JP4432789B2 - Method for producing grain-oriented electrical steel sheets with excellent magnetic properties - Google Patents

Method for producing grain-oriented electrical steel sheets with excellent magnetic properties Download PDF

Info

Publication number
JP4432789B2
JP4432789B2 JP2005026310A JP2005026310A JP4432789B2 JP 4432789 B2 JP4432789 B2 JP 4432789B2 JP 2005026310 A JP2005026310 A JP 2005026310A JP 2005026310 A JP2005026310 A JP 2005026310A JP 4432789 B2 JP4432789 B2 JP 4432789B2
Authority
JP
Japan
Prior art keywords
annealing
secondary recrystallization
temperature
atmosphere
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005026310A
Other languages
Japanese (ja)
Other versions
JP2006213953A (en
Inventor
今村  猛
康之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005026310A priority Critical patent/JP4432789B2/en
Publication of JP2006213953A publication Critical patent/JP2006213953A/en
Application granted granted Critical
Publication of JP4432789B2 publication Critical patent/JP4432789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、変圧器や回転機等の鉄心材料に好適な方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet suitable for iron core materials such as transformers and rotating machines.

方向性電磁鋼板については、インヒビターと呼ばれる析出物を使用して仕上焼鈍中にゴス(Goss)方位を有する粒を二次再結晶させることが一般的な技術として使用されている。例えば、特許文献1に記載のAlN、MnSを使用する方法、特許文献2に記載のMnS、MnSeを使用する方法が開示され、工業的に実用化されている。   For grain-oriented electrical steel sheets, it is a common technique to use secondary precipitates called inhibitors to secondary recrystallize grains having Goss orientation during finish annealing. For example, a method using AlN and MnS described in Patent Document 1 and a method using MnS and MnSe described in Patent Document 2 are disclosed and industrially put into practical use.

これらのインヒビターを用いる方法は安定して二次再結晶粒を発達させるのに有用な方法であるが、インヒビターはその機能を果たした二次再結晶後に残存すると磁気特性を劣化させる原因となることから、仕上焼鈍(特に仕上焼鈍の後半で行われる純化焼鈍)を1100℃以上の高温としかつ雰囲気を制御することで、地鉄中からインヒビターなどの析出物および介在物を除去する必要がある。   Although the method using these inhibitors is a useful method for stably developing secondary recrystallized grains, if the inhibitor remains after secondary recrystallization that has performed its function, it may cause deterioration of magnetic properties. Therefore, it is necessary to remove precipitates and inclusions such as inhibitors from the ground iron by setting the finish annealing (particularly the purification annealing performed in the latter half of the finish annealing) to a high temperature of 1100 ° C. or higher and controlling the atmosphere.

そこで、本発明者らはインヒビター形成元素を含有しない素材において、ゴス方位結晶粒を二次再結晶により発達させる技術を特許文献3、特許文献4などにて提案した。この方法では、インヒビターを純化する工程が不必要となるために、純化焼鈍を高温化する必要がなく、コスト面でもメンテナンス面でも大きなメリットを供する方法であった。   In view of this, the present inventors have proposed, in Patent Document 3, Patent Document 4, etc., a technique for developing Goss-oriented crystal grains by secondary recrystallization in a material that does not contain an inhibitor-forming element. In this method, since the step of purifying the inhibitor is unnecessary, there is no need to increase the temperature of the purification annealing, and this method provides a great merit in terms of both cost and maintenance.

さらに、インヒビター形成元素を含有しない素材においてはインヒビターを鋼中に微細に分散させる必要がないため、従来必須であったインヒビター形成元素を固溶させることを目的とした高温でのスラブ加熱も必要としないことから、エネルギーコストの点からも有利であった。   Furthermore, since it is not necessary to finely disperse the inhibitor in the steel in the material that does not contain the inhibitor forming element, it is also necessary to heat the slab at a high temperature for the purpose of dissolving the inhibitor forming element, which has been essential in the past. This is also advantageous from the viewpoint of energy cost.

また、高温でのスラブ加熱を行うと、結晶粒が粗大化して磁気特性の劣化を引き起こすため、鋼中に適量の炭素を含有させてγ変態を生じさせることで結晶粒の粗大化を防ぐ必要があったが、インヒビター形成元素を有さず、高温でのスラブ加熱を必要としない成分系では通常必要であった炭素を含有させないことも可能である。   In addition, when slab heating at high temperature is performed, the crystal grains become coarse and cause deterioration of the magnetic properties. Therefore, it is necessary to prevent the coarsening of the crystal grains by causing an appropriate amount of carbon in the steel to cause γ transformation. However, it is also possible not to contain carbon that is normally required in a component system that does not have an inhibitor forming element and does not require slab heating at a high temperature.

このように炭素を含まない場合は、再結晶焼鈍において脱炭の必要性がないので乾燥雰囲気で焼鈍することが可能である。この場合、鋼板表層においてSiOの生成を極力低減することができるため、焼鈍分離剤に通常用いられるMgOを用いたとしても、フォルステライト質被膜の形成を抑制できる。かかる場合、硬質のSiOやフォルステライト質被膜が鋼板に存在しないことから、打ち抜き性に優れた方向性電磁鋼板を得ることができるという利点があり、これを特許文献5にて提案した。 When carbon is not contained in this way, there is no need for decarburization in recrystallization annealing, so annealing in a dry atmosphere is possible. In this case, since it is reduced as much as possible the formation of SiO 2 in the steel sheet surface layer, even with the use of MgO commonly used in annealing separator, it is possible to suppress the formation of forsterite coating. In such a case, since there is no hard SiO 2 or forsterite coating on the steel sheet, there is an advantage that a grain-oriented electrical steel sheet having excellent punchability can be obtained, which was proposed in Patent Document 5.

その他にも、インヒビター形成元素を含有しない方向性電磁鋼板の応用技術が特許文献6、特許文献7などに開示されている。
特公昭40−15644号公報 特公昭51−13469号公報 特開2000−129356号公報 特開2000−119823号公報 特開2002−220623号公報 特開2001−158950号公報 特開2003−34821号公報 特開平2−200731号公報
In addition, Patent Document 6 and Patent Document 7 disclose application technologies of grain-oriented electrical steel sheets that do not contain an inhibitor-forming element.
Japanese Patent Publication No. 40-15644 Japanese Patent Publication No. 51-13469 JP 2000-129356 A Japanese Unexamined Patent Publication No. 2000-111982 JP 2002-220623 A JP 2001-158950 A JP 2003-34821 A Japanese Patent Laid-Open No. 2-200731

しかしながらインヒビターを含まない成分系においては、二次再結晶焼鈍の雰囲気の影響を受けやすく、場合によっては磁気特性が安定しないという問題が生じている。   However, a component system that does not contain an inhibitor is susceptible to the atmosphere of secondary recrystallization annealing, and there is a problem that the magnetic properties are not stable in some cases.

本発明はインヒビターを使用しない方向性電磁鋼板において、製品の磁気特性の高位安定化を図るものである。   The present invention aims to stabilize the magnetic properties of products in a grain-oriented electrical steel sheet that does not use an inhibitor.

本発明者らは、二次再結晶焼鈍の雰囲気を適切に制御することで製品の磁気特性を安定化する方法を見出し、本発明の方向性電磁鋼板の製造方法を完成させた。   The present inventors have found a method for stabilizing the magnetic properties of a product by appropriately controlling the atmosphere of secondary recrystallization annealing, and have completed the method for producing a grain-oriented electrical steel sheet according to the present invention.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%でC:0.08%以下、Si:2.0%〜8.0%、Mn:0.005〜1.0%を含有し、残部Feおよび不可避的不純物とした鋼片を熱間圧延し、得られた熱延鋼板に焼鈍を施す(熱延板焼鈍と呼ぶものとする)かあるいは施さずに、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施し、ついで再結晶焼鈍および二次再結晶焼鈍を施す方向性電磁鋼板の製造工程において、前記鋼片の成分を質量比でAlを100ppm以下、N、S、Seを各50ppm以下に低減し、該二次再結晶焼鈍において825〜1000℃の温度範囲まで昇温して保持するとともに、二次再結晶温度に達してから少なくとも20時間を二次再結晶温度以上で焼鈍し、その際、二次再結晶焼鈍温度が800℃に到達した時点をt1、鋼板の二次再結晶温度に到達した時刻から20時間後の時点をt2としたとき、t1からt2の区間における時間の70%以上をAr雰囲気とすることを特徴とする方向性電磁鋼板の製造方法。
2.二次再結晶焼鈍の後に、脱炭焼鈍および純化焼鈍を施すことを特徴とする、1に記載の方向性電磁鋼板の製造方法。
3.熱間圧延する鋼片がさらに、質量%でNi:0.010〜1.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50%、Mo:0.005〜0.50%、およびCr:0.005〜0.50%から選ばれる1種または2種以上を含有することを特徴とする1または2に記載の方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. The steel slab containing C: 0.08% or less, Si: 2.0% to 8.0%, Mn: 0.005 to 1.0% by mass%, the balance being Fe and inevitable impurities, is hot. Rolled and annealed the obtained hot-rolled steel sheet (referred to as hot-rolled sheet annealing), or with or without cold rolling one or more times with intermediate annealing, followed by recrystallization In the manufacturing process of the grain-oriented electrical steel sheet to which annealing and secondary recrystallization annealing are performed, the component of the steel slab is reduced by mass ratio such that Al is 100 ppm or less and N, S, and Se are reduced to 50 ppm or less, and the secondary recrystallization. In the annealing, the temperature is raised to a temperature range of 825 to 1000 ° C. and held, and at least 20 hours after the secondary recrystallization temperature is reached, the annealing is performed at the secondary recrystallization temperature or higher. At that time, the secondary recrystallization annealing temperature T1 when the temperature reached 800 ° C., secondary recrystallization of steel plate When the time after 20 hours and t2 from the time reaching the time, the production method of the grain-oriented electrical steel sheet, which comprises a time more than 70% in the interval from t1 t2 with Ar atmosphere.
2. 2. The method for producing a grain-oriented electrical steel sheet according to 1, wherein decarburization annealing and purification annealing are performed after the secondary recrystallization annealing.
3. The steel pieces to be hot-rolled are further in terms of mass%: Ni: 0.010-1.50%, Cu: 0.01-0.50%, P: 0.005-0.50%, Sn: 0.005 -0.50%, Sb: 0.005-0.50%, Bi: 0.005-0.50%, Mo: 0.005-0.50%, and Cr: 0.005-0.50% The method for producing a grain-oriented electrical steel sheet according to 1 or 2, comprising one or more selected from the group consisting of:

本発明によれば、インヒビター形成元素を有しない素材において、二次再結晶焼鈍中の磁気特性の劣化を効果的に防止し、優れた磁気特性を有する方向性電磁鋼板を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the raw material which does not have an inhibitor formation element, deterioration of the magnetic characteristic during secondary recrystallization annealing can be prevented effectively, and the grain-oriented electrical steel sheet which has the outstanding magnetic characteristic can be manufactured.

まず、本発明を成功に至らしめた実験について説明する。   First, experiments that have made the present invention successful will be described.

<実験1>
質量%でC:0.0190%、Si:3.25%、Mn:0.06%、Sol.Al:58ppm、N:29ppm、S:21ppmを含む鋼のスラブ(鋼スラブと呼ぶものとする)を連続鋳造にて製造し、1200℃でスラブ加熱した後、熱間圧延により2.4mmの厚さに仕上げ、その後1050℃で45秒の熱延板焼鈍を施した後、冷間圧延により0.30mmの厚さに仕上げた。さらに、均熱条件が910℃で10秒、乾燥窒素雰囲気下での再結晶焼鈍(一次再結晶焼鈍)を施した後、875℃で75時間保定する二次再結晶焼鈍を施した。
<Experiment 1>
By mass%: C: 0.0190%, Si: 3.25%, Mn: 0.06%, Sol. A steel slab containing Al: 58 ppm, N: 29 ppm, and S: 21 ppm (referred to as a steel slab) is manufactured by continuous casting, heated at 1200 ° C., and hot-rolled to a thickness of 2.4 mm. Then, after hot-rolled sheet annealing at 1050 ° C. for 45 seconds, it was finished to a thickness of 0.30 mm by cold rolling. Furthermore, after recrystallization annealing (primary recrystallization annealing) under a soaking condition of 910 ° C. for 10 seconds and in a dry nitrogen atmosphere, secondary recrystallization annealing was carried out at 875 ° C. for 75 hours.

この二次再結晶焼鈍において焼鈍温度が800℃に到達した時点を始点(t1)とし、さらに昇温して二次再結晶温度に到達した後、さらに20時間経過した時点を終点(t2)とする区間において、焼鈍雰囲気をAr雰囲気とする時間を変化させた。このときAr雰囲気とした時間以外の時間ではN雰囲気とした。なお、本実験の場合、上記区間の長さは51時間であった。また、焼鈍温度が800℃に達するまでおよび二次再結晶温度に到達して20時間経過以降は、Ar雰囲気で焼鈍を行った。 In this secondary recrystallization annealing, the time when the annealing temperature reaches 800 ° C. is set as the start point (t1), and the temperature is further increased to reach the secondary recrystallization temperature. In the section to perform, the time which makes an annealing atmosphere Ar atmosphere was changed. At this time, the N 2 atmosphere was used for the time other than the time for the Ar atmosphere. In the case of this experiment, the length of the section was 51 hours. Also, annealing was performed in an Ar atmosphere until the annealing temperature reached 800 ° C. and after 20 hours had passed since the secondary recrystallization temperature was reached.

ここで二次再結晶温度は、N雰囲気下における50時間の均熱で二次再結晶が完了する、最低の温度と定義する。具体的には、以下の測定方法により決定した。 Here, the secondary recrystallization temperature is defined as the lowest temperature at which secondary recrystallization is completed by soaking for 50 hours in an N 2 atmosphere. Specifically, it was determined by the following measurement method.

炉の長手方向に対して温度傾斜をつけた焼鈍炉(例えば炉の低温側が800℃で高温側が900℃等)内に鋼板サンプル(一次再結晶後の鋼板)を静止状態で置き、N雰囲気下で50時間焼鈍する。その結果、温度が低い側は二次再結晶が発現しない微細な一次再結晶粒であり、高い側は二次再結晶が発現した粗大な二次再結晶となることから、その境界を読み取ることができ、およそ、その境界に相当する温度が二次再結晶温度に相当する。本発明では、上記のようにして得られたサンプルを酸洗して二次再結晶組織を観察し、板幅全長に渡って二次再結晶が発現している最も低い温度に相当する箇所を特定し、その箇所における炉内温度を便宜的に二次再結晶温度とした。この温度は一般に800℃より高温である。 A steel plate sample (steel plate after primary recrystallization) is placed in a static state in an annealing furnace having a temperature gradient with respect to the longitudinal direction of the furnace (for example, the low temperature side of the furnace is 800 ° C. and the high temperature side is 900 ° C.), and the N 2 atmosphere Annealed under for 50 hours. As a result, the low temperature side is fine primary recrystallized grains that do not develop secondary recrystallization, and the high side is coarse secondary recrystallization that expresses secondary recrystallization. Approximately, the temperature corresponding to the boundary corresponds to the secondary recrystallization temperature. In the present invention, the sample obtained as described above is pickled and the secondary recrystallization structure is observed, and the portion corresponding to the lowest temperature at which the secondary recrystallization is developed over the entire plate width. The temperature inside the furnace was specified, and the secondary recrystallization temperature was used for convenience. This temperature is generally higher than 800 ° C.

本実験の試験材では、上記の方法で測定された二次再結晶温度は862℃であった。   In the test material of this experiment, the secondary recrystallization temperature measured by the above method was 862 ° C.

二次再結晶焼鈍の後、平坦化焼鈍を湿潤雰囲気下で行うことによりサンプルを十分脱炭した後、JIS C2550に記載の方法で磁気測定を行った。   After secondary recrystallization annealing, the sample was sufficiently decarburized by performing flattening annealing in a humid atmosphere, and then magnetic measurement was performed by the method described in JIS C2550.

サンプルの磁気特性(磁束密度B)と、前記したt1からt2までの区間での経過時間のうちAr雰囲気を導入した時間の割合との関係を図1に示す。この図から、Ar雰囲気を導入した時間の割合が前記区間での経過時間の70%以上であれば良好な磁気特性が得られることが分かる。 FIG. 1 shows the relationship between the magnetic properties (magnetic flux density B 8 ) of the sample and the ratio of the time during which the Ar atmosphere was introduced in the elapsed time in the section from t1 to t2. From this figure, it can be seen that good magnetic properties can be obtained if the ratio of the time during which the Ar atmosphere is introduced is 70% or more of the elapsed time in the section.

焼鈍温度が800℃に到達してから鋼板の二次再結晶温度に到達して20時間後までの時間のうちで70%以上の時間をAr雰囲気で焼鈍することで、鋼板の磁気特性が良好になる理由は明らかではないが、発明者らは次のように推測している。   The magnetic properties of the steel sheet are good by annealing 70% or more of the time in the Ar atmosphere after reaching the secondary recrystallization temperature of the steel sheet after the annealing temperature reaches 800 ° C. until 20 hours later. The reason for this is not clear, but the inventors speculate as follows.

方向性電磁鋼板の二次再結晶過程においては、鋼板を徐々に昇温し、ある温度に達したときに二次再結晶が開始するような場合、このときの温度を通常は二次再結晶温度と称している。しかし、実際にはこの二次再結晶温度に達した瞬間に二次再結晶が発現するわけではなく、ある潜伏期を経て発現が開始する。この潜伏期は鋼スラブの成分や各種工程条件により変動するが、インヒビターを含有しない成分系では、概ね10〜20時間であることを、鋭意検討の結果、見出したのである。すなわち、二次再結晶温度到達から20時間後には本発明の成分範囲内であれば、どのような条件でもほぼ二次再結晶発現が開始しているといえる。   In the secondary recrystallization process of grain-oriented electrical steel sheets, when the temperature of the steel sheet is gradually raised and secondary recrystallization starts when a certain temperature is reached, the temperature at this time is usually secondary recrystallization. It is called temperature. However, in actuality, secondary recrystallization does not appear at the moment when this secondary recrystallization temperature is reached, but starts to develop after a certain incubation period. As a result of intensive studies, this incubation period has been found to vary depending on the components of the steel slab and various process conditions, but in a component system that does not contain an inhibitor, it is approximately 10 to 20 hours. That is, it can be said that, after 20 hours from the arrival of the secondary recrystallization temperature, secondary recrystallization has started almost under any condition as long as it is within the component range of the present invention.

通常のインヒビターを用いる方向性電磁鋼板においては、二次再結晶直前の雰囲気が鋼板の磁性に大きく影響することは知られている。例えば特許文献8等では二次再結晶焼鈍初期の加熱過程でNHを導入して鋼板を窒化せしめ、(Al,Si)Nを主組成とするインヒビターを形成もしくは既存のインヒビターを強化することで、磁気特性を向上する技術が開示されている。しかしながら、本技術のようなインヒビターを用いない成分系においては、窒化により粒界に析出物が形成されることから、粒界エネルギーに基づくテクスチャーインヒビション効果(集合組織自体が有している結晶粒成長の抑制効果)が損なわれてしまい、結果として磁性が劣化してしまう。よって、NH雰囲気は勿論のこと、N雰囲気も窒化を生じさせるので好ましくない。 In a grain-oriented electrical steel sheet using a normal inhibitor, it is known that the atmosphere immediately before secondary recrystallization greatly affects the magnetism of the steel sheet. For example, in Patent Document 8, etc., NH 3 is introduced in the initial heating process of secondary recrystallization annealing to nitride a steel sheet, thereby forming an inhibitor mainly composed of (Al, Si) N or strengthening an existing inhibitor. A technique for improving magnetic characteristics is disclosed. However, in a component system that does not use an inhibitor as in the present technology, a precipitate is formed at the grain boundary by nitriding, so that the texture inhibition effect based on the grain boundary energy (the crystal that the texture itself has) The effect of suppressing grain growth) is impaired, and as a result, the magnetism deteriorates. Therefore, not only the NH 3 atmosphere but also the N 2 atmosphere causes nitridation, which is not preferable.

また、二次再結晶焼鈍で従来から使用されている雰囲気としては他にH雰囲気があるが、インヒビターを用いない成分系ではH雰囲気を導入すると粒成長が促進されて正常粒成長したような状態となり、二次再結晶が発現しないか、もしくは発現しても結晶方位が不揃いとなり磁気特性が不十分なものとなってしまう。 In addition, as an atmosphere conventionally used in secondary recrystallization annealing, there is another H 2 atmosphere. However, in a component system that does not use an inhibitor, when an H 2 atmosphere is introduced, grain growth is promoted and normal grain growth seems to have occurred. As a result, secondary recrystallization does not appear, or even if it appears, the crystal orientation becomes uneven and the magnetic properties become insufficient.

よって、本発明では、二次再結晶直前、すなわち窒化や正常粒成長が起こりやすくなる800℃に到達してから二次再結晶開始までの間の焼鈍雰囲気をAr雰囲気とすれば、前記した析出物の形成や粒成長を避けることができ、二次再結晶が開始するまでテクスチャーインヒビション効果を持続できて、磁気特性を良好なものとすることができるのである。本発明は上記のような知見に立脚するものである。   Therefore, in the present invention, if the annealing atmosphere immediately before the secondary recrystallization, that is, after reaching 800 ° C. at which nitriding or normal grain growth is likely to occur until the start of the secondary recrystallization is an Ar atmosphere, the above-described precipitation is performed. Formation of grains and grain growth can be avoided, and the texture inhibition effect can be maintained until secondary recrystallization starts, and the magnetic properties can be improved. The present invention is based on the above findings.

次に本発明の構成用件の限定理由について述べる。まず、出発材である鋼組成について説明する。鋼組成は質量比(質量%または質量ppm)で表すものとする。   Next, the reasons for limiting the configuration requirements of the present invention will be described. First, the steel composition as a starting material will be described. The steel composition is expressed by mass ratio (mass% or mass ppm).

C:0.08%以下
Cは0.08%を超えると、脱炭処理を行っても磁気時効の起こらない50ppm以下に低減することが困難になるので0.08%以下に限定される。
C: 0.08% or less When C exceeds 0.08%, it is difficult to reduce it to 50 ppm or less at which magnetic aging does not occur even if decarburization is performed, so it is limited to 0.08% or less.

Si:2.0〜8.0%
Siは鋼の比抵抗を高め、鉄損を改善させるために必要な元素であるが、2.0%未満であると効果がなく、8.0%を超えると鋼の加工性が劣化し、圧延が困難となることから2.0〜8.0%に限定される。
Si: 2.0 to 8.0%
Si is an element necessary for increasing the specific resistance of steel and improving iron loss, but if it is less than 2.0%, there is no effect, and if it exceeds 8.0%, the workability of steel deteriorates. Since rolling becomes difficult, it is limited to 2.0 to 8.0%.

Mn:0.005〜1.0%
Mnは熱間加工性を良好にするために必要な元素であるが、0.005%未満であると効果がなく1.0%を超えると製品板の磁束密度が低下するので、0.005〜1.0%とする。
Mn: 0.005 to 1.0%
Mn is an element necessary for improving the hot workability. However, if it is less than 0.005%, there is no effect, and if it exceeds 1.0%, the magnetic flux density of the product plate decreases. -1.0%.

Al:100ppm以下、N、S、Se:各50ppm以下
インヒビター形成元素であるAlは100ppm以下、N、S、Seについても各々50ppm以下に低減することが、鋼板を良好に二次再結晶させる上で有効である。かかる成分は極力低減することが磁気特性の観点からは望ましく、Alについては70ppm以下がより好ましい。しかし、かかる成分を低減するためにコスト高となる場合があることから上記範囲内であれば残存させても問題はない。
Al: 100 ppm or less, N, S, Se: 50 ppm or less for each of them As an inhibitor forming element, Al is reduced to 100 ppm or less, and each of N, S, and Se is also reduced to 50 ppm or less, in order to favorably secondary recrystallize the steel sheet. It is effective in. Such components are desirably reduced as much as possible from the viewpoint of magnetic properties, and more preferably 70 ppm or less for Al. However, since the cost may increase in order to reduce such components, there is no problem even if it remains within the above range.

その他の窒化物形成元素であるTi、Nb、B、V等についてもそれぞれ50ppm以下に低減することが、鉄損の劣化を防ぎ、良好な加工性を確保する上で有効である。   Reduction of other nitride forming elements such as Ti, Nb, B, and V to 50 ppm or less is effective in preventing deterioration of iron loss and ensuring good workability.

Ni:0.010〜1.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50%、Mo:0.005〜0.50%、Cr:0.005〜0.50%
磁気特性向上の観点から、上記の各元素の中から選択される1種または2種以上を含有させることができる。まず、熱延板組織を改善して磁気特性を向上させるためにNiを含有させることができる。含有量が0.010%未満であると磁気特性の向上量が小さく、1.50%を超えると二次再結晶が不安定になり磁気特性が劣化するので、0.010〜1.50%の範囲とする。また、磁気特性、なかでも鉄損を向上させる目的で、Cu:0.01〜0.50%、P:0.005〜0.50%を含有されることができる。これらの含有量がそれぞれの下限量より少ない場合には鉄損向上効果がなく、上限量を超えるとかえって二次再結晶粒の発達が抑制される。さらに、磁束密度を向上させる目的で、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50%、Mo:0.005〜0.50%、Cr:0.005〜0.50%を含有させることができる。これらの含有量がそれぞれの下限量より少ない場合には鉄損向上効果がなく、上限量を超えるとかえって二次再結晶粒の発達が抑制される。
Ni: 0.010 to 1.50%, Cu: 0.01 to 0.50%, P: 0.005 to 0.50%, Sn: 0.005 to 0.50%, Sb: 0.005 0.50%, Bi: 0.005-0.50%, Mo: 0.005-0.50%, Cr: 0.005-0.50%
From the viewpoint of improving magnetic properties, one or more selected from the above elements can be contained. First, Ni can be contained in order to improve the hot rolled sheet structure and improve the magnetic properties. If the content is less than 0.010%, the amount of improvement in magnetic properties is small, and if it exceeds 1.50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate. The range. Further, Cu: 0.01 to 0.50% and P: 0.005 to 0.50% can be contained for the purpose of improving magnetic properties, particularly iron loss. When these contents are less than the respective lower limit amounts, there is no effect of improving iron loss, and when the upper limit amount is exceeded, the development of secondary recrystallized grains is suppressed. Furthermore, for the purpose of improving the magnetic flux density, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Bi: 0.005 to 0.50%, Mo: 0.005 to 0 .50%, Cr: 0.005 to 0.50% can be contained. When these contents are less than the respective lower limit amounts, there is no effect of improving iron loss, and when the upper limit amount is exceeded, the development of secondary recrystallized grains is suppressed.

鋼の残部は鉄および不可避的不純物である。   The balance of steel is iron and inevitable impurities.

上記組成を有する溶鋼は鋼片に鋳込むが、通常の造塊法や連続鋳造法でスラブを製造してもよいし、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。鋼スラブは通常の方法で加熱して熱間圧延するが、鋳造後加熱せずに直ちに熱間圧延してもよい。薄鋳片の場合には熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進んでもよい。熱間圧延前のスラブ加熱温度は従来必須であったインヒビターを固溶させるための高温焼鈍を必要としないことから、1250℃以下の低温とすることがコストの面で望ましい。   The molten steel having the above composition is cast into a steel slab, but a slab may be produced by a normal ingot-making method or a continuous casting method, or a thin slab having a thickness of 100 mm or less may be produced by a direct casting method. Good. The steel slab is heated and hot rolled by a normal method, but may be immediately hot rolled without being heated after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is. Since the slab heating temperature before hot rolling does not require high-temperature annealing for dissolving the inhibitor, which has been indispensable in the past, a low temperature of 1250 ° C. or lower is desirable in terms of cost.

次いで、必要に応じて熱延板焼鈍を施す。ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度は800℃以上1100℃以下が好適である。熱延板焼鈍温度が800℃未満であると熱間圧延でのバンド組織が残留し、整粒の一次再結晶組織を実現することが困難になり二次再結晶の発達が阻害される。熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるため、整粒の一次再結晶組織を実現する上で極めて不利である。   Next, hot-rolled sheet annealing is performed as necessary. In order to highly develop a goth structure in the product plate, the hot-rolled sheet annealing temperature is preferably 800 ° C. or higher and 1100 ° C. or lower. If the hot-rolled sheet annealing temperature is less than 800 ° C., a band structure in hot rolling remains, and it becomes difficult to realize a primary recrystallized structure of sized particles, thereby inhibiting the development of secondary recrystallization. When the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, which is extremely disadvantageous in realizing a primary recrystallized structure of sized particles.

熱延板焼鈍後、1回もしくは必要に応じて中間焼鈍を挟む2回以上の冷間圧延を施した後、再結晶焼鈍を行う。この冷間圧延の温度を好ましくは100℃〜250℃に上昇させて行うことおよび/または冷間圧延途中で100℃〜250℃の範囲での時効処理を1回または複数回行うことが、ゴス組織を発達させる点で有効である。   After hot-rolled sheet annealing, it is subjected to recrystallization annealing after performing cold rolling at least once with intermediate annealing as necessary. It is preferable that the temperature of this cold rolling is preferably raised to 100 ° C. to 250 ° C. and / or that the aging treatment in the range of 100 ° C. to 250 ° C. is performed once or a plurality of times during the cold rolling. It is effective in developing the tissue.

再結晶焼鈍は、脱炭を必要とする場合には雰囲気を湿潤雰囲気とするが、脱炭を必要としない場合は乾燥雰囲気で行っても良い。また、再結晶焼鈍後にC量を100〜250ppm残存させたまま、二次再結晶を行うことにより磁束密度を向上させることができる。再結晶焼鈍後は、浸珪法によってSi量を増加させる技術を併用してもよい。その後、必要に応じて焼鈍分離剤を適用し、その後二次再結晶を発現させるための二次再結晶焼鈍を施す。   The recrystallization annealing is performed in a wet atmosphere when decarburization is required, but may be performed in a dry atmosphere when decarburization is not required. In addition, the magnetic flux density can be improved by performing secondary recrystallization with the C content remaining at 100 to 250 ppm after recrystallization annealing. After recrystallization annealing, a technique for increasing the amount of Si by a siliconization method may be used in combination. Then, if necessary, an annealing separator is applied, followed by secondary recrystallization annealing to develop secondary recrystallization.

二次再結晶焼鈍は、前記の二次再結晶温度以上に昇温する処理を含むものとする。また、二次再結晶焼鈍に際しては必ず825〜1000℃の温度範囲内で保持する処理を施すものとする。ここで、保持とは、上記温度範囲内に維持することを意味し、該温度範囲内で温度を変化させることは自由である。保持温度が825℃未満では、鋼板全体に渡って二次再結晶を充分進行させることが困難となり、良好な磁気特性が得られず、保持温度が1000℃を超えると、所望の方位(ゴス方位やCube方位)以外の方位で二次再結晶するために、磁気特性を劣化させる。   The secondary recrystallization annealing includes a process of raising the temperature to the secondary recrystallization temperature or higher. In addition, when the secondary recrystallization annealing is performed, a process of holding within a temperature range of 825 to 1000 ° C. is always performed. Here, holding means maintaining within the above temperature range, and the temperature can be freely changed within the temperature range. If the holding temperature is less than 825 ° C., it is difficult to sufficiently advance secondary recrystallization over the entire steel sheet, and good magnetic properties cannot be obtained. If the holding temperature exceeds 1000 ° C., the desired orientation (Goth orientation) And secondary recrystallization in an orientation other than (Cube orientation), the magnetic properties are deteriorated.

なお、この上記温度域における保持時間は10時間以上とすることが好ましい。また、
100時間以下とすることがより好ましい。
The holding time in this temperature range is preferably 10 hours or longer. Also,
More preferably, it is 100 hours or less.

また、本発明では、この二次再結晶焼鈍における雰囲気がとくに重要であり、焼鈍温度が800℃に到達して(t1)から鋼板の二次再結晶温度に到達して20時間後(t2)までの区間では、その区間における時間の割合で70%以上をAr雰囲気とすることが、磁気特性向上のためには必須である。t1からt2までの区間の一部でAr以外の雰囲気を使用する場合は、上述したメカニズムから推測されるように、Ar以外の雰囲気をどのタイミングで導入しても差し支えない。すなわち、該区間のうち、前半に導入しても後半に導入しても、数回に分けて導入してもよい。ただし、二次再結晶前の導入は析出物や粒径に若干の影響を与え、磁気特性にも影響を与える可能性があるため、後半に導入することが望ましい。t1からt2までの区間に適用される、Ar以外の雰囲気としては、Nガス、Hガスなどが挙げられるが、これらに限定されるものではない
なお、ここでいうAr雰囲気は、上述の効果を十分発揮できればよく、工業的に不可避な不純物を含んでいても問題ない。分圧換算で、Arが90%以上であればここではAr雰囲気であるとみなす。
In the present invention, the atmosphere in the secondary recrystallization annealing is particularly important. After the annealing temperature reaches 800 ° C. (t1), the secondary recrystallization temperature of the steel sheet is reached 20 hours later (t2). In the section up to 70%, it is indispensable to improve the magnetic characteristics by setting the Ar atmosphere to 70% or more of the time ratio in the section. When an atmosphere other than Ar is used in a part of the section from t1 to t2, an atmosphere other than Ar may be introduced at any timing, as estimated from the mechanism described above. That is, the section may be introduced in the first half, in the second half, or may be introduced in several times. However, since the introduction before the secondary recrystallization has some influence on the precipitates and the particle size and may affect the magnetic properties, it is desirable to introduce it in the latter half. Examples of the atmosphere other than Ar applied to the section from t1 to t2 include, but are not limited to, N 2 gas, H 2 gas, and the like. There is no problem even if impurities that are inevitable industrially are included as long as the effect can be sufficiently exhibited. If Ar is 90% or more in terms of partial pressure, it is regarded as an Ar atmosphere here.

図2〜図には、二次再結晶焼鈍において焼鈍温度が800℃に到達した時点t1から鋼板の二次再結晶温度に到達して20時間後の時点t2までの区間の例を示す。図3における後段の高温処理はいわゆる純化焼鈍である。ただし、既に述べたように本発明の成分系においては高温の純化焼鈍を必要としないので、二次再結晶焼鈍温度と同じ温度で継続して純化焼鈍を施してもよいし、純化焼鈍を省略してもよい。二次再結晶焼鈍あるいはこれに連続する純化焼鈍をまとめて仕上焼鈍とも呼ぶ。 FIGS. 2 to 4 show examples of a section from time t1 when the annealing temperature reaches 800 ° C. to time t2 20 hours after reaching the secondary recrystallization temperature of the steel sheet in the secondary recrystallization annealing. The subsequent high-temperature treatment in FIG. 3 is so-called purification annealing. However, as already described, since the high temperature purification annealing is not required in the component system of the present invention, the purification annealing may be performed continuously at the same temperature as the secondary recrystallization annealing temperature, or the purification annealing is omitted. May be. Secondary recrystallization annealing or subsequent purification annealing is also collectively referred to as finish annealing.

二次再結晶焼鈍後には、平坦化焼鈍を行い、その際、張力を付加して形状を矯正することが鉄損低減のために有効である。また、平坦化焼鈍を湿潤雰囲気で行い脱炭を兼ねてもよい。さらに、平坦化焼鈍前に独立して脱炭焼鈍を施したり、高温での純化焼鈍を施したりしても良い。   After secondary recrystallization annealing, flattening annealing is performed, and at that time, it is effective to reduce the iron loss by applying tension to correct the shape. Further, planarization annealing may be performed in a humid atmosphere to serve as decarburization. Furthermore, decarburization annealing may be performed independently before planarization annealing, or purification annealing at high temperature may be performed.

鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍後、鋼板表面に絶縁コーティングを施すことが有効である。良好な打抜き性を確保するためには樹脂を含有する有機コーティングが望ましく、溶接性を重視する場合には半有機や無機コーティングを適用することが望ましい。   In the case of using laminated steel plates, in order to improve iron loss, it is effective to apply an insulating coating to the steel plate surface after planarization annealing. In order to ensure good punchability, an organic coating containing a resin is desirable, and when emphasis is placed on weldability, it is desirable to apply a semi-organic or inorganic coating.

なお、本発明における方向性電磁鋼板とは二次再結晶が発現した電磁鋼板を意味する。よって、ゴス方位のみでなくCube方位(〈100〉<001>方位もしくは〈100〉<011>方位)が二次再結晶している場合なども本特許の請求範囲内とする。   The grain-oriented electrical steel sheet in the present invention means an electrical steel sheet in which secondary recrystallization has occurred. Therefore, not only the Goss direction but also the Cube direction (<100> <001> direction or <100> <011> direction) is subjected to secondary recrystallization, and the like is also within the scope of the claims of this patent.

表1に記載の成分を含む鋼スラブを連続鋳造にて製造し、1200℃でスラブを加熱した後、熱間圧延により2.2mmの厚さに仕上げ、その後1075℃で30秒の熱延板焼鈍を施した後、冷間圧延により0.27mmの厚さに仕上げた。さらに、均熱条件が900℃で10秒、乾燥窒素雰囲気下での再結晶焼鈍を施した後、875℃で50時間保定する二次再結晶焼鈍を施した。   A steel slab containing the components shown in Table 1 was manufactured by continuous casting, and after heating the slab at 1200 ° C., it was finished to a thickness of 2.2 mm by hot rolling, and then hot-rolled for 30 seconds at 1075 ° C. After annealing, it was finished to a thickness of 0.27 mm by cold rolling. Furthermore, after recrystallization annealing was performed at 900 ° C. for 10 seconds under a dry nitrogen atmosphere, secondary recrystallization annealing was performed at 875 ° C. for 50 hours.

この二次再結晶焼鈍において焼鈍温度が800℃に到達して(t1)から鋼板の二次再結晶温度に到達して20時間後(t2)までの時間で、Ar雰囲気を使用する時間を変化させ(図2のパターン)、表2にAr導入時間割合として示した。この際、Arを使用しない時間はN雰囲気を適用し、このNは二次再結晶焼鈍温度が800℃に達したタイミングで導入した。二次再結晶温度は、長手方向に温度傾斜をつけた炉(780〜900℃)で再結晶焼鈍後の鋼板サンプルを焼鈍し、そのサンプルを酸洗して組織を観察し、どの温度から二次再結晶が開始しているか調査した。その結果も表2に併記した。焼鈍温度が800℃に達するまでおよび二次再結晶温度に到達して20時間経過以降はAr雰囲気で焼鈍を行った。 In this secondary recrystallization annealing, the time during which the Ar atmosphere is used is changed from the time when the annealing temperature reaches 800 ° C. until the secondary recrystallization temperature of the steel sheet reaches 20 hours (t2). (Pattern of FIG. 2), and shown in Table 2 as the ratio of Ar introduction time. At this time, an N 2 atmosphere was applied during the time when Ar was not used, and this N 2 was introduced at the timing when the secondary recrystallization annealing temperature reached 800 ° C. The secondary recrystallization temperature is determined by annealing the steel sheet sample after recrystallization annealing in a furnace (780 to 900 ° C.) with a temperature gradient in the longitudinal direction, pickling the sample, observing the structure, It was investigated whether the next recrystallization started. The results are also shown in Table 2. Annealing was performed in an Ar atmosphere until the annealing temperature reached 800 ° C. and after 20 hours had passed since the secondary recrystallization temperature was reached.

この後、平坦化焼鈍を湿潤雰囲気下で行い、サンプルを十分脱炭した後、JIS C2550に記載の方法で磁気測定を行った。   Thereafter, planarization annealing was performed in a humid atmosphere, the sample was sufficiently decarburized, and then magnetic measurement was performed by the method described in JIS C2550.

得られた磁気特性を表2に示した。同表から明らかなように、本発明範囲内において良好な磁気特性を得られることが分かる。   The obtained magnetic properties are shown in Table 2. As can be seen from the table, good magnetic properties can be obtained within the scope of the present invention.

Figure 0004432789
Figure 0004432789

Figure 0004432789
Figure 0004432789

表3に記載の成分を含む鋼スラブを連続鋳造にて製造し、1200℃でスラブを加熱した後、熱間圧延により2.4mmの厚さに仕上げ、その後1000℃で60秒の熱延板焼鈍を施した後、冷間圧延により0.30mmの厚さに仕上げた。さらに、均熱条件が900℃で10秒、乾燥窒素雰囲気下での再結晶焼鈍を施した後、900℃で50時間保定する二次再結晶焼鈍を施した。   A steel slab containing the components shown in Table 3 was manufactured by continuous casting, and the slab was heated at 1200 ° C., then finished to a thickness of 2.4 mm by hot rolling, and then hot rolled at 1000 ° C. for 60 seconds. After annealing, it was finished to a thickness of 0.30 mm by cold rolling. Furthermore, after recrystallization annealing was performed at 900 ° C. for 10 seconds under a dry nitrogen atmosphere, secondary recrystallization annealing was performed to hold at 900 ° C. for 50 hours.

この二次再結晶焼鈍において、雰囲気は全てAr雰囲気とした。したがってt1〜t2の区間もAr雰囲気で焼鈍された(図2のパターン)。二次再結晶温度は、長手方向に温度傾斜をつけた炉(780〜900℃)で鋼板サンプル(再結晶焼鈍後)を焼鈍し、そのサンプルを酸洗して組織を観察し、どの温度から二次再結晶が開始しているか調査した。その結果も表3に併記した。   In this secondary recrystallization annealing, the atmosphere was all Ar. Therefore, the section from t1 to t2 was also annealed in an Ar atmosphere (pattern in FIG. 2). The secondary recrystallization temperature is obtained by annealing a steel plate sample (after recrystallization annealing) in a furnace (780 to 900 ° C.) with a temperature gradient in the longitudinal direction, pickling the sample, observing the structure, and from what temperature It was investigated whether secondary recrystallization had started. The results are also shown in Table 3.

この後、平坦化焼鈍を湿潤雰囲気下で行い、サンプルを十分脱炭した後、JIS C2550に記載の方法で磁気測定を行った。   Thereafter, planarization annealing was performed in a humid atmosphere, the sample was sufficiently decarburized, and then magnetic measurement was performed by the method described in JIS C2550.

得られた磁気特性を表3に示した。同表から明らかなように、本発明範囲内において良好な磁気特性を得られることが分かる。   The obtained magnetic properties are shown in Table 3. As can be seen from the table, good magnetic properties can be obtained within the scope of the present invention.

Figure 0004432789
Figure 0004432789

表1記載のAおよびBの成分を有する鋼スラブを連続鋳造にて製造し、1200℃でスラブを加熱した後、熱間圧延により2.6mmの厚さに仕上げ、その後1000℃で30秒の熱延板焼鈍を施した後、冷間圧延により1.8mmの厚さに仕上げた。その後、1025℃で60秒間の中間焼鈍を行なった後、150℃の温間圧延で0.27mmの厚さに仕上げた。さらに、均熱条件が860℃で75秒、湿潤窒素水素混合雰囲気下での再結晶焼鈍を施した後、900℃で75時間保定しその後1150℃で5時間保定する二次再結晶焼鈍を施した。   A steel slab having the components A and B shown in Table 1 was produced by continuous casting. After heating the slab at 1200 ° C., it was finished to a thickness of 2.6 mm by hot rolling, and then at 1000 ° C. for 30 seconds. After hot-rolled sheet annealing, it was finished to a thickness of 1.8 mm by cold rolling. Then, after performing intermediate annealing for 60 seconds at 1025 ° C., it was finished to a thickness of 0.27 mm by warm rolling at 150 ° C. Furthermore, after recrystallization annealing is performed at 860 ° C. for 75 seconds under a wet nitrogen-hydrogen mixed atmosphere, secondary recrystallization annealing is performed at 900 ° C. for 75 hours and then at 1150 ° C. for 5 hours. did.

この二次再結晶焼鈍において焼鈍温度が800℃に到達して(t1)から鋼板の二次再結晶温度に到達して20時間後(t2)までの時間で、Ar雰囲気を使用する時間を表4に記載のごとく変化させた(図3のパターンに近いが前段は徐加熱ではなく均熱)。この際、Arを使用しない時間はN雰囲気を適用し、このNはt1からAr雰囲気を導入し、表4に示すAr導入時間割合で決められた時間が経過したタイミングで導入した。ただしAr導入時間割合が0%の場合は、t1の時点からN雰囲気を導入した。焼鈍温度が800℃に達するまでおよび二次再結晶温度に到達して20時間後以降はN雰囲気とし、1050℃以上では水素雰囲気で焼鈍を行った。この後、平坦化焼鈍を乾燥雰囲気下で行い、その後JIS C2550に記載の方法で磁気測定を行った。得られた磁気特性を表4に示した。同表から明らかなように、本発明範囲内において良好な磁気特性を得られることが分かる。 In this secondary recrystallization annealing, the time from which the annealing temperature reaches 800 ° C. (t1) to 20 hours after the secondary recrystallization temperature of the steel sheet is reached (t2) indicates the time for using the Ar atmosphere. 4 was changed (similar to the pattern of FIG. 3, but the first stage was not slow heating but soaking). At this time, the N 2 atmosphere was applied during the time when Ar was not used, and this N 2 was introduced at the timing when the Ar atmosphere was introduced from t1 and the time determined by the Ar introduction time ratio shown in Table 4 had elapsed. However, when the Ar introduction time ratio was 0%, an N 2 atmosphere was introduced from the time t1. The N 2 atmosphere was used until the annealing temperature reached 800 ° C. and 20 hours after the secondary recrystallization temperature was reached, and annealing was performed in a hydrogen atmosphere at 1050 ° C. or higher. Then, planarization annealing was performed in a dry atmosphere, and then magnetic measurement was performed by the method described in JIS C2550. The obtained magnetic properties are shown in Table 4. As can be seen from the table, good magnetic properties can be obtained within the scope of the present invention.

Figure 0004432789
Figure 0004432789

本発明によれば、インヒビター形成元素を有しない、種々の特性上および生産性上の利点を有する素材を用いて、二次再結晶焼鈍中に磁気特性を劣化させることなく、優れた磁気特性を有する方向性電磁鋼板を製造することができる。   According to the present invention, excellent magnetic properties can be obtained without deteriorating magnetic properties during secondary recrystallization annealing using materials having various characteristic and productivity advantages that do not have inhibitor forming elements. The grain-oriented electrical steel sheet can be manufactured.

二次再結晶焼鈍時に際し、t1(焼鈍温度が800℃に到達した時点)からt2(焼鈍温度が鋼板の二次再結晶温度に到達してから20時間後の時点)までの区間においてAr雰囲気を導入した時間の割合と、鋼板の磁気特性の関係を示した図である。At the time of secondary recrystallization annealing, an Ar atmosphere in a section from t1 (when the annealing temperature reaches 800 ° C.) to t2 (20 hours after the annealing temperature reaches the secondary recrystallization temperature of the steel plate) It is the figure which showed the relationship between the ratio of the time which introduce | transduced, and the magnetic characteristic of a steel plate. 二次再結晶焼鈍時におけるt1からt2までの区間の一例を示した図である。It is the figure which showed an example of the area from t1 to t2 at the time of secondary recrystallization annealing. 二次再結晶焼鈍時におけるt1からt2までの区間の他の一例を示した図である。It is the figure which showed another example of the area from t1 to t2 at the time of secondary recrystallization annealing. 二次再結晶焼鈍時におけるt1からt2までの区間のさらに他の一例を示した図である。It is the figure which showed another example of the area from t1 to t2 at the time of secondary recrystallization annealing.

Claims (3)

質量%でC:0.08%以下、Si:2.0%〜8.0%、Mn:0.005〜1.0%を含有し、残部Feおよび不可避的不純物とした鋼片を熱間圧延し、得られた熱延鋼板に焼鈍を施すかあるいは施さずに、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施し、ついで再結晶焼鈍および二次再結晶焼鈍を施す方向性電磁鋼板の製造工程において、
前記鋼片の成分を質量比でAlを100ppm以下、N、S、Seを各50ppm以下に低減し、該二次再結晶焼鈍において825〜1000℃の温度範囲まで昇温して保持するとともに、二次再結晶温度に達してから少なくとも20時間を二次再結晶温度以上で焼鈍し、その際、二次再結晶焼鈍温度が800℃に到達した時点をt1、鋼板の二次再結晶温度に到達した時刻から20時間後の時点をt2としたとき、t1からt2の区間における時間の70%以上をAr雰囲気とすることを特徴とする方向性電磁鋼板の製造方法。
The steel slab containing C: 0.08% or less, Si: 2.0% to 8.0%, Mn: 0.005 to 1.0% by mass%, the balance being Fe and inevitable impurities, is hot. Directionality of rolling and rolling the obtained hot-rolled steel sheet with or without annealing, or performing cold rolling at least twice with intermediate annealing, followed by recrystallization annealing and secondary recrystallization annealing In the manufacturing process of electrical steel sheets,
While reducing the component of the steel slab by mass ratio to 100 ppm or less of Al, N, S, and Se to 50 ppm or less, and raising the temperature to a temperature range of 825 to 1000 ° C. in the secondary recrystallization annealing, At least 20 hours after the secondary recrystallization temperature is reached, annealing is performed at the secondary recrystallization temperature or higher. At that time, the time when the secondary recrystallization annealing temperature reaches 800 ° C. is t1, the secondary recrystallization temperature of the steel sheet. A method for producing a grain-oriented electrical steel sheet, characterized in that when a time point 20 hours after the arrival time is t2, 70% or more of the time in a section from t1 to t2 is an Ar atmosphere.
二次再結晶焼鈍の後に、脱炭焼鈍および純化焼鈍を施すことを特徴とする、請求項1に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein decarburization annealing and purification annealing are performed after the secondary recrystallization annealing. 熱間圧延する鋼片がさらに、質量%でNi:0.010〜1.50%、Cu:0.01〜0.50%、P:0.005〜0.50%、Sn:0.005〜0.50%、Sb:0.005〜0.50%、Bi:0.005〜0.50%、Mo:0.005〜0.50%、およびCr:0.005〜0.50%から選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。   The steel pieces to be hot-rolled are further in terms of mass%: Ni: 0.010-1.50%, Cu: 0.01-0.50%, P: 0.005-0.50%, Sn: 0.005 -0.50%, Sb: 0.005-0.50%, Bi: 0.005-0.50%, Mo: 0.005-0.50%, and Cr: 0.005-0.50% The method for producing a grain-oriented electrical steel sheet according to claim 1, comprising one or more selected from the group consisting of:
JP2005026310A 2005-02-02 2005-02-02 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties Expired - Fee Related JP4432789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026310A JP4432789B2 (en) 2005-02-02 2005-02-02 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026310A JP4432789B2 (en) 2005-02-02 2005-02-02 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2006213953A JP2006213953A (en) 2006-08-17
JP4432789B2 true JP4432789B2 (en) 2010-03-17

Family

ID=36977421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026310A Expired - Fee Related JP4432789B2 (en) 2005-02-02 2005-02-02 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP4432789B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939156B2 (en) * 2012-12-28 2016-06-22 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CA3004286C (en) * 2015-12-04 2021-05-04 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet
JP6900977B2 (en) * 2018-06-29 2021-07-14 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2006213953A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
EP2644716B1 (en) Method for producing directional electromagnetic steel sheet
EP3530770B1 (en) Hot-rolled steel sheet for electrical steel sheet production and method of producing same
JP6191780B2 (en) Method for producing grain-oriented electrical steel sheet and nitriding equipment
JP6531864B2 (en) Method of manufacturing directional magnetic steel sheet
EP3214188B1 (en) Production method for oriented grain-electromagnetic steel sheet
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
KR102249920B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
JP7221481B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP4432789B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
JP3893759B2 (en) Method for producing grain-oriented silicon steel sheet
JP2002030340A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
CN111566244A (en) Oriented electrical steel sheet and method for manufacturing the same
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JP2001123229A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6900977B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6988845B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2008078947A1 (en) Method of manufacturing grain-oriented electrical steel sheets
JP2004285402A (en) Manufacturing method of grain-oriented magnetic steel sheet
JPH11269543A (en) Production of grain oriented electric steel sheet
JP4259351B2 (en) Method for producing grain-oriented electrical steel sheet
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
JP2021139040A (en) Manufacturing method of directional magnetic steel sheet
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4432789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees