JPH04221782A - Ultrasonic doppler type terrain speedometer - Google Patents

Ultrasonic doppler type terrain speedometer

Info

Publication number
JPH04221782A
JPH04221782A JP40601790A JP40601790A JPH04221782A JP H04221782 A JPH04221782 A JP H04221782A JP 40601790 A JP40601790 A JP 40601790A JP 40601790 A JP40601790 A JP 40601790A JP H04221782 A JPH04221782 A JP H04221782A
Authority
JP
Japan
Prior art keywords
signal
value
ultrasonic
transmitter
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40601790A
Other languages
Japanese (ja)
Inventor
Hiroshi Kobayashi
博 小林
Toshiya Kimura
敏也 木村
Masami Negishi
正美 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP40601790A priority Critical patent/JPH04221782A/en
Publication of JPH04221782A publication Critical patent/JPH04221782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform high-accurate measurement of a speed by reducing a directional angle of a transmission ultrasonic wave to a value lower than a specified value. CONSTITUTION:After an ultrasonic signal 4 generated by an transmitter 1 is amplified, an echo sounder transmitter 2 is driven. The echo sounder transmitter 2 reduces directional characteristics to a half value half angle value of a transmission acoustic pressure to generate a signal in a range of 4-15 deg. and generates a signal in a range of 4-15 deg. to emit it toward a road surface 5. A signal 4 irregularly reflected by the road surface 5 is received by a receiver 6 to transmit the signal to a multiplier 8 through a preamplifier 7. The multiplier 8 determines a difference between a received frequency and the transmission frequency of the transmitter 1. After noise of the signal is removed, the waveform of a Doppler signal component is shaped by means of a zero cross comparator 10. A frequency is read by means of a pulse counter 11, and converted to a can speed by means of a car speed computing circuit 12. When the directional characteristics of a transmission ultrasonic wave are reduced to a half value half angle value and 10 deg. or less, especially 6 deg. or less, an S/N ratio of the Doppler signal is improved and steep Doppler signal characteristics are provided, and high- precise measurement of a terrain speed can be realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、例えば車両の対地速
度検出用に用いられる超音波ドップラ方式対地速度計に
関し、特に、該速度計の最適送信指向特性に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic Doppler ground speed meter used, for example, to detect the ground speed of a vehicle, and more particularly to optimal transmission directivity characteristics of the speed meter.

【0002】0002

【従来の技術】従来の超音波ドップラ方式対地速度計と
しては、例えば特開昭60−76678号公報に記載さ
れているものがある。上記の対地速度計は、超音波信号
を路面に向けて放射し、路面から乱反射して戻ってきた
反射超音波を受信し、ドップラ効果によって上記超音波
信号に生じた周波数変化から対地速度を演算するもので
ある。
2. Description of the Related Art A conventional ultrasonic Doppler type ground speed meter is described in, for example, Japanese Patent Laid-Open No. 60-76678. The above ground speed meter emits an ultrasonic signal toward the road surface, receives the reflected ultrasonic wave that is diffusely reflected from the road surface, and calculates the ground speed from the frequency change that occurs in the ultrasonic signal due to the Doppler effect. It is something to do.

【0003】0003

【発明が解決しようとする課題】しかしながら、このよ
うな従来の超音波ドップラ方式対地速度計においては、
使用する超音波の指向特性に対する詳細な解析がなされ
ておらず、送波器や受波器の特性等に合わせて適当な指
向特性を選択して用いていたので、ドップラ信号のS/
N比を向上させることが困難であり、そのため精度の高
い速度計測が困難である、という問題があった。
[Problems to be Solved by the Invention] However, in such conventional ultrasonic Doppler type ground speed meters,
There was no detailed analysis of the directional characteristics of the ultrasonic waves used, and appropriate directional characteristics were selected according to the characteristics of the transmitter and receiver, so the Doppler signal S/
There was a problem in that it was difficult to improve the N ratio, and therefore it was difficult to measure speed with high accuracy.

【0004】本発明は、上記のごとき従来技術の問題を
解決するためになされたものであり、ドップラ信号諸特
性のなかで対地速度計として最も重要となる信号のS/
N比を高め、それによって精度の高い速度計測を可能に
した超音波ドップラ方式対地速度計を提供することを目
的とする。
The present invention has been made to solve the problems of the prior art as described above, and the S/S of the signal is the most important among the Doppler signal characteristics for a ground speed meter.
The purpose of the present invention is to provide an ultrasonic Doppler ground speed meter that increases the N ratio and thereby enables highly accurate speed measurement.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、本発明においては、送信超
音波信号の指向特性を、送信音圧の半減半角として少な
くとも10度以下、好ましくは6度以下の値に設定した
ことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention is constructed as described in the claims. That is, the present invention is characterized in that the directivity characteristic of the transmitted ultrasound signal is set to a value of at least 10 degrees or less, preferably 6 degrees or less, as the half angle of the transmitted sound pressure.

【0006】[0006]

【作用】後記図2〜図8において詳述するごとく、本発
明者等が理論解析および実験を行なった結果によれば、
ドップラ信号諸特性のなかで対地速度計として最も重要
となる信号のS/N比については、送信超音波の指向特
性が大きな影響を有することが判明した。そのため本発
明においては、図2に示す超音波の伝搬率αについての
送信器の指向特性に対する依存性と、図3に示す路面の
反射能βについての送信器の指向特性に対する依存性と
から、図4に示す受信効率の指向特性に対する依存性を
求め、さらに図6および図8に示すごときfw値(帯域
幅)と対地速度との関係を求め、上記図4と図8の特性
から前記のごとき最適な送信超音波指向特性を設定した
ものである。なお、第5図に示すように、実測した結果
も第4図の理論値を裏付けており、送信超音波の指向特
性を本発明の範囲に設定すれば、高いS/N比と、それ
による高精度の速度計測を実現することが出来る。
[Operation] As detailed in FIGS. 2 to 8 below, according to the results of theoretical analysis and experiments conducted by the present inventors,
It has been found that the directivity characteristics of the transmitted ultrasonic waves have a large influence on the S/N ratio of the signal, which is the most important among the Doppler signal characteristics for a ground speed meter. Therefore, in the present invention, from the dependence of the ultrasonic propagation coefficient α on the directional characteristics of the transmitter shown in FIG. 2 and the dependence of the reflectivity β of the road surface on the directional characteristics of the transmitter shown in FIG. The dependence of the reception efficiency on the directional characteristics shown in FIG. 4 is determined, and the relationship between the fw value (bandwidth) and the ground speed as shown in FIGS. The optimum transmission ultrasonic directivity characteristics are set as follows. Furthermore, as shown in Fig. 5, the actual measurement results also support the theoretical values shown in Fig. 4, and if the directivity characteristics of the transmitted ultrasonic waves are set within the range of the present invention, a high S/N ratio and the resulting Highly accurate speed measurement can be achieved.

【0007】[0007]

【実施例】図1は、この発明の一実施例を示す図である
。まず構成を説明すると、発振器1は120kHzの信
号を発生する。ドライブ手段3は上記の信号を増幅し、
その出力で送波器2を駆動する。送波器2は、圧電型の
送波器であり、その指向特性は半減半角として4度から
15度のまでの範囲内の超音波信号4を発生し、それを
路面5に向けて放射する。また、受波器6は、上記の超
音波信号4が路面5に当たって乱反射した反射波信号を
受信する。プリアンプ7はその受信信号を増幅し、掛算
器8へ送る。掛算器8は発振器1の発振周波数と受信信
号の周波数とを掛算して両者の差分を求める。また、掛
算器8の信号をローパスフィルタ9に通して不要なノイ
ズを除去した後、ゼロクロスコンパレータ10によって
ドップラ信号成分を波形整形し、パルスカウンタ11で
その周波数を読み取る。そして車速演算回路12でドッ
プラ信号の周波数を車速に変換する。
Embodiment FIG. 1 is a diagram showing an embodiment of the present invention. First, to explain the configuration, an oscillator 1 generates a 120 kHz signal. The drive means 3 amplifies the above signal,
The output drives the transmitter 2. The wave transmitter 2 is a piezoelectric type wave transmitter, and its directional characteristic generates an ultrasonic signal 4 within a range of 4 degrees to 15 degrees as a half angle, and radiates it toward the road surface 5. . Further, the receiver 6 receives a reflected wave signal obtained by diffusely reflecting the ultrasonic signal 4 upon hitting the road surface 5 . Preamplifier 7 amplifies the received signal and sends it to multiplier 8. Multiplier 8 multiplies the oscillation frequency of oscillator 1 and the frequency of the received signal to find the difference between the two. Further, after the signal from the multiplier 8 is passed through a low-pass filter 9 to remove unnecessary noise, the waveform of the Doppler signal component is shaped by a zero-cross comparator 10, and the frequency thereof is read by a pulse counter 11. Then, the vehicle speed calculation circuit 12 converts the frequency of the Doppler signal into a vehicle speed.

【0008】なお、ドップラ効果によって変化した周波
数成分、すなわちドップラシフト周波数fdは、発振周
波数をf0、音速をC、車速をV、路面に対する超音波
の放射角をθとした場合に、 fd≒2f0・Vcosθ/C で示される。したがって、ドップラシフト周波数fdを
求めることによって車速Vを求めることができる。上記
のように、送信した超音波の周波数と受信した反射波の
周波数とを比較して、ドップラ効果に基づく周波数変化
から対地速度を演算する。
[0008] The frequency component changed by the Doppler effect, that is, the Doppler shift frequency fd, is fd≒2f0, where f0 is the oscillation frequency, C is the speed of sound, V is the vehicle speed, and θ is the radiation angle of the ultrasonic wave with respect to the road surface.・It is expressed as Vcosθ/C. Therefore, the vehicle speed V can be determined by determining the Doppler shift frequency fd. As described above, the frequency of the transmitted ultrasonic wave and the frequency of the received reflected wave are compared, and the ground speed is calculated from the frequency change based on the Doppler effect.

【0009】次に作用を説明する。図2は、超音波の空
中伝搬の際の伝搬率α(1−減衰率に相当する)につい
て送信器の指向特性に対する依存性の実験結果を示した
図であり、縦軸は伝達率α、横軸は指向角(半減半角)
を示す。この実験では、送波器2に設けた音響ホーンの
形状を変えることにより、送信器の固有の指向特性を、
指向角で4度から15度まで変化させて実験を行った。
Next, the operation will be explained. FIG. 2 is a diagram showing the experimental results of the dependence of the propagation rate α (corresponding to 1 - attenuation rate) on the directivity characteristics of the transmitter during air propagation of ultrasonic waves, where the vertical axis is the transmissibility α, The horizontal axis is the directivity angle (half angle)
shows. In this experiment, by changing the shape of the acoustic horn provided in the transmitter 2, the unique directivity characteristics of the transmitter were
Experiments were conducted by varying the directivity angle from 4 degrees to 15 degrees.

【0010】図2から判るように、指向特性が拡がり(
指向角が大)、送信器の送信音圧の半減半角値が増大す
るほど伝搬率が小さくなる。これは、指向特性が拡がる
ほど送信器から送信された音波のエネルギーが空気中で
吸収され、減衰率が増大し、その結果として伝搬率が減
少するためである。
As can be seen from FIG. 2, the directional characteristics are broadened (
(the directivity angle is large), and the half-angle value of the transmitted sound pressure of the transmitter increases, the propagation rate decreases. This is because the wider the directional characteristic, the more the energy of the sound wave transmitted from the transmitter is absorbed in the air, the attenuation rate increases, and the propagation rate decreases as a result.

【0011】なお、図2の実測結果が示すもう一つの特
徴的な現象として、半減半角値が約10度以下の領域に
おいては、半減半角値の減少に伴って急激に伝搬率が増
加する。そして半減半角値が10度より大きな範囲では
伝搬率の変化はゆるやかになり、かつ値が低いことが判
る。
Another characteristic phenomenon shown by the measurement results shown in FIG. 2 is that in a region where the half-angle value is approximately 10 degrees or less, the propagation rate increases rapidly as the half-angle value decreases. It can be seen that in a range where the half-angle value is larger than 10 degrees, the change in the propagation rate becomes gradual and the value is low.

【0012】次に、図3は路面の反射能βについて送信
器の指向特性に対する依存性の実測結果を示した図であ
り、縦軸は反射能β、横軸は指向角(半減半角)を示す
。図3から判るように、反射能βは、伝搬率αとは異な
り、指向特性に対する依存性をもたない。なお、図3に
示す実測結果は、一例としてアスファルト路における結
果を示すが、アスファルト路より路面が粗い砂利道にお
いては、反射能βの絶対値は増大する。しかし、指向特
性に対する依存性は、アルファルト路と同様に反射能β
が指向特性の依存性をもたないことが実測結果によって
確認されている。
Next, FIG. 3 is a diagram showing the actual measurement results of the dependence of road surface reflectivity β on the directivity characteristics of the transmitter, where the vertical axis represents the reflectivity β and the horizontal axis represents the directivity angle (half-angle). show. As can be seen from FIG. 3, the reflectivity β, unlike the propagation coefficient α, does not have dependence on the directivity characteristics. Note that the actual measurement results shown in FIG. 3 are for an asphalt road as an example, but the absolute value of the reflectivity β increases on a gravel road where the road surface is rougher than an asphalt road. However, the dependence on the directional characteristics is similar to that of the Alphard path, where the reflexivity β
It has been confirmed by actual measurement results that there is no dependence on directional characteristics.

【0013】次に、図4は、受信効率の指向特性に対す
る依存性を示す図である。受信効率としては、上記の伝
搬率αと反射能βとの結合積α・βの計算値を示したも
のである。ここで受信効率は送信音圧に対するドップラ
信号成分の受信音圧の比率であり、ドップラ効果の発生
効率を示す指標となる。
Next, FIG. 4 is a diagram showing the dependence of reception efficiency on directional characteristics. The reception efficiency is the calculated value of the coupling product α and β between the propagation coefficient α and the reflection power β. Here, the reception efficiency is the ratio of the reception sound pressure of the Doppler signal component to the transmission sound pressure, and is an index indicating the generation efficiency of the Doppler effect.

【0014】図4から判るように、受信効率α・βは、
半減半角値が約10度までの指向特性が狭い領域におい
ては半減半角値が減少すると急激に増加し、6度程度で
は10度以上の場合より大幅に大きくなる。しかし、半
減半角が10度を越えた範囲では、受信効率の変化はゆ
るやかになり、かつ値が低い。上記のごとき超音波ドッ
プラ信号の受信効率(したがってS/N比)の指向特性
依存性は、超音波特有の性質であるところの空中伝搬率
と路面の反射能特性という2種の特性の重畳効果として
説明される。
As can be seen from FIG. 4, the receiving efficiency α and β are:
In a region where the directivity characteristics are narrow, where the half-value half-angle value is up to about 10 degrees, when the half-value half-angle value decreases, it increases rapidly, and at about 6 degrees, it becomes much larger than when it is 10 degrees or more. However, in a range where the half-angle exceeds 10 degrees, the reception efficiency changes slowly and has a low value. The above-mentioned dependence of the receiving efficiency (therefore, the S/N ratio) on the directional characteristics of the ultrasonic Doppler signal is due to the superposition of two characteristics unique to ultrasonic waves: air propagation coefficient and road surface reflectivity characteristics. It is explained as.

【0015】上記図4およびその説明から判るように、
送信超音波の指向特性が半減半角値として10度以下の
範囲においては、指向特性が狭くなるにつれて受信効率
が急激に向上し、特に約6度以下では受信効率が高い値
を示す。
As can be seen from the above FIG. 4 and its explanation,
In a range where the directivity of the transmitted ultrasonic wave is less than 10 degrees as a half-angle value, the reception efficiency rapidly improves as the directivity becomes narrower, and especially in the range of about 6 degrees or less, the reception efficiency shows a high value.

【0016】次に、図5は、ドップラ信号のS/N比の
指向特性依存性の実測値を示す図であり、車両速度が4
0km/hの場合の特性を示している。図5に示す特性
は、前記図4に示した受信効率の計算値と非常に似た特
性を示しており、前記の解析が正しいことを証明してい
る。
Next, FIG. 5 is a diagram showing actually measured values of the directional characteristic dependence of the S/N ratio of the Doppler signal.
The characteristics at 0 km/h are shown. The characteristics shown in FIG. 5 are very similar to the calculated values of reception efficiency shown in FIG. 4, which proves that the above analysis is correct.

【0017】次に、図6は、ドップラ信号の急峻さを表
わすfw特性に対する指向角依存性の実験結果を示す図
である。上記のfw特性とは、図7に示すように、ドッ
プラ信号のピーク値よりも12dB下がった時のドップ
ラ信号の帯域幅で定義している。すなわち帯域幅fwは
下記(数1)で示される。
Next, FIG. 6 is a diagram showing experimental results of the dependence of the directivity angle on the fw characteristic representing the steepness of the Doppler signal. As shown in FIG. 7, the above-mentioned fw characteristic is defined as the bandwidth of the Doppler signal when it is 12 dB lower than the peak value of the Doppler signal. That is, the bandwidth fw is expressed by the following (Equation 1).

【0018】[0018]

【数1】[Math 1]

【0019】上記のfw特性が急峻、すなわちfw値(
帯域幅)が小さいほどドップラ信号を検出する精度が高
まる。図6に示す実験結果より、■指向角が狭いほどf
w値が小さく、■対地速度が大きくなるにつれてfw値
も大きくなるが、指向角が狭いほど対地速度の増大に対
するfw値の増加の傾向は小さくなる、ことが判る。
The above fw characteristic is steep, that is, the fw value (
The smaller the bandwidth (bandwidth), the more accurate the Doppler signal can be detected. From the experimental results shown in Figure 6, ■ the narrower the beam direction angle, the more f
It can be seen that as the w value becomes smaller and the ground speed increases, the fw value also increases, but the narrower the pointing angle, the smaller the tendency for the fw value to increase with respect to the increase in ground speed.

【0020】図8は、上記の結果を判り易く表示するた
めに、fw値(帯域幅)と対地速度の関係を、指向角を
パラメータとして示した図である。図8から判るように
、指向角15度の場合には、下に凸の曲線になっており
、対地速度が増加するにつれて帯域幅が急激に大きくな
る。また、指向角10度の場合には、対地速度が増加す
るにつれて帯域幅がほぼ直線的に増加する。それに対し
て指向角6度の場合には、上に凸の曲線となっており、
対地速度が増加しても帯域幅はそれほど大きくならない
。すなわち、指向角6度の場合には、fw値(帯域幅)
が小さいと共に、車速が増加してもそれほど大きくなら
ないので、車速に係らず常に高い精度でドップラ信号を
検出することが出来る。これに対して、指向角15度の
場合には、fw値(帯域幅)が大きいと共に、車速の増
大に伴って急激に大きくなるので、精度が急激に低下す
ることが判る。指向角10度の場合には、両者の中間の
特性であり、下に凸の曲線が上に凸の曲線に変化する境
界に位置する。すなわち、指向角10度以下では、車速
の増大に対するfw値の増加の程度が少ない特性となり
、大きな車速でも比較的良好な精度が得られることが判
る。上記の結果と前記図4、図5の結果とを勘案すれば
、良好な精度を得るには、指向角を少なくとも10度以
下、好ましくは6度以下の値にすればよいことが判る。
FIG. 8 is a diagram showing the relationship between the fw value (bandwidth) and the ground speed using the directivity angle as a parameter in order to display the above results in an easy-to-understand manner. As can be seen from FIG. 8, when the pointing angle is 15 degrees, the curve is convex downward, and the bandwidth increases rapidly as the ground speed increases. Furthermore, in the case of a pointing angle of 10 degrees, the bandwidth increases almost linearly as the ground speed increases. On the other hand, when the directivity angle is 6 degrees, the curve is upwardly convex.
Bandwidth does not increase significantly as ground speed increases. In other words, in the case of a directivity angle of 6 degrees, the fw value (bandwidth)
is small and does not increase significantly even when the vehicle speed increases, so the Doppler signal can always be detected with high accuracy regardless of the vehicle speed. On the other hand, in the case of a directivity angle of 15 degrees, the fw value (bandwidth) is large and increases rapidly as the vehicle speed increases, so it can be seen that the accuracy rapidly decreases. In the case of a directivity angle of 10 degrees, the characteristics are intermediate between the two, and are located at the boundary where a downwardly convex curve changes to an upwardly convex curve. That is, it can be seen that when the pointing angle is 10 degrees or less, the fw value increases to a small degree with respect to an increase in vehicle speed, and relatively good accuracy can be obtained even at a high vehicle speed. Considering the above results and the results shown in FIGS. 4 and 5, it can be seen that in order to obtain good accuracy, the directivity angle should be at least 10 degrees or less, preferably 6 degrees or less.

【0021】[0021]

【発明の効果】以上説明してきたように、本発明によれ
ば、送信超音波の指向特性を半減半角値として10度以
下、好ましくは6度以下の値に設定するように構成した
ことにより、ドップラ信号のS/N比を向上させ、かつ
急峻なドップラ信号特性が得られ、低速から高速まで精
度の高い対地速度計測を実現することが出来る、という
効果が得られる。
As explained above, according to the present invention, the directional characteristic of the transmitted ultrasonic wave is set to a value of 10 degrees or less, preferably 6 degrees or less as a half-width value. The S/N ratio of the Doppler signal can be improved, steep Doppler signal characteristics can be obtained, and highly accurate ground speed measurement can be achieved from low speeds to high speeds.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例のブロック図[Fig. 1] Block diagram of one embodiment of the present invention

【図2】超音波
の空中伝搬率の指向特性に対する依存特性図。
FIG. 2 is a diagram showing the dependence of the air propagation coefficient of ultrasonic waves on the directional characteristics.

【図3】超音波の路面反射能の指向特性に対する依存特
性図。
FIG. 3 is a diagram showing the dependence of ultrasonic road reflectivity on directional characteristics.

【図4】受信効率の指向特性に対する依存特性図。FIG. 4 is a dependence characteristic diagram of reception efficiency on directional characteristics.

【図5】ドップラ信号のS/N比の指向特性に対する依
存性の実測値を示す図。
FIG. 5 is a diagram showing actually measured values of the dependence of the S/N ratio of a Doppler signal on the directional characteristics.

【図6】fw特性に対する指向角依存性特性図。FIG. 6 is a characteristic diagram of directivity angle dependence on fw characteristics.

【図7】ドップラ信号レベルの周波数特性図。FIG. 7 is a frequency characteristic diagram of Doppler signal level.

【図8】fw値と対地速度の関係を、指向角をパラメー
タとして示した特性図。
FIG. 8 is a characteristic diagram showing the relationship between fw value and ground speed using directivity angle as a parameter.

【符号の説明】[Explanation of symbols]

1…発振器 2…送波器 3…ドライブ回路 4…超音波 5…路面 6…受波器 7…プリアンプ 8…掛算器 9…ローパスフィルタ 10…ゼロクロスコンパレータ 11…パルスカウンタ 12…車速演算回路 1...Oscillator 2... Transmitter 3...Drive circuit 4...Ultrasound 5...Road surface 6...Receiver 7...Preamplifier 8... Multiplier 9...Low pass filter 10...Zero cross comparator 11...Pulse counter 12...Vehicle speed calculation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】路面に対して所定の角度で斜めに超音波信
号を送出する超音波送信手段と、路面から反射された超
音波信号を受信する超音波受信手段と、ドップラ効果に
よって上記超音波信号に生じた周波数変化から対地速度
を演算する演算手段とを備えた超音波ドップラ方式対地
速度計において、上記送信超音波信号の指向特性を、送
信音圧の半減半角として少なくとも10度以下、好まし
くは6度以下の値に設定したことを特徴とする超音波ド
ップラ方式対地速度計。
1. Ultrasonic transmitting means for transmitting ultrasonic signals diagonally at a predetermined angle with respect to the road surface; ultrasonic receiving means for receiving the ultrasonic signals reflected from the road surface; In an ultrasonic Doppler ground speed meter equipped with a calculating means for calculating ground speed from a frequency change occurring in the signal, the directivity of the transmitted ultrasonic signal is preferably at least 10 degrees or less as a half angle of the transmitted sound pressure. An ultrasonic Doppler ground speed meter characterized by being set at a value of 6 degrees or less.
JP40601790A 1990-12-25 1990-12-25 Ultrasonic doppler type terrain speedometer Pending JPH04221782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40601790A JPH04221782A (en) 1990-12-25 1990-12-25 Ultrasonic doppler type terrain speedometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40601790A JPH04221782A (en) 1990-12-25 1990-12-25 Ultrasonic doppler type terrain speedometer

Publications (1)

Publication Number Publication Date
JPH04221782A true JPH04221782A (en) 1992-08-12

Family

ID=18515642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40601790A Pending JPH04221782A (en) 1990-12-25 1990-12-25 Ultrasonic doppler type terrain speedometer

Country Status (1)

Country Link
JP (1) JPH04221782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190109490A (en) * 2017-02-28 2019-09-25 가부시키가이샤 사무코 Silicon single crystal ingot manufacturing method and silicon single crystal growing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190109490A (en) * 2017-02-28 2019-09-25 가부시키가이샤 사무코 Silicon single crystal ingot manufacturing method and silicon single crystal growing apparatus

Similar Documents

Publication Publication Date Title
JP4377121B2 (en) Distance measurement and pressure measurement inside air spring
US20030072219A1 (en) Laser velocimetry detection of underwater sound
EP0394940B1 (en) Ultrasonic ground speedometer utilizing doppler effect
US20100097891A1 (en) Auto tune sonar system
GB2121174A (en) Measurement of distance using ultrasound
JP2020180806A (en) Object detection device
JPH04221782A (en) Ultrasonic doppler type terrain speedometer
JPH04278487A (en) Radar for vehicle
EP0395000B1 (en) Ultrasonic ground speedometer utilizing doppler effect
US5239516A (en) Ultrasonic ground speedometer utilizing doppler effect of ultrasonic waves
JP3563827B2 (en) In-vehicle measuring equipment
JPH0777575A (en) Radar
JP3492095B2 (en) Ultrasound imaging device
JP3390673B2 (en) Water level measurement method
Kobayashi et al. A study of a vehicle ground speed sensor using the ultrasonic wave doppler effect
JP2513125Y2 (en) Ground speed detector
US20230021744A1 (en) Ultrasonic Flowmeter and Method for Operating an Ultrasonic Flowmeter
JP2868869B2 (en) FM-CW fish finder
JP2002350540A (en) Ultrasonic wave propagation time calculator and obstacle detection system for vehicle
JP2760079B2 (en) Ultrasonic sensor
IMOU et al. Ultrasonic Doppler speed sensor with an offset parabolic reflector
JPH08334561A (en) Ultrasonic doppler-type ground speed measuring apparatus
RU2034241C1 (en) Method for measuring speed of sound
JPS60246740A (en) Ultrasonic diagnostic apparatus
SU191381A1 (en) THE METHOD OF ACOUSTIC MEASUREMENT OF DISTANCES IN A GAS MEDIUM