JPH04224625A - Manufacture of grain-oriented high silicon steel sheet - Google Patents

Manufacture of grain-oriented high silicon steel sheet

Info

Publication number
JPH04224625A
JPH04224625A JP40679790A JP40679790A JPH04224625A JP H04224625 A JPH04224625 A JP H04224625A JP 40679790 A JP40679790 A JP 40679790A JP 40679790 A JP40679790 A JP 40679790A JP H04224625 A JPH04224625 A JP H04224625A
Authority
JP
Japan
Prior art keywords
annealing
rolling
silicon steel
hot
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40679790A
Other languages
Japanese (ja)
Other versions
JPH086136B2 (en
Inventor
Yoshiyuki Ushigami
義行 牛神
Yozo Suga
菅 洋三
Shuji Kitahara
北原 修司
Hodaka Honma
穂高 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP40679790A priority Critical patent/JPH086136B2/en
Publication of JPH04224625A publication Critical patent/JPH04224625A/en
Publication of JPH086136B2 publication Critical patent/JPH086136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To solve two problems required in the viewpoint of the manufacture of a steel sheet, to permit its hot rolling at a relatively low temp. and to obtain a product at low cost by specifying the heating conditions in a silicon steel slab having a specified compsn. before its hot rolling and executing nitriding treatment from the completion of its cold rolling to the start of secondary recrystallization at the time of its finish annealing. CONSTITUTION:A silicon steel slab constituted of, by weight, 4.8 to 7.1% Si, 0.015 to 0.055% acil soluble Al, <=0.0045% N and the balance Fe is hot-rolled, and after that, it is rolled, is subjected to primary recrystallization annealing, is coated with a separation agent for annealing and is subjected to finish annealing into a product. At this time, the heating of a slab before hot rolling is executed at a temp. T ( deg.C) for time (hour) prescribed by T<=1300-10t, and nitriding treatment is executed from the completion of its cold rolling to the start of secondary recrystallization at the time of its finish annealing. By this method, the two problems of 1) the formation of an inhibitor required at the time of secondary crystallization and 2) the security of rollability can be solved, and its rolling can be executed at a relatively low temp. at which a lubricating oil is usable at the time of cold rolling, so that a grain-oriented high silicon steel sheet can be manufactured at low cost.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、軟磁性材料として電気
機器の鉄芯等に用いられる方向性高珪素鋼板の製造法に
関するものであり、特にSi含有量を高くした従来にな
い画期的な磁気特性をもつ軟磁性材料の製造法に関する
ものである。
[Industrial Application Field] The present invention relates to a method for manufacturing a grain-oriented high silicon steel sheet used as a soft magnetic material for iron cores of electrical equipment, etc. The present invention relates to a method for producing soft magnetic materials with unique magnetic properties.

【0002】0002

【従来の技術】方向性電磁鋼板の基本的な概念は、19
26年に鉄の単結晶の磁気異方性が発見されたことに端
緒がある(K.Honda,S.Kaya;Sci.R
ep.Tohoku  Imp.Univ.15(19
26年)p721)。その後、N.P.Gossによっ
て方向性電磁鋼板の製造方法が発明されて以来、方向性
電磁鋼板は軟磁性材料として大きく発展してきた(米国
特許第1,965,559号明細書)。
[Prior Art] The basic concept of grain-oriented electrical steel sheets is 19
It all started with the discovery of magnetic anisotropy in iron single crystals in 1926 (K. Honda, S. Kaya; Sci.R
ep. Tohoku Imp. Univ. 15 (19
26) p721). After that, N. P. Since a method for manufacturing grain-oriented electrical steel sheets was invented by Goss, grain-oriented electrical steel sheets have been greatly developed as a soft magnetic material (US Pat. No. 1,965,559).

【0003】方向性電磁鋼板は、結晶粒が{110}<
001>方位をもつ一方向性電磁鋼板、または{100
}<001>方位をもつ二方向性電磁鋼板等の、ある結
晶方位に強く配向した結晶粒からなる鋼板である。この
鋼板は、磁気特性として優れた励磁特性と鉄損特性が要
求され、そのためには、(1)結晶の方位の集積度を高
めること、(2)Siを添加することが重要である。
[0003] Grain-oriented electrical steel sheets have crystal grains of {110}<
Unidirectional electrical steel sheet with 001> orientation, or {100
} A steel sheet consisting of crystal grains strongly oriented in a certain crystal orientation, such as a bidirectional electrical steel sheet with a <001> orientation. This steel sheet is required to have excellent magnetic excitation characteristics and iron loss characteristics, and for this purpose, it is important to (1) increase the degree of integration of crystal orientations and (2) add Si.

【0004】結晶方位の集積化は二次再結晶と呼ばれる
カタストロフィックな粒成長現象を利用して達成される
。二次再結晶を工業的に安定して行わせるためには、二
次再結晶前にインヒビターと呼ばれる微細析出物もしく
は粒界偏析型の元素を調整することが必要である。イン
ヒビターは、一次再結晶粒の粒成長を抑制し、ある特定
の方位粒を選択的に成長させる機能をもつ。
[0004] Integration of crystal orientation is achieved using a catastrophic grain growth phenomenon called secondary recrystallization. In order to perform secondary recrystallization industrially and stably, it is necessary to adjust fine precipitates or grain boundary segregation type elements called inhibitors before secondary recrystallization. The inhibitor has the function of suppressing grain growth of primary recrystallized grains and selectively growing grains with a certain specific orientation.

【0005】インヒビターに関する研究はSiを3%含
有する珪素鋼板について広くなされている。析出物型の
インヒビターとして代表的なものとしては、M.F.L
ittmann(特公昭30−3651号公報)および
J.E.May,D.TurnbullはMnSを、田
口,坂倉(特公昭40−15644号公報)はAlNを
、今中等(特公昭51−13469号公報)はMnSe
を、小松等(特公昭62−45285号公報)は(Al
,Si)Nを提示している。
Research on inhibitors has been extensively conducted on silicon steel sheets containing 3% Si. Typical precipitate-type inhibitors include M. F. L
Ittmann (Special Publication No. 30-3651) and J. E. May, D. Turnbull used MnS, Taguchi and Sakakura (Special Publication No. 40-15644) used AlN, and Imanaka (Special Publication No. 51-13469) used MnSe.
, Komatsu et al. (Special Publication No. 62-45285) reported (Al
, Si)N.

【0006】一方、粒界偏析型の元素としては、斎藤等
(日本金属学会誌27(1963年)P186/195
)はPb,Sb,Nb,Ag,Te,Se,S等を提示
しているが、工業的にはいずれも析出物型インヒビター
の補助的なものとして使用されているにすぎない。これ
らの析出物がインヒビターとしての機能を発揮する上で
必要な条件は必ずしも明確ではないが、松岡(鉄と鋼5
3(1967年)P1007/1023)、黒木等(日
本金属学会誌43(1979年)P175/181,同
44(1980年)P419/424)の結果をまとめ
ると、次のように考えられる。
On the other hand, regarding grain boundary segregation type elements, Saito et al. (Journal of the Japan Institute of Metals 27 (1963) P186/195
) suggests Pb, Sb, Nb, Ag, Te, Se, S, etc., but these are all used industrially only as supplementary substances to precipitate-type inhibitors. The conditions necessary for these precipitates to function as inhibitors are not necessarily clear, but Matsuoka (Tetsu to Hagane 5)
3 (1967) P1007/1023) and Kuroki et al. (Journal of the Japan Institute of Metals 43 (1979) P175/181, 44 (1980) P419/424), the following can be considered.

【0007】(i)  二次再結晶前に一次再結晶粒の
粒成長を抑制するに充分な量の微細析出物が存在するこ
と。 (ii)  析出物の大きさがある程度大きく、二次再
結晶焼鈍時に、あまり急激に変化しないこと。現在、工
業的に生産されている代表的な一方向性電磁鋼板の製造
方法は、次の3種類である。
(i) The presence of a sufficient amount of fine precipitates to inhibit grain growth of primary recrystallized grains prior to secondary recrystallization. (ii) The size of the precipitates is large to some extent and does not change too rapidly during secondary recrystallization annealing. Currently, there are three typical manufacturing methods for unidirectional electrical steel sheets that are industrially produced:

【0008】第一の技術は、M.F.Littmann
により特公昭30−3651号公報に示されたMnSを
インヒビターとして用いた二回冷延工程によるものであ
り、第二の技術は田口,坂倉により特公昭40−156
44号公報に示されたAlN+MnSを用いた最終冷延
圧下率を80%以上の強圧下とする工程によるものであ
り、第三の技術は今中等により特公昭51−13469
号公報に示されたMnS(またはMnSe)+Sbを用
いた二回冷延工程によるものである。
The first technique is M. F. Littmann
The second cold rolling process using MnS as an inhibitor was disclosed in Japanese Patent Publication No. 30-3651 by Taguchi and Sakakura.
This technique is based on a process in which the final cold rolling reduction using AlN+MnS is strongly reduced to 80% or more, as shown in Publication No. 44.
This is due to the two-time cold rolling process using MnS (or MnSe) + Sb shown in the publication.

【0009】これらの技術はいずれも、析出物の量の確
保と微細化の要件を満たすために、熱延条件での高温ス
ラブ加熱によるインヒビターの作り込みを基本技術とし
ている。すなわち、スラブ加熱温度は、第一の技術では
1260℃以上、第二の技術では、特開昭48−518
52号公報に示されるようにSi量によって異なるが、
3%Siの場合は1350℃以上、第三の技術では、特
開昭51−20716号公報に示されるように1230
℃以上、特に高磁束密度化が得られる実施例では132
0℃といった極めて高い温度で焼鈍することにより、粗
大に存在する析出物を一旦溶体化し、その後熱間圧延中
、あるいはそれに続く熱処理によって、各種析出物の微
細化を行っている。
[0009] In all of these techniques, in order to ensure the amount of precipitates and satisfy the requirements for refinement, the basic technique is to create an inhibitor by heating the slab at a high temperature under hot rolling conditions. That is, the slab heating temperature is 1260°C or higher in the first technology, and 1260°C or higher in the second technology.
As shown in Publication No. 52, it varies depending on the amount of Si, but
In the case of 3% Si, the temperature is 1350°C or higher, and in the third technology, the temperature is 1230°C as shown in Japanese Patent Application Laid-Open No. 51-20716.
℃ or more, especially 132 in examples where high magnetic flux density can be obtained.
By annealing at an extremely high temperature such as 0° C., coarse precipitates are once dissolved, and then various precipitates are refined during hot rolling or by subsequent heat treatment.

【0010】一方、Si量を増すと結晶磁気異方性が小
さくなると共に、比抵抗が大きくなり、励磁特性,鉄損
特性等の磁気特性が改善される。特にSi量を略6.5
%添加すると、磁歪が零となり励磁特性が極めて良くな
ることは広く知られている。ところが、Si量を増加す
ると、硬度が高くなると共に伸びが低下し(Bozor
th;Ferromagnetism(1951年)P
77)、特にSiを4.8%以上含有する鋼板は通常の
冷間圧延を施すことは不可能となり、温間圧延を施す必
要がある。
On the other hand, when the amount of Si is increased, the magnetocrystalline anisotropy decreases, the specific resistance increases, and magnetic properties such as excitation characteristics and iron loss characteristics are improved. In particular, the amount of Si is approximately 6.5
It is widely known that when % is added, the magnetostriction becomes zero and the excitation characteristics are extremely improved. However, when the amount of Si is increased, the hardness increases and the elongation decreases (Bozor
th; Ferromagnetism (1951) P
77) In particular, steel sheets containing 4.8% or more of Si cannot be subjected to normal cold rolling and must be warm rolled.

【0011】高珪素鋼板の圧延性を圧延時の温度を上げ
て改善することは、特公昭35−18709号公報等に
より公知の事実である。しかるに、特公昭35−187
09号公報に述べているように圧延時の温度を350〜
425℃に確保するためには、圧延加工時の発熱では不
充分であり、加熱装置を組み込んだ圧延装置が必要であ
り、さらに400℃以上の温度域では冷間圧延時に使用
する潤滑油は使用できないので、コスト的に非常に高い
ものになってしまう。
It is a well-known fact from Japanese Patent Publication No. 35-18709 that the rollability of high-silicon steel sheets is improved by increasing the rolling temperature. However, the special public official
As stated in Publication No. 09, the temperature during rolling was set at 350~350°C.
In order to maintain the temperature at 425°C, the heat generated during rolling is insufficient, and a rolling machine with a built-in heating device is required. Furthermore, in the temperature range of 400°C or higher, the lubricating oil used during cold rolling cannot be used. Since this is not possible, the cost will be extremely high.

【0012】従って、経済性の観点から、少なくとも冷
間圧延時の潤滑油の使用できる380℃以下で圧延でき
るようにすることが重要な課題である。従って、方向性
高珪素鋼板を製造するプロセスを設計する上で、(1)
二次再結晶に必要なインヒビターを形成すること、(2
)圧延性を確保することが重要な課題である。
[0012] Therefore, from the viewpoint of economic efficiency, it is an important issue to be able to roll at least at 380°C or lower, at which lubricating oil can be used during cold rolling. Therefore, when designing the process for manufacturing grain-oriented high silicon steel sheets, (1)
forming the necessary inhibitor for secondary recrystallization, (2
) Ensuring rollability is an important issue.

【0013】従来技術に従って、高温スラブ加熱により
インヒビターを形成させると、高珪素鋼板はSi量が多
いためこの温度域ではα単相となり、溶体化に伴い粒が
大きく成長してしまう。その影響で、熱延後の粒径も大
きくなり、圧延性が著しく劣化してしまう。高田等は、
特開昭63−26330号公報において、Siを3%含
有する従来の方向性珪素鋼板を、SiCl4 を含む雰
囲気中で加熱し、浸珪させ、その後珪素の板厚方向の濃
度の不均一性を解消するために、拡散焼鈍を施す方法を
提案している。しかしながらこのプロセスにおいては、
高温,長時間の焼鈍を追加するためにコスト的に大きな
問題がある。
[0013] When an inhibitor is formed by heating a high-temperature slab according to the prior art, the high-silicon steel plate has a large amount of Si, so it becomes an α single phase in this temperature range, and the grains grow large as it is solutionized. As a result, the grain size after hot rolling also increases, resulting in a significant deterioration in rolling properties. Takada et al.
In JP-A No. 63-26330, a conventional grain-oriented silicon steel sheet containing 3% Si is heated in an atmosphere containing SiCl4 to siliconize it, and then the non-uniformity of silicon concentration in the sheet thickness direction is investigated. In order to solve this problem, we have proposed a method of applying diffusion annealing. However, in this process,
There is a major cost problem due to the additional high-temperature, long-time annealing.

【0014】[0014]

【発明が解決しようとする課題】本発明は、方向性高珪
素鋼板を製造する上で必要な前記の二つの課題を解決し
、かつ安価に製造することができるプロセスを提供する
ことを目的とするものである。
[Problems to be Solved by the Invention] It is an object of the present invention to provide a process that solves the above-mentioned two problems necessary for manufacturing grain-oriented high-silicon steel sheets and can be manufactured at low cost. It is something to do.

【0015】[0015]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1)重量でSi;4.8〜7.1%,酸可溶性Al;
0.015〜0.055%,N≧0.0045%,残部
Feおよび不可避的不純物からなる珪素鋼スラブを熱間
圧延し、その後圧延、一次再結晶焼鈍、焼鈍分離剤の塗
布、仕上焼鈍の各工程で処理することにより製品とする
方向性高珪素鋼板の製造法において、熱間圧延前のスラ
ブ加熱を下記の不等式で規定される温度T(℃)および
時間t(hr)で行い、かつ冷間圧延後から仕上焼鈍時
の二次再結晶開始までの間に窒化処理を施すことを特徴
とする方向性高珪素鋼板の製造法。
[Means for Solving the Problems] The gist of the present invention is as follows. (1) Si; 4.8-7.1% by weight, acid-soluble Al;
A silicon steel slab consisting of 0.015 to 0.055%, N≧0.0045%, balance Fe and unavoidable impurities is hot rolled, followed by rolling, primary recrystallization annealing, application of an annealing separator, and final annealing. In a method for producing grain-oriented high-silicon steel sheets, which are made into products by processing in each process, the slab is heated before hot rolling at a temperature T (°C) and a time t (hr) defined by the following inequality, and A method for producing a grain-oriented high silicon steel sheet, characterized in that a nitriding treatment is performed after cold rolling until the start of secondary recrystallization during final annealing.

【0016】T≦1300−10t (2)熱間圧延後、800〜1100℃の温度範囲で3
0秒〜1時間焼鈍を施すことを特徴とする前項1記載の
方向性高珪素鋼板の製造法。本発明者等は、まず高珪素
鋼板の圧延性の研究より、圧延前の鋼板を小さな粒径で
、かつ板厚方向に均一な組織とすることが重要であると
の知見を得た。
T≦1300-10t (2) After hot rolling, 3
2. The method for producing a grain-oriented high-silicon steel sheet according to item 1 above, characterized in that annealing is performed for 0 seconds to 1 hour. The present inventors first learned from research on the rollability of high-silicon steel sheets that it is important to make the steel sheet before rolling have a small grain size and a uniform structure in the thickness direction.

【0017】この知見を基に、(1)スラブ加熱を低温
で行い、粒成長を抑制し、かつ(2)析出物としてAl
Nを活用して熱延時の粒成長を抑制することにより、熱
延板組織を制御でき、圧延性が大幅に改善されることを
見出した。従って、圧延性の要請を満たす上記条件下に
おいては、本質的に前述の高温スラブ加熱によってイン
ヒビターを形成させることはできない。そこで、二次再
結晶に必要なインヒビターを強化する方法を種々検討し
た結果、冷間圧延後に窒化によりインヒビターを強化す
ることが有効であることを見出した。これらの工程によ
り、(1)圧延性の確保と(2)二次再結晶に必要なイ
ンヒビターを確保することを両立させる条件を見出し、
本発明を創案した。
Based on this knowledge, (1) the slab is heated at a low temperature to suppress grain growth, and (2) Al as a precipitate is
It has been found that by suppressing grain growth during hot rolling by utilizing N, the structure of the hot rolled sheet can be controlled and the rolling properties can be significantly improved. Therefore, under the above conditions that satisfy the requirements for rollability, it is essentially impossible to form an inhibitor by the above-mentioned high-temperature slab heating. Therefore, as a result of investigating various methods for strengthening the inhibitor required for secondary recrystallization, it was found that it is effective to strengthen the inhibitor by nitriding after cold rolling. Through these steps, we found conditions that achieve both (1) securing rollability and (2) securing the inhibitor necessary for secondary recrystallization.
invented the present invention.

【0018】以下、本発明を詳細に説明する。Si;6
.6%、酸可溶性Al;0.027%、N;0.007
%、Mn;0.16%、S;0.007%、C;0.0
1%、残部実質的にFeからなるスラブを1000〜1
400℃で1〜10時間焼鈍した後、熱間圧延し、2.
3mm厚の熱延板とした。この鋼板に250℃で温間圧
延を施し、0.3mm厚とした。図1にスラブ加熱条件
と圧延性の関係を示す。図1より加熱温度T(℃),加
熱時間t(hr)に対してT≦1300−10tの範囲
内で、圧延性が良好となることが分る。
The present invention will be explained in detail below. Si;6
.. 6%, acid soluble Al; 0.027%, N; 0.007
%, Mn; 0.16%, S; 0.007%, C; 0.0
1%, the remainder substantially Fe
After annealing at 400°C for 1 to 10 hours, hot rolling is performed.2.
It was made into a hot-rolled plate with a thickness of 3 mm. This steel plate was warm rolled at 250°C to have a thickness of 0.3 mm. Figure 1 shows the relationship between slab heating conditions and rollability. It can be seen from FIG. 1 that rollability is good within the range of T≦1300-10t for heating temperature T (° C.) and heating time t (hr).

【0019】圧延時に割れた鋼板のスラブ加熱直後の組
織を調査したところ、粒が著しく大きくなっていること
が分った。これはスラブ中に存在する析出物AlNが溶
体化してしまい、粒成長の抑止力がなくなるためである
と考えられる。次に析出物の影響をみるために、Si;
6.6%、C;0.005%、Mn;0.16%、S;
0.007%、酸可溶性Al;0.005〜0.300
、N;0.001〜0.011、残部実質的にFeから
なるスラブを1200℃で1時間加熱した後、2.3m
m厚の熱延板とした。この熱延板を250℃で温間圧延
を施し、0.30mm厚とした。図2に成分(Al,N
)と圧延性の関係を示す。図2より酸可溶性Al;0.
015%以上,N;0.0045%以上で圧延性が良好
となることが分る。
When the structure of the steel plate cracked during rolling was investigated immediately after slab heating, it was found that the grains had become significantly larger. This is considered to be because the precipitated AlN present in the slab becomes a solution and loses its ability to inhibit grain growth. Next, in order to examine the influence of precipitates, Si;
6.6%, C; 0.005%, Mn; 0.16%, S;
0.007%, acid-soluble Al; 0.005-0.300
, N; 0.001 to 0.011, the remainder being substantially Fe. After heating the slab at 1200°C for 1 hour, 2.3 m
It was made into a hot-rolled plate with a thickness of m. This hot-rolled plate was warm rolled at 250°C to have a thickness of 0.30 mm. Figure 2 shows the components (Al, N
) shows the relationship between rollability and rollability. From FIG. 2, acid-soluble Al; 0.
0.015% or more, N: 0.0045% or more shows that the rollability is good.

【0020】以上述べたように、析出物AlNを有効利
用し、スラブ加熱条件を適正範囲内で行うことより、1
20〜380℃の圧延温度で容易に圧延することが可能
となった。さらに、この熱延板を800〜1100℃の
温度域で30秒〜1時間熱処理することにより圧延性が
改善される。
As mentioned above, by effectively utilizing the precipitated AlN and keeping the slab heating conditions within an appropriate range, 1.
It became possible to easily roll at a rolling temperature of 20 to 380°C. Furthermore, rolling properties are improved by heat-treating this hot-rolled sheet in a temperature range of 800 to 1100°C for 30 seconds to 1 hour.

【0021】図3〜図5に熱処理による板厚方向の組織
の変化を示す。これから分るように熱延板の表面部は再
結晶組織、中心部は加工組織の二層構造となっている。 このように二層構造になっていると各層で変形能が異な
るために、境界部を起点として割れが生じる場合がある
。熱延板を800℃以上の温度で熱処理することにより
、中心部の加工組織が再結晶し、板厚方向に均一な組織
となり、圧延性が改善される。また、焼鈍温度が110
0℃を越えると、図6に示すように集合組織がランダム
化してしまい、二次再結晶が発現し難くなってしまう。
FIGS. 3 to 5 show changes in the structure in the thickness direction due to heat treatment. As can be seen from this figure, the hot-rolled sheet has a two-layer structure, with the surface part having a recrystallized structure and the center part having a processed structure. In such a two-layer structure, each layer has different deformability, so cracks may occur starting at the boundary. By heat-treating a hot-rolled sheet at a temperature of 800° C. or higher, the processed structure in the center recrystallizes, becoming a uniform structure in the thickness direction, and improving rolling properties. In addition, the annealing temperature is 110
If the temperature exceeds 0°C, the texture becomes random as shown in FIG. 6, making it difficult for secondary recrystallization to occur.

【0022】図7に、酸可溶性Al;0.0265%、
N;0.0080%、図8に酸可溶性Al;0.002
3%、N;0.0025%の熱延板を980℃で30秒
間焼鈍した板の断面組織写真を示す。図7、8より、本
発明範囲の成分の板(図7)は結晶粒径が小さく均一で
あることが分る。以上の結果を基に、Si;6.6%、
酸可溶性Al;0.035%、N;0.008%、Mn
;0.16%、S;0.008%、C;0.004%、
残部実質的にFeからなるスラブを1200℃で1時間
加熱した後、熱間圧延し、2.0mm厚の熱延板とした
。この熱延板を1000℃で2分間焼鈍し、その後27
0℃で温間圧延し、0.30mmの最終板厚とした。7
80℃で2分間湿水素ガス中で一次再結晶焼鈍を施し、
次いでマグネシアを主成分とする焼鈍分離剤を塗布した
後、1200℃で10時間仕上焼鈍を施したが、二次再
結晶は発現しなかった。これは、AlNを溶体化させる
高温スラブ加熱を行っていないので、インヒビターが十
分な量確保できていなかったためと考えられる。
FIG. 7 shows acid-soluble Al; 0.0265%;
N; 0.0080%, acid-soluble Al; 0.002 in Figure 8
3%, N; 0.0025% hot-rolled sheet annealed at 980° C. for 30 seconds. From FIGS. 7 and 8, it can be seen that the plate containing the ingredients within the range of the present invention (FIG. 7) has a small and uniform crystal grain size. Based on the above results, Si; 6.6%;
Acid soluble Al; 0.035%, N; 0.008%, Mn
;0.16%, S;0.008%, C;0.004%,
The slab, the remainder of which essentially consisted of Fe, was heated at 1200° C. for 1 hour and then hot rolled to form a hot rolled sheet with a thickness of 2.0 mm. This hot-rolled plate was annealed at 1000°C for 2 minutes, and then
Warm rolling was carried out at 0° C. to give a final thickness of 0.30 mm. 7
Primary recrystallization annealing was performed at 80°C for 2 minutes in wet hydrogen gas,
Next, after applying an annealing separator containing magnesia as a main component, finish annealing was performed at 1200° C. for 10 hours, but no secondary recrystallization occurred. This is considered to be because a sufficient amount of the inhibitor was not secured because high-temperature slab heating to make AlN into a solution was not performed.

【0023】そこで、種々のインヒビター強化法を検討
した結果、窒化によるインヒビター強化が有効であるこ
とを見出した。すなわち、前記と同一の一次再結晶板に
、アンモニアを含有する雰囲気ガス中で窒化処理を行っ
た。その際、アンモニア含有量により窒化量を変えた。 次いで、MgOを主成分とする焼鈍分離剤を塗布した後
、仕上焼鈍を施した。
[0023] As a result of examining various methods of strengthening the inhibitor, it was found that strengthening the inhibitor by nitriding is effective. That is, the same primary recrystallization plate as above was subjected to nitriding treatment in an atmospheric gas containing ammonia. At that time, the amount of nitridation was varied depending on the ammonia content. Next, after applying an annealing separator containing MgO as a main component, finish annealing was performed.

【0024】図9に窒化量と製品の磁束密度(B8 値
)の関係を示す。図9から明らかなように、鋼板の増窒
素量が0.005%以上、好ましくは0.01%以上と
なるように鋼板を窒化することによって一次再結晶粒の
成長を抑制し二次再結晶する。次に、本発明の実施形態
を示す。本発明に用いる溶鋼は、転炉、電気炉等、その
溶製方法を問わないが、成分として次の含有範囲を必須
のものとする。
FIG. 9 shows the relationship between the amount of nitridation and the magnetic flux density (B8 value) of the product. As is clear from Fig. 9, by nitriding the steel plate so that the nitrogen content of the steel plate is 0.005% or more, preferably 0.01% or more, the growth of primary recrystallized grains is suppressed and secondary recrystallization is performed. do. Next, embodiments of the present invention will be described. The molten steel used in the present invention may be produced by any method such as a converter or an electric furnace, but the following content ranges as components are essential.

【0025】Siは本発明の目標が透磁率が最大となる
略6.5%を含有する高珪素鋼板を工業的に製造するプ
ロセスの確立を目標とすることにより、6.5%を中心
に若干の幅をもつ範囲にあればよい。Si量の下限は従
来市販されていない4.8%とし、上限値は、それを超
えると磁気特性が劣化する7.1%とする。酸可溶性A
lは、Nと結びついて析出物となり、スラブ加熱時、熱
延時、熱延板焼鈍時に結晶粒の成長を抑制し、圧延性を
改善する。また、圧延後に窒化処理を施すことにより、
二次再結晶前にAlN、(Al,Si)Nを形成して二
次再結晶に必要な量のインヒビターを確保する。圧延性
の点からは酸可溶性Alは0.15%以上必要であり、
二次再結晶の点からは0.12〜0.55%必要である
ので、両者を勘案して0.015〜0.055%を限定
範囲とする。
[0025] The Si content is mainly 6.5% because the goal of the present invention is to establish a process for industrially manufacturing high-silicon steel sheets containing approximately 6.5%, which has the maximum magnetic permeability. It suffices if it is within a range with some width. The lower limit of the amount of Si is 4.8%, which is not conventionally available on the market, and the upper limit is 7.1%, beyond which the magnetic properties deteriorate. acid soluble A
L combines with N to form precipitates, which suppresses the growth of crystal grains during slab heating, hot rolling, and hot rolled sheet annealing, thereby improving rollability. In addition, by applying nitriding treatment after rolling,
Before the secondary recrystallization, AlN and (Al, Si)N are formed to ensure the amount of inhibitor required for the secondary recrystallization. From the point of view of rolling properties, acid-soluble Al is required to be 0.15% or more,
Since 0.12 to 0.55% is necessary from the point of view of secondary recrystallization, the limited range is set to 0.015 to 0.055% in consideration of both.

【0026】Nは前述のように、Alと結合して圧延性
を改善する。この効果を得るためには溶鋼の段階で0.
0045%以上含有することが必要である。また、Cに
ついては、H.C.Fiedler(Journal 
 of  Iron  and  Steel  In
stitute(1967)P158/160)は、添
加することにより圧延性が改善するとの報告をしている
が、本発明において、析出物の活用とスラブ加熱条件に
より組織の微細化制御を行った場合に、むしろ有害であ
ることが判明した。Cは好ましくは0.025%以下と
することにより圧延性が改善される。
As mentioned above, N combines with Al to improve rolling properties. In order to obtain this effect, the molten steel must be 0.
It is necessary to contain 0.045% or more. Regarding C, H. C. Fiedler (Journal
of Iron and Steel In
Institute (1967) P158/160) reported that rolling properties are improved by adding them, but in the present invention, when microstructure is controlled by utilizing precipitates and slab heating conditions, , turned out to be rather harmful. Rollability is improved by preferably controlling C to 0.025% or less.

【0027】ここでスラブ加熱をT≦1300−10t
の条件下で行うことが本発明の要件の一つである。スラ
ブ加熱をあまり低温で行うと、鋼板の形状が悪くなって
しまうので1000℃以上で行うことが望ましい。熱延
板は直ちにもしくは短時間焼鈍工程を経て圧延され、最
終板厚とされる。この短時間焼鈍を800〜1100℃
の温度域で30秒〜1時間施すことにより圧延性がさら
に改善される。
[0027] Here, the slab heating is performed at T≦1300-10t.
One of the requirements of the present invention is to carry out the test under these conditions. If the slab is heated at too low a temperature, the shape of the steel plate will deteriorate, so it is desirable to heat the slab at a temperature of 1000° C. or higher. The hot-rolled sheet is rolled immediately or after a short annealing step to obtain the final thickness. This short time annealing is carried out at 800-1100℃.
Rollability is further improved by applying the rolling in a temperature range of 30 seconds to 1 hour.

【0028】本発明において、圧延は最初の段階では1
20〜380℃の温度域で行うことが必要である。この
温間圧延を圧下率で70%程度迄施すと、以降は室温で
圧延することが可能となる。二次再結晶させるに必要な
集合組織を得るためには、一方向性電磁鋼板に対しては
基本的には特公昭40−15644号公報に開示されて
いるように最終圧下率80%以上とすること、また二方
向性電磁鋼板に対しては、基本的には特公昭35−26
57号公報もしくは特公昭38−8218号公報に開示
されている交叉圧延法を施す必要がある。
[0028] In the present invention, rolling is carried out at 1
It is necessary to carry out the process in a temperature range of 20 to 380°C. When this warm rolling is performed to a reduction rate of about 70%, subsequent rolling can be performed at room temperature. In order to obtain the texture necessary for secondary recrystallization, the final rolling reduction of 80% or more is basically required for unidirectional electrical steel sheets as disclosed in Japanese Patent Publication No. 15644/1973. In addition, for bidirectional electrical steel sheets, basically the
It is necessary to apply the cross rolling method disclosed in Japanese Patent Publication No. 57 or Japanese Patent Publication No. 38-8218.

【0029】この鋼板に、700〜900℃の温度範囲
で一次再結晶焼鈍を施し、焼鈍分離剤を塗布し、二次再
結晶と純化を目的に仕上焼鈍を施す。その際、圧延加工
後から仕上焼鈍時の二次再結晶の発現前の間に窒化処理
を施すことが、本発明の要件の一つである。窒化の方法
については、特に限定しない。従来の技術として仕上焼
鈍時の雰囲気ガスに窒素ガスを混入する方法、アンモニ
ア等の窒化能のあるガスにより窒化処理を行う方法、窒
化マンガン,窒化クロム等の窒化能のある金属窒化物を
焼鈍分離剤に添加する方法等を用いることができる。
[0029] This steel plate is subjected to primary recrystallization annealing in a temperature range of 700 to 900°C, coated with an annealing separator, and final annealed for the purpose of secondary recrystallization and purification. At that time, one of the requirements of the present invention is to perform the nitriding treatment after the rolling process and before the appearance of secondary recrystallization during final annealing. There are no particular limitations on the nitriding method. Conventional techniques include mixing nitrogen gas into the atmosphere gas during final annealing, nitriding using a gas with nitriding ability such as ammonia, and separating metal nitrides with nitriding ability such as manganese nitride and chromium nitride by annealing. A method such as adding it to a drug can be used.

【0030】[0030]

【実施例】実施例1 重量でSi;5.5%、酸可溶性Al;0.027%、
N;0.007%、Mn;0.16%:S;0.007
%:C;0.004%  を含有し、残部実質的にFe
からなるスラブを1300℃と1150℃で3時間焼鈍
後、1.6mm厚に熱間圧延した。その後900℃で2
分間焼鈍し、220℃の温度で0.5mm迄温間圧延し
た。その後室温で0.20mmの最終板厚まで冷間圧延
した。この冷延板を800℃で2分間湿水素雰囲気中で
焼鈍し、アンモニア雰囲気中800℃で2分間焼鈍し、
窒化処理を施した。増窒素量を調べたところ0.02%
であった。焼鈍分離剤としてMgOを塗布し、1200
℃で10時間の仕上焼鈍を行った。
[Example] Example 1 By weight, Si: 5.5%, acid-soluble Al: 0.027%,
N; 0.007%, Mn; 0.16%: S; 0.007
%: Contains C; 0.004%, the remainder is substantially Fe.
After annealing the slab at 1300°C and 1150°C for 3 hours, it was hot rolled to a thickness of 1.6 mm. Then at 900℃ 2
It was annealed for minutes and warm rolled to 0.5 mm at a temperature of 220°C. It was then cold rolled at room temperature to a final thickness of 0.20 mm. This cold-rolled sheet was annealed at 800°C for 2 minutes in a wet hydrogen atmosphere, and then annealed at 800°C for 2 minutes in an ammonia atmosphere.
Nitriding treatment was applied. When I checked the nitrogen increase amount, it was 0.02%.
Met. MgO was applied as an annealing separator and 1200
Finish annealing was performed at ℃ for 10 hours.

【0031】スラブ加熱1300℃の材料は温間圧延中
に割れが発生し試料採取ができなかった。スラブ加熱1
150℃の材料は二次再結晶し、磁束密度はB8 値で
1.65Tesla(B8 /Bs〜0.9;Bsは飽
和磁束密度)であった。 実施例2 重量でSi;6.5%、酸可溶性Al;0.035%、
N;0.006%、Mn;0.15%、S;0.007
%、C;0.02%を含有し、残部実質的にFeからな
るスラブを1200℃で1時間焼鈍後、1.6mm厚の
熱延板とした。この熱延板をそのまま、また1000℃
で2分間焼鈍した後、270℃の温度で0.7mm迄圧
延し、次いで直角方向に0.35mm迄交叉圧延を施し
た。この冷延板を780℃で2分間湿水素雰囲気中で一
次再結晶焼鈍した。その後焼鈍分離剤を塗布し、120
0℃で10時間仕上焼鈍を行った。その際、窒化を目的
に焼鈍分離剤に窒化フェロマンガンを5%添加した。そ
の結果を表1に示す。
[0031] The material subjected to slab heating at 1300°C cracked during warm rolling, and samples could not be taken. Slab heating 1
The material at 150° C. underwent secondary recrystallization, and the magnetic flux density was 1.65 Tesla (B8 /Bs ~ 0.9; Bs is the saturation magnetic flux density) as a B8 value. Example 2 By weight Si: 6.5%, acid soluble Al: 0.035%,
N; 0.006%, Mn; 0.15%, S; 0.007
%, C: 0.02%, and the remainder substantially consisted of Fe. The slab was annealed at 1200° C. for 1 hour, and then made into a hot rolled sheet with a thickness of 1.6 mm. This hot-rolled sheet is heated to 1000℃ as it is.
After annealing for 2 minutes at 270° C., the material was rolled to a thickness of 0.7 mm, and then cross-rolled in the right angle direction to a thickness of 0.35 mm. This cold-rolled sheet was subjected to primary recrystallization annealing at 780° C. for 2 minutes in a wet hydrogen atmosphere. After that, apply an annealing separator and
Finish annealing was performed at 0°C for 10 hours. At that time, 5% ferromanganese nitride was added to the annealing separator for the purpose of nitriding. The results are shown in Table 1.

【0032】[0032]

【表1】[Table 1]

【0033】[0033]

【発明の効果】本発明によれば、方向性高珪素鋼板を製
造するプロセスを設計する上で、(1)二次再結晶に必
要なインヒビターを形成すること、(2)圧延性を確保
すること、という二つの課題を解決し、かつ安価に方向
性高珪素鋼板を製造し得るプロセスを提供することがで
きる。
[Effects of the Invention] According to the present invention, when designing a process for producing grain-oriented high silicon steel sheets, it is possible to (1) form an inhibitor necessary for secondary recrystallization, and (2) ensure rollability. It is possible to provide a process that can solve these two problems and produce grain-oriented high-silicon steel sheets at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】スラブ加熱温度、時間と圧延性の関係を示す図
である。
FIG. 1 is a diagram showing the relationship between slab heating temperature, time, and rollability.

【図2】鋼中の酸可溶性Al量、N量と圧延性の関係を
示す図である。
FIG. 2 is a diagram showing the relationship between the amount of acid-soluble Al and N in steel and the rollability.

【図3】酸可溶性Al;0.0265%、N;0.00
80%の熱延板の断面の金属組織写真である。    
                         
                     .
FIG. 3: Acid-soluble Al: 0.0265%, N: 0.00
This is a photograph of the metallographic structure of a cross section of an 80% hot-rolled sheet.

..

【図4
】酸可溶性Al;0.0265%、N;0.0080%
の熱延焼鈍板(830℃焼鈍)の断面の金属組織写真で
ある。
[Figure 4
] Acid-soluble Al: 0.0265%, N: 0.0080%
It is a photograph of the metallographic structure of a cross section of a hot-rolled annealed plate (annealed at 830°C).

【図5】酸可溶性Al;0.0265%、N;0.00
80%の熱延焼鈍板(900℃焼鈍)の断面の金属組織
写真である。
FIG. 5: Acid-soluble Al: 0.0265%, N: 0.00
This is a photograph of the metallographic structure of a cross section of an 80% hot-rolled annealed plate (annealed at 900°C).

【図6】熱延板の焼鈍による集合組織変化を示す図であ
る。
FIG. 6 is a diagram showing changes in texture due to annealing of a hot rolled sheet.

【図7】酸可溶性Al0.0265%、N;0.008
0%の熱延板焼鈍後の断面の金属組織写真である。
FIG. 7: Acid-soluble Al 0.0265%, N; 0.008
It is a photograph of the metallographic structure of a cross section after 0% hot-rolled sheet annealing.

【図8】酸可溶性Al;0.0023%、N;0.00
25%の熱延板焼鈍後の断面の金属組織写真である。
FIG. 8 Acid-soluble Al: 0.0023%, N: 0.00
It is a photograph of the metallographic structure of a cross section after 25% annealing of a hot rolled sheet.

【図9】窒化処理による増窒素量と製品の磁束密度(B
8 値)の関係を示す図である。
[Figure 9] Nitrogen increase amount due to nitriding treatment and magnetic flux density of product (B
FIG. 8 is a diagram showing the relationship between

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  重量でSi;4.8〜7.1%,酸可
溶性Al;0.015〜0.055%,N≧0.004
5%,残部Feおよび不可避的不純物からなる珪素鋼ス
ラブを熱間圧延し、その後圧延、一次再結晶焼鈍、焼鈍
分離剤の塗布、仕上焼鈍の各工程で処理することにより
製品とする方向性高珪素鋼板の製造法において、熱間圧
延前のスラブ加熱を下記の不等式で規定される温度T(
℃)および時間t(hr)で行い、かつ冷間圧延後から
仕上焼鈍時の二次再結晶開始までの間に窒化処理を施す
ことを特徴とする方向性高珪素鋼板の製造法。 T≦1300−10t
Claim 1: Si: 4.8-7.1% by weight, acid-soluble Al: 0.015-0.055%, N≧0.004
A silicon steel slab consisting of 5% iron, the balance being Fe and unavoidable impurities is hot-rolled, and then processed through the following steps: rolling, primary recrystallization annealing, application of an annealing separator, and final annealing. In the manufacturing method of silicon steel sheets, the slab is heated before hot rolling at a temperature T (
C) and time t (hr), and the nitriding treatment is performed after cold rolling until the start of secondary recrystallization during final annealing. T≦1300-10t
【請求項2】  熱間圧延後、800〜1100℃の温
度範囲で30秒〜1時間焼鈍を施すことを特徴とする請
求項1記載の方向性高珪素鋼板の製造法。
2. The method for producing a grain-oriented high silicon steel sheet according to claim 1, wherein after hot rolling, annealing is performed at a temperature range of 800 to 1100° C. for 30 seconds to 1 hour.
JP40679790A 1990-12-26 1990-12-26 Manufacturing method of grain-oriented high silicon steel sheet Expired - Lifetime JPH086136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40679790A JPH086136B2 (en) 1990-12-26 1990-12-26 Manufacturing method of grain-oriented high silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40679790A JPH086136B2 (en) 1990-12-26 1990-12-26 Manufacturing method of grain-oriented high silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH04224625A true JPH04224625A (en) 1992-08-13
JPH086136B2 JPH086136B2 (en) 1996-01-24

Family

ID=18516422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40679790A Expired - Lifetime JPH086136B2 (en) 1990-12-26 1990-12-26 Manufacturing method of grain-oriented high silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH086136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031420A (en) * 2011-09-30 2013-04-10 宝山钢铁股份有限公司 Production method of oriented silicon steel with excellent magnetic performance
WO2016045157A1 (en) * 2014-09-28 2016-03-31 东北大学 Preparation method for oriented high-silicon steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6209999B2 (en) * 2014-03-11 2017-10-11 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6209998B2 (en) * 2014-03-11 2017-10-11 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031420A (en) * 2011-09-30 2013-04-10 宝山钢铁股份有限公司 Production method of oriented silicon steel with excellent magnetic performance
WO2016045157A1 (en) * 2014-09-28 2016-03-31 东北大学 Preparation method for oriented high-silicon steel
JP2017501296A (en) * 2014-09-28 2017-01-12 東北大学Northeastern University Method for producing oriented high silicon steel
US10032548B2 (en) 2014-09-28 2018-07-24 Northeastern University Preparation method of oriented high silicon steel

Also Published As

Publication number Publication date
JPH086136B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
EP2025767B2 (en) Process for producing grain-oriented electrical steel sheet with high magnetic flux density
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
KR101693522B1 (en) Grain oriented electrical steel having excellent magnetic properties and method for manufacturing the same
JPS6345444B2 (en)
EP1390550B1 (en) Method for producing a high permeability grain oriented electrical steel
EP0475710A2 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
JPH04224625A (en) Manufacture of grain-oriented high silicon steel sheet
JP4432789B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
JPH0121851B2 (en)
JP4281119B2 (en) Manufacturing method of electrical steel sheet
CN113195770A (en) Oriented electrical steel sheet and method for manufacturing the same
JPH0733548B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
WO2008078947A1 (en) Method of manufacturing grain-oriented electrical steel sheets
JPH02258929A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH0726328A (en) Production of grain oriented silicon steel sheet
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH0480321A (en) Production of grain-oriented high silicon steel sheet
JP3169427B2 (en) Method for producing bidirectional silicon steel sheet with excellent magnetic properties
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JPH10273725A (en) Manufacture of grain oriented silicon steel sheet
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 15