋳型1は通常、テーパーを付与され
た鋳型壁、または相対する2対の平行鋳型壁を有する。
In FIG. 1, 1 is an upstream mold, and 2 is a downstream mold. Of these, the upstream mold 1 usually has a tapered mold wall or two opposing pairs of parallel mold walls.

一方、下流側鋳型2は例えば短冊状の複数の冷却水ガイ
ド板3より構成され、それぞれ例えば中央のシリンダ4
等の移動装置にリンク5を介して連結され、対を成す鋳
型壁面が接離移動できるように成されている。なお、第
1図中の6はスプリング、7は浸漬ノズルを示す。
On the other hand, the downstream mold 2 is composed of, for example, a plurality of strip-shaped cooling water guide plates 3, each of which has a central cylinder 4, for example.
It is connected to a moving device such as the like through a link 5 so that the pair of mold wall surfaces can move toward and away from each other. In addition, 6 in FIG. 1 represents a spring, and 7 represents an immersion nozzle.

8は例えば上流側鋳型1と下流側鋳型2の間に介設され
たガス吹き出し用のスリットであり、このスリット8か
ら操業中は鋳片に向けてガスを吹き付けるのである。
Reference numeral 8 denotes a gas blowing slit interposed, for example, between the upstream mold 1 and the downstream mold 2, and gas is blown from this slit 8 toward the slab during operation.

なお、図示省略したが下流側鋳型2壁を構成する冷却水
ガイド板3には最上部に吸引スリットが設けられ、この
吸引スリットの下方位置には給水口列と排水口列を交互
に設け、これら給水部と排水部とに設けられた圧力検知
器により圧力を検出し、この検出値に応じてシリンダ4
により各冷却水ガイド板3を移動できるようにしている
Although not shown, a suction slit is provided at the top of the cooling water guide plate 3 constituting the wall of the downstream mold 2, and a water supply port row and a drain port row are provided alternately below the suction slit. The pressure is detected by pressure detectors installed in these water supply parts and drainage parts, and the cylinder 4
This allows each cooling water guide plate 3 to be moved.

かかる構成の鋳型を用いて連続鋳造する際の鋳込の開始
時に、以下に述べる如く熱電対を適数配置したダミーパ
ー9を使用するのである。
At the start of continuous casting using a mold having such a configuration, a dummy par 9 having an appropriate number of thermocouples arranged thereon is used as described below.

例えば、ダミーパー9の上端における長辺を4等分し、
かつ鋳型壁面より5m内側の位置に夫々3ケ所(計6ケ
所)、その感温接点がダミーパー9の上端より30m上
方となるよう熱電対10を配置したものを使用するので
ある。
For example, divide the long side at the upper end of dummy par 9 into four equal parts,
In addition, thermocouples 10 are arranged at three locations (six locations in total) at positions 5 m inside from the mold wall surface so that their temperature-sensing contacts are 30 m above the upper end of the dummy par 9.

かかる如く、熱電対10を配置したダミーパー9を使用
することにより、鋳造開始時に、鋳片表面より約5閣内
側の位置における温度を検出することができるようにな
り、この検出温度に基づいて鋳型での冷却条件を最適に
制御するのである。
As described above, by using the dummy par 9 in which the thermocouple 10 is arranged, it becomes possible to detect the temperature at a position approximately 5 degrees inside from the surface of the slab at the start of casting, and the mold is adjusted based on this detected temperature. The cooling conditions are optimally controlled.

第2図に、前記熱電対lOによって鋳片表面より約5閣
内側の位置の温度を測定した結果を示す。
FIG. 2 shows the results of measuring the temperature at a position about 5 degrees inward from the surface of the slab using the thermocouple IO.

この場合、定常鋳造速度は1.4 m/sinであり、
給湯開始から25秒で定常鋳造速度に達し、下流側鋳型
内には約27秒で熱電対の先端(感温接点)が達してい
る。そして、第2図(イ)に示す冷却条件の制御を行わ
ない場合は、両端側の冷却が中央に較べて強すぎ、大き
な温度差を生じている。
In this case, the steady casting speed is 1.4 m/sin,
A steady casting speed was reached in 25 seconds from the start of hot water supply, and the tip of the thermocouple (thermal contact) reached the downstream mold in about 27 seconds. If the cooling conditions shown in FIG. 2(a) are not controlled, the cooling at both ends is too strong compared to the center, resulting in a large temperature difference.

これに対し、熱電対での検出温度に基づいて冷却条件の
制御を行ったところ、同図(ロ)に示すように鋳片各部
の冷却状況を同様にすることが出来た。
On the other hand, when the cooling conditions were controlled based on the temperature detected by the thermocouple, it was possible to make the cooling conditions of each part of the slab similar, as shown in FIG.

この様に下流側鋳型の冷却条件を初期鋳込みの段階で検
知し、最適に制御することにより、以降の鋳片全長に亘
って表面欠陥のほとんどない鋳片を製造できることが判
った。
It has been found that by detecting and optimally controlling the cooling conditions of the downstream mold at the initial casting stage in this way, it is possible to produce slabs with almost no surface defects over the entire length of the slab thereafter.

次に本発明の効果を確認するために行った実験の結果に
ついて説明する。1ヒート50tonの低炭素アルミキ
ルド綱を2〜6 m/1lIinの鋳造速度で、第1図
に示す鋳型を備えた連続鋳造機により、厚さ105 m
、幅1050mmの鋳片を製造した。
Next, the results of experiments conducted to confirm the effects of the present invention will be explained. A continuous casting machine equipped with the mold shown in Fig. 1 casts low carbon aluminum killed steel of 50 tons per heat at a casting speed of 2 to 6 m/1 lin to a thickness of 105 m.
, a slab with a width of 1050 mm was manufactured.

この際、上流側鋳型では、潤滑側として、Ca0S i
o 2− A I 20.系のパウダーを使用した。そ
して下流側鋳型の冷却水の流速を6〜40 m /se
cの範囲で変化させて鋳造した。
At this time, in the upstream mold, Ca0S i
o 2- AI 20. I used a type of powder. Then, the flow rate of cooling water in the downstream mold was set at 6 to 40 m/sec.
Casting was performed by changing the temperature within the range of c.

第1図で示す本実施例の如く配置した熱電対を備えたダ
ミーパを用いて操業を開始する時に、前記熱電対による
検出温度に基づいて下流側鋳型を構成する冷却水ガイド
板からの冷却水量を制御した場合と、熱電対を配置せず
、冷却水量の制御をしなかった場合の鋳片表面の欠陥発
生率を比較して第3図に示す。
When starting operation using a dummy paddle equipped with thermocouples arranged as in the present embodiment shown in FIG. 1, the amount of cooling water from the cooling water guide plate constituting the downstream mold is determined based on the temperature detected by the thermocouples. Fig. 3 shows a comparison of the defect occurrence rate on the slab surface when the temperature was controlled and when the thermocouple was not placed and the amount of cooling water was not controlled.

第3図より明らかなように、鋳造速度が大きくなるにつ
れて、従来方法では鋳片表面欠陥の発生率が大きくなっ
ていくが、本発明方法では、全般的に欠陥発生率は小さ
く、あまり変化していない。
As is clear from Fig. 3, as the casting speed increases, the incidence of surface defects on the slab increases in the conventional method, but in the method of the present invention, the defect incidence is generally small and does not change much. Not yet.

これは従来方法では、鋳造速度が大きくなるにつれて下
流側鋳型内の冷却水量を多くしているため、高温の凝固
シェルの急冷による変形が大きくなって、直接的な冷却
水量の制御を行わない場合には欠陥発生率が大きくなる
からである。
This is because in the conventional method, as the casting speed increases, the amount of cooling water in the downstream mold increases, so the deformation due to rapid cooling of the high-temperature solidified shell becomes large, and the amount of cooling water is not directly controlled. This is because the defect occurrence rate increases.

(発明の効果) 以上説明したように本発明により、鋳片表面欠陥のない
鋳片を安定して製造することが可能となる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to stably produce a slab without surface defects.

なお、熱電対の配置位置や配設数については本実施例に
示したものに限らないことは勿論であり、本発明の範囲
内で適宜変更可能である。また、熱電対を配置するダミ
ーパーについても本実施例で示した従来のものに限らず
、本出願人が平成2年4月9日付特許願で提案したダミ
ーパーに配置してもよいことは勿論である。
Note that the arrangement positions and the number of thermocouples are not limited to those shown in this embodiment, and can be changed as appropriate within the scope of the present invention. Furthermore, the dummy par on which the thermocouple is placed is not limited to the conventional one shown in this example, but it goes without saying that it may be placed on the dummy par proposed by the applicant in the patent application dated April 9, 1990. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の説明図で、(イ)は断面して示す
正面図、(ロ)は同じく側面図、(ハ)は熱電対のダミ
ーパーへの取付状態を示す図面、第2図は熱電対による
鋳片温度の測定例を示すもので、(イ)は冷却制御を行
わなかったもの、(ロ)は冷却制御を行ったものを示す
図面、第3図は本発明方法と従来方法の効果の比較図で
ある。 lは上流側鋳型、2は下流側鋳型、3は冷却水ガイド板
、4はシリンダ、9はダミーバー lOは熱電対。 @2図 (イ) #4 #3@A・3のg!藺<sec>給温P8胎々3
の一社間 (9c) (イ) 第1図 第3図 倚范速度 (汽/=、>
Fig. 1 is an explanatory diagram of the method of the present invention, in which (a) is a front view in cross section, (b) is a side view, (c) is a drawing showing how the thermocouple is attached to the dummy par, and Fig. 2 Figure 3 shows an example of measurement of slab temperature using a thermocouple; (a) shows a case without cooling control; (b) shows a case with cooling control; Fig. 3 shows the method of the present invention and the conventional method. It is a comparison diagram of the effects of the methods. 1 is an upstream mold, 2 is a downstream mold, 3 is a cooling water guide plate, 4 is a cylinder, 9 is a dummy bar, and IO is a thermocouple. @Figure 2 (a) #4 #3@A.3g!藺<sec>Warming P8 Unborn 3
Between one company (9c) (a) Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)矩形断面を有する連続鋳造組立鋳型の相対する2
対の鋳型壁のうちの何れか一方もしくは両方の鋳型壁を
鋳片鋳込方向に2段以上に分割形成すると共に、最上流
側鋳型壁を除く下流側鋳型壁を複数の冷却水ガイド板で
鋳片幅方向に分割構成し、対を成す下流側鋳型壁を構成
する前記夫々の冷却ガイド板を互いに接離移動可能に構
成すると共に、上流側鋳型と下流側鋳型の間、あるいは
上流側鋳型の下部にガス吹き出し用のスリットを、水平
面より30°以上90°未満下向きに設けて成る連続鋳
造用鋳型、あるいは、更に下流側鋳型の少なくとも最上
部に、大気圧より減圧された真空系に連結する排水・排
ガス用の吸引スリットを設けた連続鋳造用鋳型を用いて
連続鋳造する方法であって、鋳込んだ鋳片の外周表面よ
り内側に0.5〜20mmの深さで、かつその上端から
少なくとも上方へ10mm離した位置に感温接点がくる
ように適数の熱電対をその上端に設置したダミーバーを
使用し、鋳込初期に前記熱電対を凝固シェルに鋳ぐるみ
、熱電対からの温度信号を検知して下流側鋳型内の冷却
水流量を制御することを特徴とする連続鋳造方法。
(1) Two opposing continuous casting assembly molds with a rectangular cross section
One or both of the pair of mold walls is divided into two or more stages in the slab casting direction, and the downstream mold wall except the most upstream mold wall is formed with a plurality of cooling water guide plates. The respective cooling guide plates, which are divided in the width direction of the slab and constitute the paired downstream mold walls, are configured to be movable towards and away from each other, and between the upstream mold and the downstream mold, or between the upstream mold. A continuous casting mold with a slit for blowing out gas at the bottom thereof at an angle of 30° or more and less than 90° downward from the horizontal plane, or connected to at least the top of the downstream mold to a vacuum system whose pressure is reduced from atmospheric pressure. This is a method of continuous casting using a continuous casting mold equipped with suction slits for drainage and exhaust gas, and the cast slab is cast at a depth of 0.5 to 20 mm inside the outer circumferential surface of the cast slab, and at its upper end. Using a dummy bar with an appropriate number of thermocouples installed on its upper end so that the temperature-sensing junction is located at least 10 mm upward from A continuous casting method characterized by controlling the flow rate of cooling water in a downstream mold by detecting a temperature signal.
JP12583890A 1990-05-15 1990-05-15 Continuous casting method Pending JPH0422554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12583890A JPH0422554A (en) 1990-05-15 1990-05-15 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12583890A JPH0422554A (en) 1990-05-15 1990-05-15 Continuous casting method

Publications (1)

Publication Number Publication Date
JPH0422554A true JPH0422554A (en) 1992-01-27

Family

ID=14920195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12583890A Pending JPH0422554A (en) 1990-05-15 1990-05-15 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH0422554A (en)

Similar Documents

Publication Publication Date Title
US6776217B1 (en) Method for continuous casting of slab, in particular, thin slab, and a device for performing the method
US5242010A (en) Method for controlling the taper of narrow faces of a liquid-cooled mold
US6176295B1 (en) Plate mold for producing steel billets
JP2018538142A (en) Metal strip casting method with crown control
JPS5695461A (en) Continuous casting method by mold provided with mold temperature measuring element
JPH09225613A (en) Method for cooling roll for strip continuous casting
JPH0422554A (en) Continuous casting method
EP3909703B1 (en) Method for continuous casting of slab
JPS5970449A (en) Continuous casting method
JPS561251A (en) Continuous casting method
KR20210037118A (en) Constrained breakout prediction method in continuous casting process
KR100991810B1 (en) Break out monitoring method in continuous casting process
KR101766674B1 (en) Method for Controlling Flow of Molten Steel
JP3724235B2 (en) Continuous casting method and continuous casting mold
JPH03291148A (en) Dummy bar for drawing billet and continuous casting method
KR100650600B1 (en) Method of the melt temperature control in twin roll strip casting
JPS5695460A (en) Mold for continuous casting
JPH0390250A (en) Method for controlling roll temperature in twin roll type continuous casting machine
JPH0413455A (en) Method for continuously casting steel
JP2000202583A (en) Continuous casting method and mold for continuous casting
JPS6330162A (en) Measurement for shell thickness in continuous casting
JP2895603B2 (en) Surface defect judgment method for continuous cast slab
JPH01237055A (en) Method for continuously casting strip
JPS58218360A (en) Continuous casting device for thin steel plate
SU561611A1 (en) Method for continuous casting of bimetallic ingots