JPH03173711A - Method and apparatus for regulating gas flow for pre-reduction in smelting reduction equipment providing pre-reduction furnace - Google Patents

Method and apparatus for regulating gas flow for pre-reduction in smelting reduction equipment providing pre-reduction furnace

Info

Publication number
JPH03173711A
JPH03173711A JP1313259A JP31325989A JPH03173711A JP H03173711 A JPH03173711 A JP H03173711A JP 1313259 A JP1313259 A JP 1313259A JP 31325989 A JP31325989 A JP 31325989A JP H03173711 A JPH03173711 A JP H03173711A
Authority
JP
Japan
Prior art keywords
gas
pressure
reduction furnace
reduction
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1313259A
Other languages
Japanese (ja)
Other versions
JP2536642B2 (en
Inventor
Kenzo Yamada
健三 山田
Tatsuro Ariyama
達郎 有山
Shinichi Isozaki
進市 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1313259A priority Critical patent/JP2536642B2/en
Priority to US07/619,759 priority patent/US5183495A/en
Priority to AU67669/90A priority patent/AU632874B2/en
Priority to KR1019900019785A priority patent/KR940003502B1/en
Priority to AT90123213T priority patent/ATE120241T1/en
Priority to CA002031473A priority patent/CA2031473C/en
Priority to BR909006143A priority patent/BR9006143A/en
Priority to DE69018034T priority patent/DE69018034T2/en
Priority to CN90110308A priority patent/CN1021917C/en
Priority to EP90123213A priority patent/EP0431556B1/en
Publication of JPH03173711A publication Critical patent/JPH03173711A/en
Application granted granted Critical
Publication of JP2536642B2 publication Critical patent/JP2536642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To keep ore under suitable fluidized condition and to enable suitable pre- reduction by varying gas pressure for introducing into a pre-reduction furnace and regulating the actual flow rate. CONSTITUTION:A flow detector 18 outputs gas flow rate passing through a duct 11 to a computing control unit 20. The computing control unit 20 calculates the suitable pressure, which is outputted to a comparison adjusting device 21 and also opening degree regulating signal decided with calculation is transmitted to a damper 17 to regulate the opening degree. The pressure at the inlet of the pre-reduction furnace 2 is detected with a pressure detector 19 and this is outputted to the comparison adjusting device 21. The comparison adjusting device 21 compares this pressure signal and the pressure signal from the computing control unit 20 and the opening degree regulating signal is transmitted to the damper 16 so that the actual pressure approaches the suitable pressure to regulate the opening degree. By this method, for the variations of gas pressure and flow rate generated in the smelting reduction furnace, the fluidity in pre-reduction furnace 2 is kept under the suitable condition, thereby smooth operation of the furnace is made possible.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、流動層式予備還元炉を備えた鉄鉱石等の溶融
還元設備において、溶融還元炉の発生ガスを予備還元炉
に導入する際のガス流れの調整方法およびその実施に好
適な装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applicable to a smelting and reduction equipment for iron ore, etc. equipped with a fluidized bed type pre-reduction furnace, when gas generated from the smelting reduction furnace is introduced into the pre-reduction furnace. The present invention relates to a method for adjusting gas flow and an apparatus suitable for carrying out the method.

〔従来の技術〕[Conventional technology]

高炉法に代わる銑鉄製造技術として、鉄浴式の溶融還元
法が注目を浴びている。
The iron bath smelting reduction method is attracting attention as an alternative pig iron production technology to the blast furnace method.

この溶融還元法ではエネルギー効率を高めるため、溶融
還元炉から発生した還元性ガスを利用した鉱石の予備還
元が行われる。このための予flijs元炉としては、
原鉱石の粉鉄をそのまま使えることや熱交換および反応
が速いことなどの理由から流動層形式の還元炉が用いら
れることが多い。
In this smelting reduction method, in order to increase energy efficiency, preliminary reduction of ore is performed using reducing gas generated from a smelting reduction furnace. As a preliminary flijs furnace for this,
A fluidized bed type reduction furnace is often used because it allows the raw iron powder to be used as it is and because heat exchange and reaction are fast.

このような流動層式予備還元炉を用いた従来の方・式で
は、溶融還元炉で発生したガスをそのまま予備還元炉へ
導入している。これは、エネルギー効率の面からも溶融
還元炉の発生ガスの全量を予備還元に利用したほうが有
利であり、また発生ガスの流量を見込んで予備還元炉の
形状・寸法を設定すれば十分且つ適切な予備還元を行う
ことができるという考えに基づくものであり、このよう
な方式は1例えば特開昭58−210110号、特開昭
62−23915号、特開昭62−60805号等に示
されている。
In the conventional method using such a fluidized bed pre-reduction furnace, the gas generated in the melting reduction furnace is directly introduced into the pre-reduction furnace. In terms of energy efficiency, it is advantageous to use the entire amount of gas generated in the smelting reduction furnace for preliminary reduction, and it is sufficient and appropriate to set the shape and dimensions of the preliminary reduction furnace in consideration of the flow rate of generated gas. This method is based on the idea that preliminary reduction can be carried out, and such a method is disclosed in, for example, Japanese Patent Application Laid-open Nos. 58-210110, 62-23915, and 62-60805. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

流動層式予備還元炉において、装入される粉粒状鉱石を
適正な状態で流動化させるためには、炉内に導入される
ガス流量(実流量または流速)が炉体形状・寸法に応じ
た適正な範囲にあることが必要となる。すなわち、ガス
流量が少ないと鉱石が適正に流動化しなくなり、一方、
多過ぎると排ガスとともに炉外に飛散する鉱石量が増大
してしまい、いずれの場合も均一かつ十分な予備還元反
応が期待できない、また、特に後者の場合には、ガス排
出管の詰まりなど下流側の設値にトラブルが発生し易く
なる。
In a fluidized bed pre-reduction furnace, in order to fluidize the charged granular ore in an appropriate state, the gas flow rate (actual flow rate or flow rate) introduced into the furnace must be adjusted according to the shape and dimensions of the furnace body. It needs to be within an appropriate range. In other words, if the gas flow rate is low, the ore will not fluidize properly;
If the amount is too high, the amount of ore scattered outside the furnace together with the exhaust gas will increase, and in either case, a uniform and sufficient preliminary reduction reaction cannot be expected. Troubles are likely to occur with the setting values.

ところが、近年実用化に向けて研究が進められている溶
融還元炉の操業は、以下に述べるような理由から、その
発生ガス、すなわち予備還元炉への導入ガスが圧力・流
量ともに大きく変動するような形態にならざるを得ない
。すなわち、これは次のような理由による。
However, in the operation of smelting reduction furnaces, which have been studied for practical use in recent years, the generated gas, that is, the gas introduced into the preliminary reduction furnace, tends to fluctuate greatly in both pressure and flow rate due to the following reasons. It has no choice but to take this form. That is, this is due to the following reasons.

i)溶融還元法は生産量を弾力的調整できる点に大きな
メリットがあり、生産量に応じ原料装入量、酸素吹込量
、炉内温度等の操業条件が大幅に変化する。
i) The smelting reduction method has the great advantage of being able to flexibly adjust the production volume, and operating conditions such as the amount of raw material charged, the amount of oxygen blown, and the temperature inside the furnace change significantly depending on the production volume.

■)溶融還元炉内のガス圧力は、高いほうがガス密度を
高めて還元反応を促進でき、しかも設備を小型化できる
などの利点があり、このため、炉内を密閉し、ガス圧力
を大気圧以上にした操業が有利である。
■) The higher the gas pressure in the smelting reduction furnace, the higher the gas density, which can promote the reduction reaction, and also has the advantage of making the equipment more compact. It is advantageous to operate under the above conditions.

■)経済性を向上するためには種々の原料(たとえば、
揮発分が異なるため発生ガス量に差を生じる各種の石炭
など)を使用する必要が生じる。
■) In order to improve economic efficiency, various raw materials (for example,
It is necessary to use various types of coal, etc., which have different volatile contents and therefore generate different amounts of gas.

このように発生ガス量が大きく変動するような操業にお
いては、溶融還元炉で発生したガスをそのまま予備還元
炉へ導入する従来の方式では、鉱石を適正に流動化させ
ることができず、したがって十分な予備還元も期待でき
ない。
In operations where the amount of gas generated fluctuates greatly in this way, the conventional method of directly introducing the gas generated in the smelting reduction furnace into the pre-reduction furnace cannot fluidize the ore properly, and therefore it is difficult to fluidize the ore properly. We cannot expect a preliminary return.

このような問題に対し、比較的ガス量の多い場合を基準
にした設備とし、実際の操業中に流動化に必要なガス量
が不足した場合には、予備還元炉からの排出ガスの一部
を再循環させて溶融還元炉からの発生ガスに加え、これ
を予備還元炉へ導入するという方法が考えられている。
To solve this problem, we have designed equipment based on a relatively large amount of gas, and if the amount of gas required for fluidization is insufficient during actual operation, some of the exhaust gas from the pre-reduction furnace will be A method is being considered in which the gas is recirculated and added to the generated gas from the smelting reduction furnace, and then introduced into the preliminary reduction furnace.

しかしこの方法では、予備還元炉から排出されて圧力の
低下したガスを再Wi環させるためにガスを昇圧する必
要があり、そのための昇圧用圧縮機や圧縮機入側でガス
を冷却・除塵するための装置、さらにはこれらを経たガ
スを再び昇温するための加熱装置が必要で、多大の設備
コストと運転コストがかかってしまう。
However, with this method, it is necessary to increase the pressure of the gas in order to recirculate the gas whose pressure has decreased after being discharged from the pre-reduction furnace, and for this purpose, the gas is cooled and dusted at the pressure boosting compressor and the compressor input side. A heating device is required to raise the temperature of the gas again after passing through these devices, resulting in a large amount of equipment cost and operating cost.

本発明はこのような従来の問題に鑑みなされたもので、
溶融還元炉の操業条件により発生ガスの圧力および流量
が大幅に変動しても、流動層式予備還元炉内において鉱
石を適正な流動化状態に保つことができ、しかもこれを
経済的に実現させることができる予備還元用ガス流量の
調整方法およびその実施に好適な装置の提供をその目的
とする。
The present invention was made in view of such conventional problems,
Even if the pressure and flow rate of the generated gas fluctuates significantly depending on the operating conditions of the smelting reduction furnace, the ore can be maintained in an appropriate fluidized state in the fluidized bed pre-reduction furnace, and this can be achieved economically. The purpose of the present invention is to provide a method for adjusting the flow rate of a prereducing gas and an apparatus suitable for carrying out the method.

〔課題を解決するための手段〕[Means to solve the problem]

このような目的を達成するための本発明に係る予備還元
用ガス流量の調整方法は、溶融還元炉の発生ガスを予備
還元用ガスとして予備還元炉に導入するに際し、予備還
元炉内で鉱石を適正に流動化させるよう、予備還元炉へ
導入するガスの圧力を変更することによりその実流量を
調整するようにしたことをその特徴とする。
The method for adjusting the flow rate of pre-reducing gas according to the present invention to achieve such an objective is to Its feature is that the actual flow rate is adjusted by changing the pressure of the gas introduced into the preliminary reduction furnace so as to fluidize it appropriately.

また、このような方法を実施するための本発明に係る装
置は、溶融還元炉から予備還元炉への還元ガス流路と、
予備還元炉からの排出ガス流路とに、それぞれ開度調整
弁を設けたことをその特徴とする。
Moreover, the apparatus according to the present invention for carrying out such a method includes a reducing gas flow path from the smelting reduction furnace to the preliminary reduction furnace,
Its feature is that an opening adjustment valve is provided in each of the exhaust gas passages from the preliminary reduction furnace.

〔作  用〕[For production]

本発明は、圧縮性流体はその圧力を変えることにより体
積が変わるという原理を利用したものである。すなわち
1本発明法により溶融還元炉で発生したガスの圧力を変
更すれば、そのガスの体積が増減し、ガスはその実流量
が調整されて予備還元炉に導入される(以下、ガス流量
に関する記述においては、単に「流量」と記された場合
は標準状態における流量1例えばNrn’/hrを意味
し、方、ガスの実際の圧力・温度下での流量を「実流量
」と呼ぶ)。このようなガス圧力の変更は、溶融還元炉
からの発生ガス量や圧力に応じて行われる。例えば、溶
融還元炉での発生ガス量が、予備還元炉で鉱石を流動化
させるに不十分なときは。
The present invention utilizes the principle that the volume of a compressible fluid changes by changing its pressure. In other words, by changing the pressure of the gas generated in the smelting reduction furnace using the method of the present invention, the volume of the gas increases or decreases, and the actual flow rate of the gas is adjusted before being introduced into the pre-reduction furnace (hereinafter, description regarding the gas flow rate) In the above, when simply written as "flow rate", it means the flow rate 1, for example, Nrn'/hr in a standard state, whereas the flow rate under the actual pressure and temperature of the gas is called the "actual flow rate"). Such changes in gas pressure are performed depending on the amount and pressure of gas generated from the melting reduction furnace. For example, when the amount of gas generated in the smelting reduction furnace is insufficient to fluidize the ore in the pre-reduction furnace.

その圧力を下げることにより実流量を増大させて鉱石の
適正な流動化を図り、逆に発生ガス量が多過ぎるときは
、その圧力を高めて実流量を減らすことにより、予備還
元炉か、らの鉱石の飛散を抑制することができる。
By lowering the pressure, the actual flow rate is increased and the ore is properly fluidized. Conversely, when the amount of gas generated is too large, the pressure is increased and the actual flow rate is reduced to remove the ore from the pre-reducing furnace. The scattering of ore can be suppressed.

また本発明の装置によれば、各ガス流路に設けられた開
度調整弁の開度を調節することにより、前記調整方法に
したがい、溶融還元、炉で発生したガスの圧力を変更し
実流量を調整して予備還元炉へ導入することができる。
Further, according to the apparatus of the present invention, by adjusting the opening degree of the opening degree adjusting valve provided in each gas flow path, the pressure of the gas generated in the smelting reduction and furnace can be changed according to the above adjustment method. The flow rate can be adjusted and introduced into the preliminary reduction furnace.

たとえば、還元ガス流路の調整弁の開度を小さくシ、排
出ガス流路の調整弁の開度を大きくすれば予備還元炉へ
の導入ガス圧力が下がり、また、調整弁の開度をこれと
逆にすればガス圧力が上がる。このように本発明装置に
よれば前記開度調整弁の操作だけで上述したガス流量調
整を行うことができる。
For example, if you reduce the opening of the regulating valve in the reducing gas flow path and increase the opening of the regulating valve in the exhaust gas flow path, the pressure of the gas introduced into the preliminary reduction furnace will decrease; If you do the opposite, the gas pressure will increase. As described above, according to the device of the present invention, the above-mentioned gas flow rate adjustment can be performed only by operating the opening adjustment valve.

〔実 施 例〕〔Example〕

第1図は本発明の一実施例を示すもので、1は溶融還元
炉、2は流動層式予備還元炉、3は溶融還元炉の発生ガ
スを予備還元炉に導入するための還元ガス流路、4は予
備還元炉からの排出ガス流路、6および7は前記各ガス
流路に設けられるサイクロンである。なお、前記還元ガ
ス流路3はサイクロン6の上流側および下流側のダクト
8,9により、また前記排出ガス流路4はサイクロン7
の上流側および下流側のダクト10.11によりそれぞ
れ構成されている。
FIG. 1 shows an embodiment of the present invention, in which 1 is a smelting reduction furnace, 2 is a fluidized bed pre-reduction furnace, and 3 is a reducing gas flow for introducing gas generated from the smelting reduction furnace into the pre-reduction furnace. 4 is an exhaust gas flow path from the preliminary reduction furnace, and 6 and 7 are cyclones provided in each of the gas flow paths. The reducing gas flow path 3 is connected to the ducts 8 and 9 on the upstream and downstream sides of the cyclone 6, and the exhaust gas flow path 4 is connected to the cyclone 7.
ducts 10.11 on the upstream and downstream sides of the duct 10.11, respectively.

このような溶融還元設備では、鉄鉱石はまず予備還元炉
2に装入され固体状態で予熱および予備還元された後、
溶融還元炉1に装入されて溶融還元される。
In such a smelting reduction facility, iron ore is first charged into a pre-reduction furnace 2, preheated and pre-reduced in a solid state, and then
It is charged into the melting reduction furnace 1 and melted and reduced.

流動層式予備還元炉2には還元ガス流路3を通じて溶融
還元炉の発生ガスが供給される。すなわち、COを主成
分とする溶融還元炉の発生ガスは、還元ガス流路3を構
成するダクト8を通じサイクロン6に導かれて除塵され
たのち、ダクト9により予備還元炉2の下部に導入され
る。予備還元炉2では、多数の通孔を有する分散板12
(整流板)上に粉粒状の鉱石が装入され1分散板12の
下方から上記ガスを流すことにより、鉱石が流動化し流
動層5を形成する。鉱石はこの流動R5内で撹拌されな
がら還元ガスと反応して予備還元および予熱され、予備
還元鉱石として排出口13より排出される。一方、予備
還元炉2から排出されるガスは、排出ガス流路4を構成
するダクト10でサイクロン7に導かれて、炉内から飛
散した微粉粒の鉱石が捕集された後、ダクト11により
ガス処理設備(図示せず)へ送られる。
The fluidized bed pre-reduction furnace 2 is supplied with gas generated from the smelting reduction furnace through a reducing gas passage 3. That is, the generated gas of the smelting reduction furnace containing CO as a main component is led to the cyclone 6 through the duct 8 constituting the reducing gas flow path 3 to remove dust, and then introduced into the lower part of the pre-reduction furnace 2 through the duct 9. Ru. In the preliminary reduction furnace 2, a dispersion plate 12 having a large number of through holes is used.
Powder-like ore is charged onto the rectifying plate and the gas is flowed from below the dispersion plate 12 to fluidize the ore and form a fluidized bed 5. The ore is stirred in the flow R5, reacts with the reducing gas, is pre-reduced and preheated, and is discharged from the discharge port 13 as a pre-reduced ore. On the other hand, the gas discharged from the pre-reduction furnace 2 is guided to the cyclone 7 through a duct 10 constituting the exhaust gas flow path 4, and after collecting the fine ore particles scattered from inside the furnace, the gas is passed through the duct 11. The gas is sent to a gas processing facility (not shown).

なお、この実施例では、前記排出口13がら排出された
予備還元鉱石は移送管14により溶融還元炉1に流し込
み装入(重力落下による装入)するとともに、サイクロ
ン7で捕集された微粉粒の予備還元鉱石については、移
送管15で溶融還元炉1まで気体移送し、所謂インジェ
クション装入している。つまり、予備還元鉱石を中・粗
粒のものと微粉粒のものとに分級し、それぞれ別の経路
で溶融還元炉1に装入している。
In this embodiment, the pre-reduced ore discharged from the discharge port 13 is poured into the melting reduction furnace 1 through the transfer pipe 14 and charged (charging by gravity fall), and the fine powder collected by the cyclone 7 The pre-reduced ore is gas-transferred to the smelting reduction furnace 1 through a transfer pipe 15 and charged by so-called injection. That is, the pre-reduced ore is classified into medium/coarse particles and fine particles, and each is charged into the smelting reduction furnace 1 through separate routes.

以上のような溶融還元設備において、還元ガス流路3を
構成するダクト9の途中には開度調整弁たるダンパ16
が設けられ、また排ガス流路4を構成するダクト11の
途中にも同様のダンパ17が設けられている。
In the melting reduction equipment as described above, a damper 16 serving as an opening adjustment valve is installed in the middle of the duct 9 constituting the reducing gas flow path 3.
A similar damper 17 is also provided in the middle of the duct 11 constituting the exhaust gas flow path 4.

これらダンパ16,17の開度制御を行うため、ダクト
11にはガスの流量検出器18が、また予備還元炉2内
のガス入口には圧力検出器19がそれぞれ設けられ、さ
らに、これら各検出器の検出値に基づき前記各ダンパ1
6,17を制御するための演算制御器20および比較調
整器21が設けられている。以上のダンパ16,17お
よび各計装手段は、予備還元炉2において鉱石を適正に
流動化させるために導入ガスの流れを調整するものであ
る。その作用については後述する。
In order to control the opening degrees of these dampers 16 and 17, a gas flow rate detector 18 is provided in the duct 11, and a pressure detector 19 is provided at the gas inlet in the preliminary reduction furnace 2. Each damper 1 is
An arithmetic controller 20 and a comparison adjuster 21 are provided for controlling 6 and 17. The dampers 16, 17 and each instrumentation means described above adjust the flow of the introduced gas in order to properly fluidize the ore in the preliminary reduction furnace 2. Its effect will be described later.

予備還元炉2内で粉粒状の鉱石を流動化させるには、前
述のように導入するガスの実流量が適正なものである必
要がある。第2図は、予備還元炉2および試験用流動層
炉(図示せず)を用い、鉱石を適正な状態に流動化させ
得るガス流量とガス圧力との関係を調べたものである。
In order to fluidize the granular ore in the preliminary reduction furnace 2, the actual flow rate of the gas introduced needs to be appropriate as described above. FIG. 2 shows an investigation of the relationship between gas flow rate and gas pressure capable of fluidizing ore to an appropriate state using a preliminary reduction furnace 2 and a test fluidized bed furnace (not shown).

なお同図は、流動層炉(予備還元炉2を含む。以下同じ
)に導入されるガスの流量(ガス体積を標準状態に換算
した流量、例えばNm3/hを単位とした流量)を、各
便での基準値(設計値)に対する相対値(%)に直して
横軸にとり、またそのガスの流動層炉の入口における圧
力(以下、入口圧力という、単位:kg/cm”G)を
縦軸にとったものである。
The figure shows the flow rate of gas introduced into the fluidized bed furnace (including the preliminary reduction furnace 2; the same applies hereinafter) (the flow rate when the gas volume is converted to the standard state, for example, the flow rate in units of Nm3/h). The horizontal axis represents the relative value (%) to the reference value (design value) for the gas, and the vertical axis represents the pressure at the inlet of the fluidized bed furnace (hereinafter referred to as inlet pressure, unit: kg/cm"G). It is centered on this.

第2図中、実線イは鉱石を流動化させるために最低限必
要なガス流量を、その入口圧力との関係で示しており1
紙面に向って実線イより左側の領域の条件(ガスの流量
および入口圧力)では鉱石の適正な流動化状態を得るこ
とができない、同図から判るように、ガス圧力が高くな
るにしたがい、ガスの体積が減少するため実流量が減少
し、このため圧力の増大とともに流動化に必要な流量(
標準状態での流量)は増大する。
In Figure 2, the solid line A indicates the minimum required gas flow rate to fluidize the ore in relation to its inlet pressure.
Appropriate fluidization of the ore cannot be obtained under the conditions (gas flow rate and inlet pressure) in the region to the left of the solid line A when facing the paper.As can be seen from the figure, as the gas pressure increases, the gas The actual flow rate decreases because the volume of
(flow rate under standard conditions) increases.

これに対し、第2図は仮にガスの流量が減少して鉱石が
適正な流動化を行わなくなったときでも、実線イよりも
右側の領域の条件を満すよう入口圧力を変更すれば、少
ない流量のガスでも再び適正な流動化をなし得ることを
示している。例えば、入口圧カニ 2 、 Okg /
 cm ” G、流量:100%のガスを導入していた
状態で、その流量が60%に減少したとすると、圧力が
2 、 Okg / C2S ” Gのままでは鉱石は
適正に流動化しないが、これを0 、8 kg / a
m ” Gに変更すれば実線イの右側領域の状態となっ
て再び適正に流動化することになる。これは、標準状態
でのガス流量が同じ60%であっても、その圧力を下げ
ることにより実流量が増える(入口圧力の変更にともな
って略ね3.0/1.8倍(絶対正比)になる)ことに
よるものである。
In contrast, Fig. 2 shows that even if the gas flow rate decreases and the ore no longer fluidizes properly, if the inlet pressure is changed to satisfy the conditions in the region to the right of solid line A, the amount will be reduced. This shows that appropriate fluidization can be achieved again even with a high flow rate of gas. For example, inlet pressure crab 2, Okg/
cm"G, flow rate: If the flow rate is reduced to 60% when 100% gas is introduced, the ore will not be fluidized properly if the pressure remains at 2.0kg/C2S"G. This is 0.8 kg/a
If you change to m ” G, the state will be in the right side area of the solid line A, and proper fluidization will occur again.This means that even if the gas flow rate in the standard state is the same 60%, the pressure must be lowered. This is because the actual flow rate increases (approximately 3.0/1.8 times (absolute direct ratio) as the inlet pressure changes).

一方、流動暦炉に導入するガスの流量が多過ぎる場合に
は、多量の鉱石がガスとともに炉外に飛散してしまうと
いう問題があり、これを制限する条件についても調べた
On the other hand, if the flow rate of gas introduced into the fluidized calendar furnace is too high, there is a problem that a large amount of ore will be scattered outside the furnace together with the gas, so we also investigated the conditions that limit this.

上記実施例では、予備還元炉2から飛散した微粉粒の予
備還元鉱石をサイクロン7で捕集することにより中・粗
粒のものとは分級して取扱っているが、炉外に飛散する
微粉粒のうちでも比較的粒径の粗いものは、十分に予備
還元されておらず。
In the above embodiment, the pre-reduced ore in the form of fine particles scattered from the pre-reduction furnace 2 is collected by the cyclone 7 and handled separately from medium and coarse particles, but the fine particles scattered outside the furnace are handled separately. Among them, those with a relatively coarse particle size have not been sufficiently pre-reduced.

またサイクロン7や移送管15の目詰まりや摩耗を招く
ため、飛散する鉱石は微小粒径のものに制限する必要が
ある。本発明者らはこの点を考慮し、流動層炉よりガス
とともに飛散する鉱石の粒径をたとえば0.5mm以下
に制限する条件として、第2図の実線口を規定し得るこ
とを見いだした。実線口は、その条件を満たすガス流量
を入口圧力との関係で示しており、実線口より右側領域
の条件では0.5mを超える粒径の鉱石の飛散が生じて
しまう。なお、図示しないが、たとえば上記粒径をl。
In addition, since clogging and abrasion of the cyclone 7 and the transfer pipe 15 occur, it is necessary to limit the scattered ore to those having a minute particle size. The inventors of the present invention have taken this point into consideration and have found that the solid line in FIG. 2 can be defined as a condition for limiting the particle size of the ore scattered with the gas from the fluidized bed furnace to, for example, 0.5 mm or less. The solid line port indicates the gas flow rate that satisfies the condition in relation to the inlet pressure, and under the conditions on the right side of the solid line port, ore with a particle size exceeding 0.5 m will be scattered. Although not shown, for example, the above particle size is 1.

O―以下に制限するための境界線は実線口のやや右側に
定められ、また実線口より右側に大きく離れた領域の条
件では、全粒径にわたるほとんどの鉱石が流動層炉から
飛散してしまうことも確認された。
The boundary line to limit the grain size to O- or below is set slightly to the right of the solid line port, and under conditions in the area far to the right of the solid line port, most of the ore of all grain sizes will be scattered from the fluidized bed furnace. This was also confirmed.

したがって予備還元炉2において、0.5amを超える
粒径をもつ鉱石を適正な状態に流動化させるとともに、
それ以下の粒径の鉱石のみをガスとともに飛散させて分
級するためには、操業時の入口ガス状態を第2図の実線
イと実線口の間の領域(斜線の領域)に保つ必要がある
。換言すれば、入口ガス状態を上記領域に保つことによ
って予備還元炉での適正な流動化および適正な分級を維
持することができ、前記のようにガス圧力を変更するこ
とにより、溶融還元炉1で発生するガスの圧力・流量の
変動に十分対処できることになる。なお、予備還元炉の
入口ガス圧力と炉内ガス圧力の間には一定の関係がある
ことから、予備還元炉入口ガス圧力ではなく、炉内ガス
圧力を計測して変更・調整することによっても、上述と
同様の効果を得ることができる。
Therefore, in the preliminary reduction furnace 2, ore having a particle size exceeding 0.5 am is fluidized to an appropriate state, and
In order to scatter and classify only ores with a particle size smaller than that with the gas, it is necessary to maintain the inlet gas condition during operation in the area between the solid line A and the solid line port in Figure 2 (shaded area). . In other words, by keeping the inlet gas condition in the above range, proper fluidization and proper classification in the preliminary reduction furnace can be maintained, and by changing the gas pressure as described above, the melting reduction furnace 1 This means that the fluctuations in gas pressure and flow rate that occur can be adequately coped with. Furthermore, since there is a certain relationship between the inlet gas pressure of the pre-reducing furnace and the gas pressure inside the furnace, it is also possible to measure and change/adjust the in-furnace gas pressure instead of the pre-reducing furnace inlet gas pressure. , the same effect as described above can be obtained.

以下、第1図に基づきその具体的な方法を説明する。The specific method will be explained below based on FIG.

第1図に示す設備では次のようにしてダンパ16および
ダンパ17の開度を調整し、予備還元用ガスの流れを制
御する。流量検出器18は温度および圧力による補正機
能を有しており、ダクト11を通るガスの流量を標準状
態での値として演算制御器20へ出力する。演算制御器
20には、ガスの適正な入口圧カー流量の関係(例えば
第2図の斜線領域)があらかじめ設定されており、この
関係に基いて、流量検出器18から入力される流景値に
おける適正圧力を演算し、これを比較調整器21に出力
するとともに、演算して定める開度調節信号をダンパ1
7へ発信する。ダンパ17は図示しない駆動手段により
、その信号に基づき開度が調節される。一方、予備還元
炉2の入口における圧力は、圧力検出器19が検出して
比較調整器21へ出力する。比較調整器21はこの圧力
(実際圧力)信号と、演算制御器2oから入力される圧
力(適正圧力)信号とを比較し、実際圧力が適正圧力に
近づくようにダンパ16に開度調節信号を発信し、ダン
パ16はこの信号に基づき図示しない駆動手段によりそ
の開度が調節される。このように計装手段はダンパ16
,17の開度調節を通じて、予備還元炉2の入口圧力を
ガス流量に応じて定めるカスケード制御を行う。
In the equipment shown in FIG. 1, the opening degrees of the damper 16 and the damper 17 are adjusted in the following manner to control the flow of the preliminary reduction gas. The flow rate detector 18 has a correction function based on temperature and pressure, and outputs the flow rate of gas passing through the duct 11 to the arithmetic controller 20 as a value in a standard state. The arithmetic controller 20 is preset with an appropriate gas inlet pressure/car flow rate relationship (for example, the shaded area in FIG. 2), and based on this relationship, the flow rate value input from the flow rate detector 18 is determined. Calculate the appropriate pressure at
Send a call to 7. The opening degree of the damper 17 is adjusted by a drive means (not shown) based on a signal thereof. On the other hand, the pressure at the inlet of the preliminary reduction furnace 2 is detected by the pressure detector 19 and output to the comparison regulator 21 . The comparison regulator 21 compares this pressure (actual pressure) signal with the pressure (proper pressure) signal input from the arithmetic controller 2o, and sends an opening adjustment signal to the damper 16 so that the actual pressure approaches the proper pressure. Based on this signal, the opening degree of the damper 16 is adjusted by a drive means (not shown). In this way, the instrumentation means is the damper 16
, 17, cascade control is performed to determine the inlet pressure of the preliminary reduction furnace 2 according to the gas flow rate.

このような制御のより具体的な例を説明すると、例えば
、溶融還元炉1の発生ガス圧カニ2.Okg/cm2G
、予備還元炉2の入口圧カニ 2 、0 kg / c
m ’ Gの条件で運転中、発生ガス流量が100%か
ら60%に減少した場合、ダンパ16,17および計装
手段は以下のように作動する。すなわち流量検出器18
がガス流量(60%)を検出すると、この検出値に基づ
き演算制御器20が適正圧力(たとえば0 、8kg 
/ cm ”G)を算出し、この信号を比較調整器21
に出力するとともに、ダンパ17に開度増の信号を発信
する。比較調整器21は、圧力検出器19が検出する圧
力(2,Okg/(!l”G)と、上記適正圧力の信号
とを比較し、ダンパ16に開度域の信号を発信する。
To explain a more specific example of such control, for example, the generated gas pressure crab 2 of the melting reduction furnace 1. Okg/cm2G
, the inlet pressure of the preliminary reduction furnace 2 2, 0 kg/c
When the generated gas flow rate decreases from 100% to 60% during operation under the condition of m'G, the dampers 16, 17 and the instrumentation operate as follows. That is, the flow rate detector 18
detects the gas flow rate (60%), the arithmetic controller 20 sets the appropriate pressure (for example, 0, 8 kg) based on this detected value.
/ cm ”G) and compares and compares this signal with the adjuster 21
At the same time, a signal to increase the opening degree is sent to the damper 17. The comparison regulator 21 compares the pressure (2,0 kg/(!l''G)) detected by the pressure detector 19 with the appropriate pressure signal, and sends a signal in the opening range to the damper 16.

このようにしてダンパ16,17の開度が調節されるこ
とにより、上記ガスの入口圧力および流量は第2図の実
線490間の領域に入り、予備還元炉2において鉱石が
適正に流動化するようになる。
By adjusting the opening degrees of the dampers 16 and 17 in this manner, the inlet pressure and flow rate of the gas enter the region between the solid line 490 in FIG. 2, and the ore is properly fluidized in the preliminary reduction furnace 2. It becomes like this.

そして、実際にはこのような制御はガスの流量変化に基
づき連続的に行われるので、常に適正な流動化状態が維
持できる。
In reality, such control is performed continuously based on changes in the gas flow rate, so that an appropriate fluidized state can always be maintained.

また例えば、予備還元炉2の入口ガス圧カニ0゜8 k
g / cn ” Gで運転中、その流量が100%か
ら160%に増加した場合、上述のような制御によって
ダンパ16を開度増、ダンパ17を開度域の方向に調整
し、ガスの入口圧力を例えば2kg/an”Gに上昇さ
せる。2kg/cs”0 160%の条件は第2図の斜
線領域に含まれ、予備還元炉2内で鉱石が適正に流動化
するとともに、0.5mを超える粒径の予備還元鉱石の
飛散が防止される。
For example, the inlet gas pressure of the preliminary reduction furnace 2 is 0°8 k.
g/cn" When the flow rate increases from 100% to 160% during operation at G, the opening of the damper 16 is increased by the control described above, the damper 17 is adjusted in the direction of the opening range, and the gas inlet is The pressure is increased to, for example, 2 kg/an''G. The condition of 2kg/cs"0 160% is included in the shaded area in Figure 2, and the ore is appropriately fluidized in the pre-reduction furnace 2, and the scattering of the pre-reduced ore with a particle size exceeding 0.5 m is prevented. be done.

なお、溶融還元炉1で発生するガスの圧力変動により、
ガスの流量が一定で予備還元炉2の入口圧力だけが変化
するような場合にも、同様の制御を行えばそのガスの状
態を適正な流動が得られる領域に維持することができる
In addition, due to the pressure fluctuation of the gas generated in the melting reduction furnace 1,
Even in the case where the gas flow rate is constant and only the inlet pressure of the pre-reducing furnace 2 changes, similar control can maintain the gas state in a region where proper flow can be obtained.

このように、第1図の装置を用いて上述のような制御を
行うことにより、溶融還元炉1で発生するガスの圧力お
よび流量の広範囲の変動に対して。
In this way, by performing the above-described control using the apparatus shown in FIG. 1, the pressure and flow rate of the gas generated in the melting reduction furnace 1 can be controlled over a wide range of fluctuations.

予備還元炉2の流動化を常に適正な状態に維持して運転
できる。
The pre-reduction furnace 2 can be operated while maintaining fluidization in an appropriate state at all times.

なお1以上述べた実施例において、例えばガス流量の検
出器18を用いる代わりに、溶融還元炉1に装入する各
種原料や吹込みガスの量に基いて発生ガス量を推定する
ようにしてもよい。溶融還元炉の発生ガス流量は、装入
原料・吹込ガスの量からかなり正確に算出することがで
きる。
In the embodiments described above, for example, instead of using the gas flow rate detector 18, the amount of generated gas may be estimated based on the amount of various raw materials charged into the smelting reduction furnace 1 and the amount of blown gas. good. The flow rate of gas generated in a smelting reduction furnace can be calculated fairly accurately from the amounts of charged raw materials and blown gas.

また、ダクト11の、流量検出器18の上流側に排出ガ
スの冷却器や除塵器を設けることにより。
Further, by providing an exhaust gas cooler and a dust remover on the upstream side of the flow rate detector 18 in the duct 11.

検出器18の精度や寿命を向上させることができる。さ
らに、溶融還元炉1とダンパ16間のダクト8または9
から還元ガスの一部を抜き出し、調節弁を経由して系外
へ送り出すようにすれば、予備還元炉2へ入る還元ガス
流量を任意に減することが可能となり、操業の自由度を
さらに向上させることができる。
The accuracy and life of the detector 18 can be improved. Furthermore, a duct 8 or 9 between the melting reduction furnace 1 and the damper 16
By extracting a portion of the reducing gas from the reactor and sending it out of the system via the control valve, it becomes possible to arbitrarily reduce the reducing gas flow rate entering the preliminary reduction furnace 2, further improving operational flexibility. can be done.

また、還元ガス流路3および排出ガス流路4に設けられ
る開度調整弁としては1本実施例のようなバタフライ弁
形式のダンパに限らず、ゲート式の弁をはじめ各種形式
の開度調節弁を使用することが可能である。また、開度
調整弁を複数の弁で構成してもよい。
In addition, the opening adjustment valves provided in the reducing gas flow path 3 and the exhaust gas flow path 4 are not limited to the butterfly valve type damper as in this embodiment, but also various types of opening adjustment valves including gate type valves. It is possible to use a valve. Further, the opening adjustment valve may be composed of a plurality of valves.

また、上述したようなガス流量の制御において、溶融還
元炉1の発生ガス圧力に拘らず予備還元炉2の入口圧力
を常に一定にする、いわゆる定植制御によって予備還元
炉2の運転状態を適正に維持するようにしてもよい、な
おこの際、入口圧力を可能な限り高めに保つようにすれ
ば、ガスの密度を増大させ予備還元効率を向上させるこ
とができる。
In addition, in controlling the gas flow rate as described above, the operating state of the pre-reducing furnace 2 can be properly controlled by so-called planting control, which always keeps the inlet pressure of the pre-reducing furnace 2 constant regardless of the gas pressure generated in the smelting-reducing furnace 1. In this case, if the inlet pressure is kept as high as possible, the density of the gas can be increased and the preliminary reduction efficiency can be improved.

なお1以上述べたような本発明の方法および装置は、製
鉄用の溶融還元に限らず、他の金属の溶融還元にも適用
できることは言うまでもない。
It goes without saying that the method and apparatus of the present invention as described above are not limited to smelting reduction for iron manufacturing, but can also be applied to smelting reduction of other metals.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明に係る方法および装置によれば
、溶融還元炉の運転状態によりその発生ガスの圧力およ
び流量が大幅に変動しても、流動層式予備還元炉におい
て鉱石を適正な流動化状態に保つことができ、鉱石を適
切に予備還元することができる。そして、このように溶
融還元炉での発生ガス量や圧力に拘らず適正な予備還元
を行うことができるため、溶融還元本来の特徴である生
産量の弾力的な調整や操業条件の変更等も任意に行うこ
とができる。また、このような効果は、開度調整弁をガ
ス流路に設け、その間度調整を行うだけで達成できるた
め、設備や運転コスト面での負担も少なくて済むという
利点がある。
As described above, according to the method and apparatus of the present invention, even if the pressure and flow rate of the generated gas fluctuate significantly depending on the operating state of the smelting reduction furnace, the ore can be properly fluidized in the fluidized bed pre-reduction furnace. The ore can be kept in a state of oxidation, and the ore can be properly reduced in advance. In this way, appropriate preliminary reduction can be performed regardless of the amount of gas generated or pressure in the smelting reduction furnace, so it is possible to flexibly adjust production volume and change operating conditions, which are the original characteristics of smelting reduction. It can be done arbitrarily. In addition, such an effect can be achieved by simply providing an opening adjustment valve in the gas flow path and adjusting the opening adjustment valve therebetween, which has the advantage of reducing the burden on equipment and operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体説明図である。第
2図は流動層炉において鉱石を適正に流動化させるガス
流量およびガス圧力の条件を示すものである。 図において、1は溶融還元炉、2は予備還元炉。 3は還元ガス流路、4は排出ガス流路、16.17はダ
ンパである。 第1図 第2図 ガス流量(%)
FIG. 1 is an overall explanatory diagram showing one embodiment of the present invention. FIG. 2 shows the gas flow rate and gas pressure conditions for properly fluidizing ore in a fluidized bed furnace. In the figure, 1 is a melting reduction furnace, and 2 is a preliminary reduction furnace. 3 is a reducing gas flow path, 4 is an exhaust gas flow path, and 16.17 is a damper. Figure 1 Figure 2 Gas flow rate (%)

Claims (1)

【特許請求の範囲】 1、鉱石を流動層式予備還元炉で予備還元した後、溶融
還元炉にて溶融還元する操業方式において、溶融還元炉
の発生ガスを予備還元用ガスとして予備還元炉に導入す
るに際し、予備還元炉内で鉱石を適正に流動化させるよ
う、予備還元炉へ導入するガスの圧力または予備還元炉
内ガス圧力を変更することによりその実流量を調整する
ことを特徴とする予備還元炉を備えた溶融還元設備にお
ける予備還元用ガス流れの調整方法。 2、鉱石を、溶融還元炉発生ガスが予備還元用ガスとし
て導入された流動層式予備還元炉で予備還元した後、溶
融還元炉にて溶融還元する設備における予備還元用ガス
流れの調整装置において、溶融還元炉から予備還元炉へ
の還元ガス流路と、予備還元炉からの排出ガス流路とに
、それぞれ開度調整弁を設けたことを特徴とする予備還
元炉を備えた溶融還元設備における予備還元用ガス流れ
の調整装置。
[Claims] 1. In an operation method in which ore is pre-reduced in a fluidized bed pre-reduction furnace and then melted and reduced in a smelting reduction furnace, the gas generated in the smelting reduction furnace is used as a pre-reduction gas to be sent to the pre-reduction furnace. When introducing the ore, the actual flow rate is adjusted by changing the pressure of the gas introduced into the pre-reducing furnace or the gas pressure in the pre-reducing furnace so that the ore is appropriately fluidized in the pre-reducing furnace. A method for adjusting the flow of preliminary reduction gas in a smelting reduction facility equipped with a reduction furnace. 2. In a device for adjusting the flow of gas for preliminary reduction in equipment in which ore is pre-reduced in a fluidized bed pre-reduction furnace in which the gas generated in the smelting-reduction furnace is introduced as a preliminary-reduction gas, and then melted and reduced in a smelting-reduction furnace. , a smelting reduction equipment equipped with a pre-reduction furnace, characterized in that opening adjustment valves are provided in each of the reducing gas flow path from the smelting reduction furnace to the pre-reduction furnace and the exhaust gas flow path from the pre-reduction furnace. A device for adjusting the gas flow for pre-reduction in.
JP1313259A 1989-12-04 1989-12-04 Method of adjusting gas flow for preliminary reduction in smelting reduction equipment equipped with preliminary reduction furnace Expired - Fee Related JP2536642B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP1313259A JP2536642B2 (en) 1989-12-04 1989-12-04 Method of adjusting gas flow for preliminary reduction in smelting reduction equipment equipped with preliminary reduction furnace
US07/619,759 US5183495A (en) 1989-12-04 1990-11-29 Method for controlling a flow rate of gas for prereducing ore and apparatus therefor
AU67669/90A AU632874B2 (en) 1989-12-04 1990-11-30 Method for controlling a flow rate of gas for prereducing ore and apparatus therefor
KR1019900019785A KR940003502B1 (en) 1989-12-04 1990-12-03 Method for controlling a flow rate of gas for prereducing ore and apparatus therefor
CA002031473A CA2031473C (en) 1989-12-04 1990-12-04 Method for controlling a flow rate of gas for prereducing ore and apparatus therefor
BR909006143A BR9006143A (en) 1989-12-04 1990-12-04 PROCESS AND APPARATUS FOR CONTROL OF A GAS FLOW RATE FOR MINING PRE-REDUCTION
AT90123213T ATE120241T1 (en) 1989-12-04 1990-12-04 METHOD AND DEVICE FOR CONTROLLING THE GAS FLOW FOR THE PRE-REDUCTION OF ORE.
DE69018034T DE69018034T2 (en) 1989-12-04 1990-12-04 Method and device for controlling the gas flow for the pre-reduction of ores.
CN90110308A CN1021917C (en) 1989-12-04 1990-12-04 Method for controlling flow rate of gas for prereducing ore and apparatus thereof
EP90123213A EP0431556B1 (en) 1989-12-04 1990-12-04 Method for controlling a flow rate of gas for prereducing ore and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313259A JP2536642B2 (en) 1989-12-04 1989-12-04 Method of adjusting gas flow for preliminary reduction in smelting reduction equipment equipped with preliminary reduction furnace

Publications (2)

Publication Number Publication Date
JPH03173711A true JPH03173711A (en) 1991-07-29
JP2536642B2 JP2536642B2 (en) 1996-09-18

Family

ID=18039052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313259A Expired - Fee Related JP2536642B2 (en) 1989-12-04 1989-12-04 Method of adjusting gas flow for preliminary reduction in smelting reduction equipment equipped with preliminary reduction furnace

Country Status (1)

Country Link
JP (1) JP2536642B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280320A (en) * 1986-05-30 1987-12-05 Nippon Kokan Kk <Nkk> Exhaust gas pressure control device for refining furnace
JPH01129915A (en) * 1987-11-13 1989-05-23 Kawasaki Heavy Ind Ltd Prereduction furnace for smelting reduction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280320A (en) * 1986-05-30 1987-12-05 Nippon Kokan Kk <Nkk> Exhaust gas pressure control device for refining furnace
JPH01129915A (en) * 1987-11-13 1989-05-23 Kawasaki Heavy Ind Ltd Prereduction furnace for smelting reduction

Also Published As

Publication number Publication date
JP2536642B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
US4886246A (en) Metal-making apparatus involving the smelting reduction of metallic oxides
KR940003502B1 (en) Method for controlling a flow rate of gas for prereducing ore and apparatus therefor
JPH03173711A (en) Method and apparatus for regulating gas flow for pre-reduction in smelting reduction equipment providing pre-reduction furnace
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
JP2659889B2 (en) Particle circulation device of circulating fluidized bed pre-reduction furnace
JP2765737B2 (en) Operating method of fluidized bed prereduction furnace and fluidized bed prereduction furnace
JP3223727B2 (en) Powder material transfer device
JP2501662B2 (en) Control method of ore retention in circulating fluidized bed preliminary reduction furnace
JPH07268429A (en) Operating method of fluidized bed prereduction device
JP2627590B2 (en) Smelting reduction equipment
JPH04301019A (en) Device for discharging reduced ore in fluidized bed reduction furnace
JP2981015B2 (en) Operating method of circulating fluidized bed reactor
JPH01129917A (en) Device for preheating and charging material in reduction furnace
JPH0730378B2 (en) Circulating fluidized-ore reduction furnace operation method and reduction furnace
JPH062913B2 (en) A device for transporting high-temperature powdery pre-reduction ore from a fluidized bed pre-reduction furnace to a solid smelting reduction furnace.
JPH03215621A (en) Circulating fluidized bed prereduction for powdery iron ore
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JPH0639607B2 (en) Pre-reduction ore transfer device in smelting reduction steelmaking facility
JPS59104410A (en) Fluidized bed type preliminary reducing furnace
JPS63183112A (en) Method for blowing powder into blast furnace
JPS62156217A (en) Controller for gas quantity for fluidized bed prereduction furnace
JPH0649520A (en) Fluidized bed furnace
JPH03183715A (en) Fluidized bed pre-reduction method for powdery ore
JPH01247514A (en) Fluidized bed pre-reduction furnace and operating method thereof
JPH0324213A (en) Treatment of drop ore of preliminary reduction furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees