JPH04224611A - Method for controlling holdup quantity of ore in circulating fluidized bed pre-reduction furnace - Google Patents

Method for controlling holdup quantity of ore in circulating fluidized bed pre-reduction furnace

Info

Publication number
JPH04224611A
JPH04224611A JP40665490A JP40665490A JPH04224611A JP H04224611 A JPH04224611 A JP H04224611A JP 40665490 A JP40665490 A JP 40665490A JP 40665490 A JP40665490 A JP 40665490A JP H04224611 A JPH04224611 A JP H04224611A
Authority
JP
Japan
Prior art keywords
ore
fluidized bed
reaction tower
reduction furnace
circulating fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40665490A
Other languages
Japanese (ja)
Other versions
JP2501662B2 (en
Inventor
Hiroshi Itaya
板谷 宏
Kazuo Kimura
木村 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2406654A priority Critical patent/JP2501662B2/en
Publication of JPH04224611A publication Critical patent/JPH04224611A/en
Application granted granted Critical
Publication of JP2501662B2 publication Critical patent/JP2501662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To control holdup quantity of ore existing in a fluidized bed reaction tower in the subject furnace consisting of a fluidized bed reaction tower 1, cyclone 2, downcomer 3, granular ore circulating device 4, ore supply pipe 6 and ore discharge pipe 7. CONSTITUTION:The gas is supplied from the granular ore circulating device 4 in the circulating fluidized bed pre-reduction furnace and while promoting the fluidity in the system, by temporarily adjusting ore supplying rate and ore discharging rate, control of the holdup quantity of ore in the furnace is easily implemented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶融還元法に使用する
粉状鉱石を循環流動層予備還元炉で予備還元する場合の
鉱石滞留量制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the amount of ore retained when powdered ore used in a smelting reduction method is pre-reduced in a circulating fluidized bed pre-reduction furnace.

【0002】0002

【従来の技術】図4に粉状鉱石を溶融還元する装置の全
体フローシートを示した。溶融還元炉10には上方から
炭材11を供給し、下方からガス12を吹込んで、炭材
を燃焼して還元ガスを生成し、予備還元炉20から供給
される予備還元鉱(粉鉱)22を溶融還元して、溶融金
属14を排出する。予備還元炉20は溶融還元炉10で
発生した還元成分を含む高温還元ガス13を導入し、粉
鉱石21を供給して予備還元し、予備還元鉱22を排出
する。排ガス23は放出される。この予備還元炉20で
は図1に示すように、予備還元反応塔1からの排出鉱石
をサイクロン2等によって回収し、ダウンカマ3を経て
再び予備還元反応塔1に循環して予備還元率を高めるよ
うにした、いわゆる循環流動層予備還元炉が用いられて
いる。
2. Description of the Related Art FIG. 4 shows an overall flow sheet of an apparatus for melting and reducing powdered ore. The smelting reduction furnace 10 is supplied with carbonaceous material 11 from above, gas 12 is blown into it from below, the carbonaceous material is combusted to generate reducing gas, and preliminary reduced ore (fine ore) is supplied from the preliminary reduction furnace 20. 22 is melted down and the molten metal 14 is discharged. The preliminary reduction furnace 20 introduces the high-temperature reducing gas 13 containing reducing components generated in the smelting reduction furnace 10, supplies fine ore 21 for preliminary reduction, and discharges the preliminary reduction ore 22. Exhaust gas 23 is released. In this pre-reduction furnace 20, as shown in FIG. 1, the ore discharged from the pre-reduction reaction tower 1 is recovered by a cyclone 2, etc., and is circulated back to the pre-reduction reaction tower 1 via a downcomer 3 to increase the pre-reduction rate. A so-called circulating fluidized bed pre-reduction furnace is used.

【0003】以上のような溶融還元炉10と循環流動層
予備還元炉20を直結して鉱石を溶融還元する場合、溶
融還元炉10の操業状態に応じて、予備還元炉20にお
ける鉱石の予備還元率を変化させる必要がある。この場
合、循環流動層予備還元炉の反応塔1における鉱石の滞
留量を調整するのが、予備還元率の調整に非常に有効で
ある。
[0003] When the smelting reduction furnace 10 and the circulating fluidized bed pre-reduction furnace 20 as described above are directly connected to smelt and reduce ore, the pre-reduction of the ore in the pre-reduction furnace 20 depends on the operating state of the smelting reduction furnace 10. It is necessary to change the rate. In this case, adjusting the amount of ore retained in the reaction tower 1 of the circulating fluidized bed pre-reduction furnace is very effective in adjusting the pre-reduction rate.

【0004】従来、循環流動層予備還元炉における還元
反応塔内の鉱石滞留量の制御は特開昭63−57709
号公報に示されるようにダウンカマ底部から鉱石粒子を
反応塔内へニューマチックバルブによって送り込む循環
量調整により行われてきた。
Conventionally, the control of the amount of ore retained in the reduction reaction tower in a circulating fluidized bed pre-reduction furnace was disclosed in Japanese Patent Application Laid-Open No. 63-57709.
As shown in the publication, this has been carried out by adjusting the circulation rate by sending ore particles from the bottom of the downcomer into the reaction tower using a pneumatic valve.

【0005】[0005]

【発明が解決しようとする課題】しかし、粉状鉱石は鉱
石銘柄、還元率、温度、粒子径分布などによりその流動
性が著しく変化するため、ニューマチックバルブにより
キャリヤガスを用いて粉体を移動させて循環量を調整し
、反応塔内の鉱石滞留量を制御する場合、系内を循環し
ている鉱石粒子の流動化状態を把握することができない
ため、粒子循環量の制御性が悪く、試行錯誤を繰返しな
がら系内の滞留量を調整することとなる。その結果、調
整に時間が掛るばかりでなく、その制御性も良くないと
いう欠陥があった。本発明は循環流動層予備還元炉が自
己制御性を有することを見出し、簡単な方法によって鉱
石滞留量を制御する方法を提供するものである。
[Problem to be solved by the invention] However, the fluidity of powdered ore changes significantly depending on the ore brand, reduction rate, temperature, particle size distribution, etc., so it is necessary to move the powder using a carrier gas with a pneumatic valve. When controlling the amount of ore retained in the reaction tower by adjusting the circulation rate, it is not possible to grasp the fluidization state of the ore particles circulating in the system, so the controllability of the particle circulation rate is poor. The amount of retention in the system must be adjusted through trial and error. As a result, the adjustment not only takes time but also has poor controllability. The present invention has discovered that a circulating fluidized bed pre-reduction furnace has self-control properties, and provides a method for controlling the amount of ore retention using a simple method.

【0006】[0006]

【課題を解決するための手段】本発明は鉱石供給管、鉱
石排出管、還元ガス導入管、及びキャリオーバ管を備え
た流動層予備還元反応塔、キャリオーバ管に結合したサ
イクロン、サイクロン底部に連結した鉱石排出管あるい
は供給管を取付けたダウンカマ、及びダウンカマより流
動層予備還元反応塔へ原料を供給する粒子循環装置から
なる循環流動層予備還元炉の鉱石滞留量制御方法におい
て、粒子循環装置にガスを供給して循環流動層予備還元
炉内の全系の流動化を促進しつつ、鉱石供給速度と鉱石
排出速度のいずれか一方、もしくは両者を調整すること
を特徴とする循環流動層の鉱石滞留量制御方法である。 この調整は連続的でも断続的でもよい。
[Means for Solving the Problems] The present invention provides a fluidized bed prereduction reaction tower equipped with an ore supply pipe, an ore discharge pipe, a reducing gas introduction pipe, and a carryover pipe, a cyclone connected to the carryover pipe, and a cyclone connected to the bottom of the cyclone. In a method for controlling the amount of ore retained in a circulating fluidized bed pre-reduction furnace, which comprises a downcomer equipped with an ore discharge pipe or a supply pipe, and a particle circulation device that supplies raw materials from the downcomer to a fluidized bed pre-reduction reaction tower, gas is supplied to the particle circulation device. The amount of ore retained in a circulating fluidized bed characterized by adjusting one or both of the ore supply rate and ore discharge rate while promoting fluidization of the entire system in the circulating fluidized bed pre-reduction furnace. This is a control method. This adjustment may be continuous or intermittent.

【0007】以下、図面により本発明方法を詳細に説明
する。図1に本発明の適用される循環流動層予備還元炉
の例を示す。反応塔1内では鉱石が流動化しており、反
応塔1内を上昇する高温還元ガス13により鉱石粒子は
吹上げられ、キャリオーバ管9を通ってサイクロン2に
入り、ここで固気分離される。排ガス23は排出される
。分離された鉱石はダウンカマ3を下降し、粒子循環装
置4を径由して再び反応塔1に戻る。ダウンカマ3内で
は鉱石粒子は比較的速い速度で下降しており、しかも還
元ガスの主流は反応塔1内を上昇するものの、サイクロ
ン2では圧力損失が生じるため還元ガスの一部は粒子循
環装置4を経由してダウンカマ3内を上昇しサイクロン
2に流れる。この結果ダウンカマ3の中でも鉱石粒子は
流動化に近い状況を呈することを本発明者らは見出した
。従って、粒子循環装置4で鉱石を僅かに流動化状態に
すれば、反応塔1、ダウンカマ3を含む循環流動層予備
還元炉の全系にわたって鉱石粒子は流動化状態となる。 したがって、反応塔1内の鉱石量とダウンカマ3内の鉱
石量はバランスする。すなわち、粒子循環装置4で鉱石
粒子を僅かに流動化気味の状態にすれば、従来技術のよ
うに粒子循環量を直接制御しなくても循環流動層予備還
元炉の全系が自己制御性を発揮し、自然に系内に存在す
る鉱石量に応じた鉱石が反応塔1内に滞留することにな
る。従って、循環流動層予備還元炉の全系内に存在する
鉱石量を調整しさえすれば、反応塔に存在する鉱石量を
制御することができる。
The method of the present invention will be explained in detail below with reference to the drawings. FIG. 1 shows an example of a circulating fluidized bed pre-reduction furnace to which the present invention is applied. The ore is fluidized in the reaction tower 1, and the ore particles are blown up by the high-temperature reducing gas 13 rising inside the reaction tower 1, enter the cyclone 2 through the carryover pipe 9, and are separated into solid and gas. Exhaust gas 23 is exhausted. The separated ore descends through the downcomer 3, passes through the particle circulation device 4, and returns to the reaction tower 1 again. In the downcomer 3, the ore particles are descending at a relatively high speed, and although the main stream of the reducing gas rises in the reaction tower 1, pressure loss occurs in the cyclone 2, so some of the reducing gas is transferred to the particle circulation device 4. The water rises inside the downcomer 3 and flows into the cyclone 2. As a result, the present inventors found that the ore particles in the downcomer 3 exhibit a state close to fluidization. Therefore, if the ore is slightly fluidized in the particle circulation device 4, the ore particles will be fluidized throughout the entire system of the circulating fluidized bed pre-reduction furnace including the reaction tower 1 and the downcomer 3. Therefore, the amount of ore in the reaction tower 1 and the amount of ore in the downcomer 3 are balanced. In other words, if the ore particles are brought into a slightly fluidized state in the particle circulation device 4, the entire system of the circulating fluidized bed pre-reduction furnace can be self-controlled without directly controlling the particle circulation amount as in the prior art. As a result, ore corresponding to the amount of ore naturally present in the system will remain in the reaction tower 1. Therefore, the amount of ore present in the reaction tower can be controlled by adjusting the amount of ore present in the entire system of the circulating fluidized bed pre-reduction furnace.

【0008】[0008]

【作用】前述のように、反応塔1内では鉱石粒子は流動
化状態となっており、ダウンカマ3内では、流動化気味
の粒子が水のように流れ易い状態になっている。従って
、粒子循環装置4において、粒子を流動化あるいは流動
化に近い状態にしてやれば、若し、ダウンカマ3内の粒
子が多ければ、圧力的にバランスするまで粒子は反応塔
1側に流れてバランスし、反応塔1側の粒子が多ければ
圧力的にバランスするまで粒子はダウンカマ側に移動す
る。従って、循環流動層予備還元炉の全系内に存在する
鉱石量を増やせば、反応塔内の鉱石は増え、全系内に存
在する鉱石量を減らせば反応塔内に存在する鉱石を減ら
すことができる。つまり、反応塔1とダウンカマ3とは
流動化状態の鉱石粒子にとって恰も液体の連通管のよう
に作用する。
[Operation] As described above, the ore particles are in a fluidized state in the reaction tower 1, and in the downcomer 3, the slightly fluidized particles are in a state where they flow easily like water. Therefore, if the particles are fluidized or nearly fluidized in the particle circulation device 4, if there are many particles in the downcomer 3, the particles will flow to the reaction column 1 side until the pressure is balanced. However, if there are many particles on the reaction column 1 side, the particles will move to the downcomer side until the pressure is balanced. Therefore, if the amount of ore present in the entire system of the circulating fluidized bed pre-reduction furnace is increased, the amount of ore present in the reaction tower will increase, and if the amount of ore present in the entire system is decreased, the amount of ore present in the reaction tower will be reduced. I can do it. In other words, the reaction tower 1 and the downcomer 3 act like a liquid communication pipe for the ore particles in a fluidized state.

【0009】連通管中に普通の状態で存在する粉体は左
右のレベルを合せることは困難である。粉体を流動化さ
せてから連通管の左右のレベルを変化させてやれば、バ
ランスする方向へ位置変化が起り、レベルを合せること
が容易となる。具体的には以下のように反応塔の鉱石量
を変えることができる。滞留鉱石量を増やす場合、排出
管7からの鉱石排出速度を一定にして一時的に供給管6
からの給鉱速度を上げるか、または排鉱速度を下げる操
作と給鉱速度を上げる操作を同時に行うか、あるいは給
鉱速度を維持したまま排鉱速度を下げる操作を行えば良
い。逆に鉱石量を減らす場合は全く逆の操作を行えば良
いことは明らかである。
[0009] It is difficult to align the levels of the powder that normally exists in the communicating pipe on the left and right sides. If the levels on the left and right sides of the communicating tube are changed after fluidizing the powder, the position will change in the direction of balance, making it easier to match the levels. Specifically, the amount of ore in the reaction tower can be changed as follows. When increasing the amount of retained ore, the ore discharge rate from the discharge pipe 7 is kept constant and the supply pipe 6 is temporarily closed.
The ore feeding speed may be increased, or the ore discharging speed may be decreased and the ore feeding speed may be increased at the same time, or the ore discharging speed may be reduced while maintaining the ore feeding speed. On the other hand, if you want to reduce the amount of ore, it is obvious that you can do the exact opposite.

【0010】粒子循環装置4としては、図2に示すよう
に筒体42の底部に分散板43を設け、この分散板43
の下方からガス45を吹込むことができるようにし、一
方、分散板43より上方にダウンカマからの粉体流入連
絡管41を連結し、その上方に流動層反応炉への粉体流
出管44を配設した装置とすればよい。この粒子循環装
置に流動化ガス45を吹込んで筒体42内の粉体を流動
化させると、例えばダウンカマ側の粉体のレベルが高い
とき粉体は矢印46の方向に流動する。
As shown in FIG. 2, the particle circulation device 4 includes a dispersion plate 43 provided at the bottom of a cylinder 42.
On the other hand, a powder inflow pipe 41 from the downcomer is connected above the dispersion plate 43, and a powder outflow pipe 44 to the fluidized bed reactor is connected above it. It may be an installed device. When fluidizing gas 45 is blown into this particle circulation device to fluidize the powder in the cylinder 42, the powder flows in the direction of the arrow 46, for example, when the level of the powder on the downcomer side is high.

【0011】[0011]

【実施例】図3は内径が700mm、高さ7.3mの反
応塔を用いた循環流動層予備還元炉で本発明の方法によ
り反応塔内の鉱石滞留量を制御した例である。主な試験
条件は以下の如くである。 還元温度    :680〜770℃ 鉱石        :ブラジル産鉄鉱石鉱石の調和平
均径:165μm 還元ガス量  :3764Nm3 /H還元ガス組成:
H2 =14.6%,CO=40.7%,CO2=0.
8%, H2 O=0.6%,N2 =43.3%循環装置で鉱
石を流動化気味にするために流したN2 の流速=0.
65m/s図3に見られるように、粒子循環装置で鉱石
粒子の循環量を全く制御せず、僅かに0.65m/sに
なるガスを流すだけで、鉱石の供給速度と鉱石の排出速
度を調整することにより正確かつ安定して反応塔内の鉱
石量を調整することが可能なことが明らかである。
[Example] Fig. 3 shows an example in which the amount of ore retained in the reaction tower was controlled by the method of the present invention in a circulating fluidized bed pre-reduction furnace using a reaction tower with an inner diameter of 700 mm and a height of 7.3 m. The main test conditions are as follows. Reduction temperature: 680-770℃ Ore: Harmonic mean diameter of Brazilian iron ore: 165 μm Reducing gas amount: 3764 Nm3 /H Reducing gas composition:
H2 = 14.6%, CO = 40.7%, CO2 = 0.
8%, H2 O = 0.6%, N2 = 43.3%. Flow rate of N2 flowed to slightly fluidize the ore in the circulation device = 0.
65m/s As shown in Figure 3, the ore supply rate and ore discharge rate can be reduced by simply flowing gas at a rate of 0.65m/s without controlling the circulation rate of ore particles at all using the particle circulation device. It is clear that it is possible to accurately and stably adjust the amount of ore in the reaction tower by adjusting.

【0012】0012

【発明の効果】本発明により循環流動層予備還元炉にお
いて粒子循環装置により粒子循環量を調整しなくても、
単純に給鉱速度と鉱石排出速度を調整するだけで反応塔
内の鉱石量を正確かつ安定的に制御することができる。
[Effects of the Invention] According to the present invention, in a circulating fluidized bed pre-reduction furnace, the particle circulation rate can be adjusted without adjusting the particle circulation amount using a particle circulation device.
By simply adjusting the ore feed rate and ore discharge rate, the amount of ore in the reaction tower can be accurately and stably controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を実施した循環流動層予備還元炉の構成
図である。
FIG. 1 is a configuration diagram of a circulating fluidized bed pre-reduction furnace in which the present invention is implemented.

【図2】粒子循環装置の構成図である。FIG. 2 is a configuration diagram of a particle circulation device.

【図3】本発明を実施したときの反応塔内鉱石量、給鉱
速度、鉱石排出速度の推移を示すグラフである。
FIG. 3 is a graph showing changes in the amount of ore in the reaction tower, the ore feeding rate, and the ore discharge rate when the present invention is carried out.

【図4】溶融還元装置の全体フローシートである。FIG. 4 is an overall flow sheet of the melting reduction apparatus.

【符号の説明】[Explanation of symbols]

1    反応塔 2    サイクロン 3    ダウンカマ 4    粒子循環装置 5    還元ガス導入管 6    鉱石供給管 7    鉱石排出管 8    粗粒抜出管兼非常抜出し管 9    キャリオーバ管 10    溶融還元炉 20    予備還元炉 41    ダウンカマからの粒子入口管42    
反応塔への粒子供給管 43    ガス分散板
1 Reaction tower 2 Cyclone 3 Downcomer 4 Particle circulation device 5 Reducing gas introduction pipe 6 Ore supply pipe 7 Ore discharge pipe 8 Coarse particle extraction pipe and emergency extraction pipe 9 Carryover pipe 10 Melting reduction furnace 20 Pre-reduction furnace 41 Particles from the downcomer Inlet pipe 42
Particle supply pipe 43 to reaction tower Gas distribution plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  流動層予備還元反応塔と、そのキャリ
オーバ管に結合したサイクロンと、サイクロン底部に連
結し、鉱石排出管あるいは供給管を取付けたダウンカマ
と、ダウンカマ下端より流動層予備還元反応塔へ原料を
供給する粒子循環装置とからなる循環流動層予備還元炉
の鉱石滞留量制御方法において、粒子循環装置にガスを
供給して循環流動層予備還元炉内の全系の流動化を促進
しつつ、鉱石供給速度及び/又は鉱石排出速度を調整す
ることを特徴とする循環流動層の鉱石滞留量制御方法。
Claim 1: A fluidized bed prereduction reaction tower, a cyclone connected to its carryover pipe, a downcomer connected to the bottom of the cyclone and equipped with an ore discharge pipe or a supply pipe, and a fluidized bed prereduction reaction tower from the lower end of the downcomer. In a method for controlling the amount of ore retention in a circulating fluidized bed pre-reduction furnace comprising a particle circulation device that supplies raw materials, gas is supplied to the particle circulation device to promote fluidization of the entire system in the circulating fluidized bed pre-reduction reactor. A method for controlling the amount of ore retained in a circulating fluidized bed, the method comprising adjusting the ore supply rate and/or ore discharge rate.
JP2406654A 1990-12-26 1990-12-26 Control method of ore retention in circulating fluidized bed preliminary reduction furnace Expired - Fee Related JP2501662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2406654A JP2501662B2 (en) 1990-12-26 1990-12-26 Control method of ore retention in circulating fluidized bed preliminary reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2406654A JP2501662B2 (en) 1990-12-26 1990-12-26 Control method of ore retention in circulating fluidized bed preliminary reduction furnace

Publications (2)

Publication Number Publication Date
JPH04224611A true JPH04224611A (en) 1992-08-13
JP2501662B2 JP2501662B2 (en) 1996-05-29

Family

ID=18516274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406654A Expired - Fee Related JP2501662B2 (en) 1990-12-26 1990-12-26 Control method of ore retention in circulating fluidized bed preliminary reduction furnace

Country Status (1)

Country Link
JP (1) JP2501662B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3708684T3 (en) * 2019-03-15 2022-06-20 Primetals Technologies Austria GmbH Method for direct reduction in a fluidised bed

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177511A (en) * 1989-12-04 1991-08-01 Nippon Steel Corp Method for operating fluidized bed pre-reduction furnace and fluidized bed pre-reduction furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177511A (en) * 1989-12-04 1991-08-01 Nippon Steel Corp Method for operating fluidized bed pre-reduction furnace and fluidized bed pre-reduction furnace

Also Published As

Publication number Publication date
JP2501662B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
KR0178445B1 (en) Method for producing molter pig iron
JP2955306B2 (en) Hot metal manufacturing method and apparatus
KR910008113B1 (en) Metal-making apparatus involving the smetting redaction of metallic oxides
US11685961B2 (en) Method for direct reduction in a fluidized bed
JP4316673B2 (en) Process for treating granular material in fluidized bed process and reaction vessel and plant for carrying out this process
SK178398A3 (en) Method of producing liquid pig iron or liquid steel precursors
JPH04224611A (en) Method for controlling holdup quantity of ore in circulating fluidized bed pre-reduction furnace
RU2218418C2 (en) Device for prevention of disruption of fluidized bed designed for reduction reactor with fluidized bed
US6235079B1 (en) Two step twin-single fluidized bed pre-reduction apparatus for pre-reducing fine iron ore, and method therefor
KR100466634B1 (en) Method of producing liquid iron or liquid steel precursors
JPH03177511A (en) Method for operating fluidized bed pre-reduction furnace and fluidized bed pre-reduction furnace
JPH07268429A (en) Operating method of fluidized bed prereduction device
KR20000011107A (en) Process for the treatment of particulate matter by fluidisation, and vessel with apparatus to carry out the treatment
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JP2981015B2 (en) Operating method of circulating fluidized bed reactor
JPH03215621A (en) Circulating fluidized bed prereduction for powdery iron ore
JPS6360214A (en) Smelting reduction method for iron ore
JPH01117132A (en) Transfer device for hot bulk material
JPS6360213A (en) Smelting reduction method for iron ore
JPH03183715A (en) Fluidized bed pre-reduction method for powdery ore
JPH046765B2 (en)
JPS62228874A (en) Preheated core shifter to fluidized-bed spare reducing furnace
JPS6357710A (en) Method and apparatus for circulating flow reduction of ores
JPH03173711A (en) Method and apparatus for regulating gas flow for pre-reduction in smelting reduction equipment providing pre-reduction furnace
JPH0715129B2 (en) Method for producing molten metal from powdered ore

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees