JP3390673B2 - Water level measurement method - Google Patents

Water level measurement method

Info

Publication number
JP3390673B2
JP3390673B2 JP22068198A JP22068198A JP3390673B2 JP 3390673 B2 JP3390673 B2 JP 3390673B2 JP 22068198 A JP22068198 A JP 22068198A JP 22068198 A JP22068198 A JP 22068198A JP 3390673 B2 JP3390673 B2 JP 3390673B2
Authority
JP
Japan
Prior art keywords
frequency
signal
water level
beat signal
beat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22068198A
Other languages
Japanese (ja)
Other versions
JP2000055716A (en
Inventor
公夫 森川
堅治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP22068198A priority Critical patent/JP3390673B2/en
Publication of JP2000055716A publication Critical patent/JP2000055716A/en
Application granted granted Critical
Publication of JP3390673B2 publication Critical patent/JP3390673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、電波を使用して空
中線から水面までの距離を計測し、水位を求める水位計
測法に関する。 【0002】 【従来の技術】従来の周波数変調された電波を使用した
電波水位計では、空中線から水面に向けて放射し反射さ
れた電波を受信し、該受信した反射波と放射した電波と
で生じるビート信号をフィルタを通した後周波数/電圧
変換処理を行い、該周波数/電圧変換処理で得られた電
圧値から水面までの距離即ち水位を計算によって求めて
いた。 【0003】上記従来の技術によると、水面と空中線の
間で生ずる多重反射による不要周波数成分の影響で誤っ
た水位を出力する事があるという問題がある。更に水面
の波で生ずる電波の擾乱が水位を計測する井戸の側壁面
で反射して不要周波数成分となりビート信号のS/N比
の低下をきたし正確な水位の検出を困難にするという問
題がある。 【0004】 【発明が解決しようとする課題】本発明は、この問題を
解決するために提案するもので、ビート信号に含まれる
水面と空中線との間で生ずる多重反射による不要周波数
成分による影響の除去と、水面の波で生ずる電波の擾乱
が水位を計測する井戸の側壁面で反射して不要周波数成
分となりビート信号のS/N比が低下することによる影
響を除去することを目的とする。 【0005】 【課題を解決するための手段】上記目的を達成するため
に本発明では、FM変調の周波数偏移幅をΔFとして
波数変調された高周波信号を発生する送信部と、該送信
部からの周波数変調された高周波信号をサーキュレータ
を介して水面に向けて繰り返し(繰り返し周波数をf
m)放射し、且、水面から反射して来る反射波を受信す
る空中線と、該空中線で受信した反射波を上記サーキュ
レータを介して受信し、且、前記送信部からの高周波信
号をサーキュレータを介して水面に向けて放射した高周
波信号の一部をサーキュレータから受信して上記受信し
た反射波とのビート信号を検出する受信部と、該受信部
から上記ビート信号を受信してこれを処理する信号処理
部を有する電波水位計を用いて水位が急激に変化しない
場合の水位計測法において、前に得た水位データから逆
算して求めた最適ビート周波数の値を上記信号処理部の
適応化フィルタに与えて通過帯域を最適に設定してお
き、上記信号処理部では受信したビート信号を高速フー
リエ変換処理により該ビート信号の周波数成分を抽出し
たデータを該適応化フィルタに与え、しかる後、該適応
化フィルタにより処理して得たビート信号の周波数成分
の内から主要周波数成分を取り出し、該取り出したビー
ト信号の主要周波数成分を用いて離散フーリエ変換処理
によりビート信号の周波数(fr)を抽出し、該抽出し
たビート信号の周波数から下記計算式 R=C(電波伝播速度)・fr/(4・ΔF・fm) によって空中線から水面までの距離(R)を求めること
を特徴とする。 【0006】 【発明の実施の形態】以下に本発明を図面に示す実施形
態に基いて詳細に説明する。 【0007】図1は本発明の実施の形態を示すFM−C
Wレーダを用いた水位計のブロック図で、1は送信部、
2はサーキュレータ、3は空中線、4は受信部、5は信
号処理部、6は操作部、7は表示部、8は井戸、9は水
面、10は送信波、11は反射波を示す。 【0008】1は送信部で、FM変調の周波数偏移幅を
ΔFとして周波数変調された高周波信号を発生し、該送
信部1で発生する周波数変調された高周波信号即ち送信
波はサーキュレータ2を介して空中線3に供給され該空
中線3から井戸8の水面9に向って送信波10が繰り返
し(繰り返し周波数をfm)放射される。水面9で反射
された反射波11は空中線3で受信されサーキュレータ
2を介して受信部4に入力される。また受信部4は送信
部1で発生した上記周波数変調された高周波信号即ち送
信波の一部をサーキュレータ2を介して受信し、該送信
波の一部と上記受信した反射波とが混合されて生ずるビ
ート信号を検出する。該ビート信号は受信部4で増幅さ
れた後信号処理部5に出力され、信号処理部5は該ビー
ト信号を受信してこれをサンプリングして、A/D変換
によりディジタルデータとした後、演算処理により高速
フーリエ変換をおこない周波数成分のスペクトルを得る
が、ここで得られる周波数成分は井戸8の水面と空中線
3との間で生ずる多重反射、水面の波による反射波や井
戸8の側壁からの反射波等によって生ずる雑音としての
周波数成分を含んでいるので、これ等の雑音としての周
波数成分を除去するために、予め水位は急激に変化しな
いことを利用して、すなわち水位が急激に変化しない場
、前に得た水位データから逆算して得た最適なビート
周波数の値を操作部6を用いて信号処理部5の適応化フ
ィルタに与えて、上記高速フーリエ変換で得た周波数成
分のスペクトルを該適応化フィルタで処理することによ
って上記雑音の除去を行い、これによって得た周波数成
分の最大値を用いて更に離散フーリエ変換処理を行った
結果得られたビート信号の周波数値をFM−CWの下記
の式 R=C・fr/(4・ΔF・fm) R:空中線から水面までの距離 C:電波伝播速度 fr:ビート信号の周波数 ΔF:FM変調の周波数偏移 fm:FM変調の繰り返し周波数 に代入して水面までの距離を算出するようにしたもので
ある。上記計算式においてC,ΔF及びfmはすべて既
知であるからfrの値を代入することによってRを求め
ることが出来る。 【0009】 【発明の効果】本発明によれば、水位が急激に変化しな
い場合において、観測されたビート信号をディジタルデ
ータとした後高速フーリエ変換を行ない、既に得てある
水位からビート周波数を逆算して得た最適な値を与えて
適応化フィルタの通過帯域を最適に設定して適応化フィ
ルタ処理を行うことにより、上記多重反射あるいは水面
の波と井戸の壁面による電波の擾乱から生ずるS/N比
の低下即ち雑音の影響を除去し、離散フーリエ変換によ
り正確なビート周波数を検出することが可能となり、そ
のビート周波数から正確な水位を算出することが出来る
効果が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water level measuring method for measuring a distance from an antenna to a water surface by using radio waves to obtain a water level. 2. Description of the Related Art A conventional radio wave level meter using frequency-modulated radio waves receives radio waves radiated from the aerial to the water surface and receives the reflected radio waves. After the generated beat signal is filtered, frequency / voltage conversion processing is performed, and the distance from the voltage value obtained in the frequency / voltage conversion processing to the water surface, that is, the water level is calculated. According to the above-mentioned prior art, there is a problem that an erroneous water level may be output due to the influence of unnecessary frequency components due to multiple reflections occurring between the water surface and the antenna. Further, there is a problem that the disturbance of the radio wave generated by the wave on the water surface is reflected on the side wall surface of the well for measuring the water level and becomes an unnecessary frequency component, which causes a decrease in the S / N ratio of the beat signal and makes it difficult to accurately detect the water level. . SUMMARY OF THE INVENTION The present invention proposes a solution to this problem, in which the influence of unnecessary frequency components due to multiple reflections between the water surface and the antenna included in the beat signal is proposed. It is an object of the present invention to remove the influence of the disturbance of the radio wave generated by the wave on the water surface reflected on the side wall surface of the well for measuring the water level to become an unnecessary frequency component and to lower the S / N ratio of the beat signal. In order to achieve the above object, according to the present invention, there is provided a transmitter for generating a frequency-modulated high-frequency signal with a frequency shift width of FM modulation being ΔF. The frequency-modulated high-frequency signal from the transmitting unit is repeated toward the water surface via the circulator (the repetition frequency is f
m) An antenna that radiates and receives a reflected wave reflected from the water surface, a reflected wave received by the antenna is received through the circulator, and a high-frequency signal from the transmitting unit is transmitted through the circulator. Receiving part of the high-frequency signal radiated toward the water surface from the circulator and detecting a beat signal with the received reflected wave, and a signal for receiving the beat signal from the receiving part and processing it Water level does not change rapidly using radio wave level meter with processing unit
In the water level measurement method in the case, opposite from the water level data obtained before
The value of the optimum beat frequency calculated by
Give the adaptive filter an optimal passband
In the signal processing unit, data obtained by extracting a frequency component of the beat signal from the received beat signal by a fast Fourier transform process is provided to the adaptation filter, and thereafter, the beat signal obtained by processing with the adaptation filter is obtained. Of the beat signal, the frequency (fr) of the beat signal is extracted by discrete Fourier transform processing using the major frequency component of the extracted beat signal, and the following calculation is performed from the frequency of the extracted beat signal. It is characterized in that the distance (R) from the antenna to the water surface is obtained by the equation R = C (radio wave propagation velocity) · fr / (4 · ΔF · fm). DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIG. 1 shows an FM-C according to an embodiment of the present invention.
In the block diagram of the water level meter using W radar, 1 is a transmission unit,
Reference numeral 2 denotes a circulator, 3 denotes an antenna, 4 denotes a receiving unit, 5 denotes a signal processing unit, 6 denotes an operation unit, 7 denotes a display unit, 8 denotes a well, 9 denotes a water surface, 10 denotes a transmission wave, and 11 denotes a reflected wave. [0008] 1 is a transmission unit, which determines the frequency shift width of FM modulation.
A frequency-modulated high-frequency signal is generated as ΔF, and the frequency-modulated high-frequency signal, that is, a transmission wave, generated in the transmission unit 1 is supplied to the antenna 3 via the circulator 2 and travels from the antenna 3 to the water surface 9 of the well 8. The transmitted wave 10 repeats
(The repetition frequency is fm) . The reflected wave 11 reflected by the water surface 9 is received by the antenna 3 and is input to the receiver 4 via the circulator 2. The receiver 4 receives the frequency-modulated high-frequency signal generated by the transmitter 1, that is, a part of the transmission wave via the circulator 2, and a part of the transmission wave and the received reflected wave are mixed. The resulting beat signal is detected. The beat signal is amplified by the receiving unit 4 and then output to the signal processing unit 5. The signal processing unit 5 receives the beat signal, samples the beat signal, converts the beat signal into digital data by A / D conversion, and performs arithmetic operation. The spectrum of the frequency component is obtained by performing the fast Fourier transform by the processing. Since it contains frequency components as noise caused by reflected waves etc., in order to remove these frequency components as noise, use that the water level does not suddenly change in advance , that is, the water level does not change suddenly Place
In this case , the optimum beat frequency value obtained by back calculation from the water level data obtained previously is given to the adaptation filter of the signal processing unit 5 using the operation unit 6, and the spectrum of the frequency component obtained by the fast Fourier transform is obtained. Is processed by the adaptive filter to remove the above-described noise, and the frequency value of the beat signal obtained as a result of further performing the discrete Fourier transform processing using the maximum value of the frequency component obtained by this processing is referred to as FM-CW R = C · fr / (4 · ΔF · fm) R: distance from antenna to water surface C: radio wave propagation speed fr: frequency of beat signal ΔF: frequency shift width of FM modulation fm: frequency of FM modulation The distance to the water surface is calculated by substituting into the repetition frequency. Since C, ΔF, and fm are all known in the above formula, R can be obtained by substituting the value of fr. According to the present invention, the water level does not change rapidly.
In this case, the observed beat signal is converted to digital data and then subjected to a fast Fourier transform to give the optimum value obtained by calculating the beat frequency back from the already obtained water level to optimize the passband of the adaptive filter. By setting and performing adaptive filter processing, a reduction in the S / N ratio, that is, the influence of noise, caused by the above-described multiple reflection or disturbance of radio waves due to waves on the water surface and the wall of the well is removed, and accurate beats are obtained by discrete Fourier transform. The frequency can be detected, and an effect that an accurate water level can be calculated from the beat frequency is obtained.

【図面の簡単な説明】 【図1】FM−CWレーダを用いた水位計のブロック図
を示す。 【符号の説明】 1…送信部 2…サーキュレータ 3…空中線 4…受信部 5…信号処理部 6…操作部 7…表示部 8…井戸 9…水面 10…送信波 11…反射波
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a block diagram of a water level gauge using an FM-CW radar. [Description of Signs] 1 ... Transmission unit 2 ... Circulator 3 ... Antenna 4 ... Reception unit 5 ... Signal processing unit 6 ... Operation unit 7 ... Display unit 8 ... Well 9 ... Water surface 10 ... Transmission waves 11 ... Reflection

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01F 23/284 G01S 13/34 G01S 13/42 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01F 23/284 G01S 13/34 G01S 13/42

Claims (1)

(57)【特許請求の範囲】 【請求項1】 FM変調の周波数偏移幅をΔFとして
波数変調された高周波信号を発生する送信部と、該送信
部からの周波数変調された高周波信号をサーキュレータ
を介して水面に向けて繰り返し(繰り返し周波数をf
m)放射し、且、水面から反射して来る反射波を受信す
る空中線と、該空中線で受信した反射波を上記サーキュ
レータを介して受信し、且、前記送信部からの高周波信
号をサーキュレータを介して水面に向けて放射した高周
波信号の一部をサーキュレータから受信して上記受信し
た反射波とのビート信号を検出する受信部と、該受信部
から上記ビート信号を受信してこれを処理する信号処理
部を有する電波水位計を用いて水位が急激に変化しない
場合の水位計測法において、前に得た水位データから逆算して求めた最適ビート周波
数の値を上記信号処理部の適応化フィルタに与えて通過
帯域を最適に設定しておき、 上記信号処理部では受信し
たビート信号を高速フーリエ変換処理により該ビート信
号の周波数成分を抽出したデータを該適応化フィルタに
与え、しかる後、該適応化フィルタにより処理して得た
ビート信号の周波数成分の内から主要周波数成分を取り
出し、該取り出したビート信号の主要周波数成分を用い
て離散フーリエ変換処理によりビート信号の周波数(f
r)を抽出し、該抽出したビート信号の周波数から下記
計算式 R=C(電波伝播速度)・fr/(4・ΔF・fm) によって空中線から水面までの距離(R)を求めること
を特徴とした水位計測法。
(57) Claims: 1. A transmitting section for generating a frequency-modulated high-frequency signal with a frequency shift width of FM modulation being ΔF , and a frequency-modulated signal from the transmitting section. The high-frequency signal through the circulator toward the water surface (repeated frequency f
m) An antenna that radiates and receives a reflected wave reflected from the water surface, a reflected wave received by the antenna is received through the circulator, and a high-frequency signal from the transmitting unit is transmitted through the circulator. Receiving part of the high-frequency signal radiated toward the water surface from the circulator and detecting a beat signal with the received reflected wave, and a signal for receiving the beat signal from the receiving part and processing it Water level does not change rapidly using radio wave level meter with processing unit
In the case of the water level measurement method, the optimum beat frequency obtained by back calculation from the water level data obtained previously
Give the value of the number to the adaptive filter of the above signal processor and pass
The band is optimally set, and the signal processing unit applies data obtained by extracting the frequency component of the beat signal to the adaptation filter by the fast Fourier transform processing, and then applies the data to the adaptation filter. The main frequency component is extracted from the frequency components of the beat signal obtained by the processing, and the frequency (f) of the beat signal is obtained by discrete Fourier transform using the extracted main frequency component of the beat signal.
r) is extracted, and the distance (R) from the antenna to the water surface is obtained from the frequency of the extracted beat signal by the following formula: R = C (radio wave propagation speed) · fr / (4 · ΔF · fm) Water level measurement method.
JP22068198A 1998-08-04 1998-08-04 Water level measurement method Expired - Fee Related JP3390673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22068198A JP3390673B2 (en) 1998-08-04 1998-08-04 Water level measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22068198A JP3390673B2 (en) 1998-08-04 1998-08-04 Water level measurement method

Publications (2)

Publication Number Publication Date
JP2000055716A JP2000055716A (en) 2000-02-25
JP3390673B2 true JP3390673B2 (en) 2003-03-24

Family

ID=16754812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22068198A Expired - Fee Related JP3390673B2 (en) 1998-08-04 1998-08-04 Water level measurement method

Country Status (1)

Country Link
JP (1) JP3390673B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495528B2 (en) * 2004-06-18 2010-07-07 日本無線株式会社 Water level measuring apparatus and water level measuring method using radio waves
JP6880850B2 (en) * 2017-03-13 2021-06-02 富士通株式会社 Distance measuring device, water level measurement system and distance measuring method
CN111700499B (en) * 2020-06-28 2021-11-12 佛山市顺德区美的饮水机制造有限公司 Water drinking equipment, water drinking system, control method of water drinking equipment and storage medium
CN112212936A (en) * 2020-09-29 2021-01-12 广东电网有限责任公司广州供电局 Integrated online monitoring device, equipment and method for depth of cable well accumulated water

Also Published As

Publication number Publication date
JP2000055716A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
JP3788322B2 (en) Radar
EP1744176B1 (en) Distance measuring device, distance measuring method and distance measuring program
EP0123427B1 (en) Ultrasonic medium characterization
EP0338592B1 (en) An ultrasonic doppler blood flow velocity detection apparatus and a method for detecting blood flow velocity
JP3390673B2 (en) Water level measurement method
JP2003240842A (en) Radar
JP3773779B2 (en) Radar signal processing device
JP2951045B2 (en) Ultrasonic reflection intensity measurement device
JP2928068B2 (en) Distance measuring device
JPH05341038A (en) Distance and speed measuring device
JPH06245932A (en) Ultrasonic doppler diagnostic device
JP2779563B2 (en) Transmitter and receiver for Doppler acoustic radar
JPH0228116B2 (en)
JP3072444B2 (en) FM-CW distance measuring device
JP2828259B2 (en) Fish finder
JP2003043134A (en) Frequency detecting device of short pulse echo
JPH11271431A (en) Fmcw radar apparatus
JP5586217B2 (en) Radar equipment
JP2962983B2 (en) CW Doppler measurement radar device
JPH0348789A (en) Cw doppler device
JP3472376B2 (en) Ultrasonic bone evaluation device
JPH11160422A (en) Radio altimeter
JP3411431B2 (en) Speed measuring device
JPH06347548A (en) Ship speed measuring instrument
JPH04286981A (en) Automobile collision prevention radar

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees