JP3472376B2 - Ultrasonic bone evaluation device - Google Patents

Ultrasonic bone evaluation device

Info

Publication number
JP3472376B2
JP3472376B2 JP08563395A JP8563395A JP3472376B2 JP 3472376 B2 JP3472376 B2 JP 3472376B2 JP 08563395 A JP08563395 A JP 08563395A JP 8563395 A JP8563395 A JP 8563395A JP 3472376 B2 JP3472376 B2 JP 3472376B2
Authority
JP
Japan
Prior art keywords
received signal
bone
spectrum
evaluation value
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08563395A
Other languages
Japanese (ja)
Other versions
JPH08280672A (en
Inventor
直樹 大友
貞行 上羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP08563395A priority Critical patent/JP3472376B2/en
Publication of JPH08280672A publication Critical patent/JPH08280672A/en
Application granted granted Critical
Publication of JP3472376B2 publication Critical patent/JP3472376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波を用いて骨の評
価・診断を行う超音波骨評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic bone evaluation apparatus for evaluating and diagnosing bones using ultrasonic waves.

【0002】[0002]

【従来の技術】老年人口の急激な増加とあいまって、骨
粗鬆症・骨軟化症などの骨の疾患をもつ人が増加してお
り、その診断や予防の手法が要望されている。
2. Description of the Related Art The number of people with bone diseases such as osteoporosis and osteomalacia is increasing along with the rapid increase in the aging population, and a method for diagnosis and prevention thereof is required.

【0003】骨の評価・診断のための装置としては、従
来X線を利用した骨塩量測定装置があったが、近年これ
に加えて、生体に超音波を透過させて骨組織の評価・診
断を行う超音波骨評価装置が提案されている。このよう
な骨評価装置としては、例えば米国特許3,847,1
41号で提案されている装置がある。この装置は、人の
踵骨の評価を行う装置であり、踵に超音波を透過させて
踵骨を透過する超音波の音速を求め、この音速を踵骨の
評価値としている。
As a device for evaluating and diagnosing bones, there has conventionally been a device for measuring bone mineral content using X-rays. In recent years, however, in addition to this, ultrasonic waves are transmitted to the living body to evaluate and evaluate bone tissue. An ultrasonic bone evaluation device for diagnosis has been proposed. As such a bone evaluation device, for example, US Pat. No. 3,847,1 is used.
There is a device proposed in No. 41. This device is a device for evaluating a calcaneus of a person, and an ultrasonic wave is transmitted to the heel to obtain a sound velocity of the ultrasonic wave that penetrates the calcaneus, and this sound velocity is used as an evaluation value of the calcaneus.

【0004】[0004]

【発明が解決しようとする課題】これら従来の手法によ
って求められる評価値は、骨中の音速や骨塩量など、い
わば巨視的な値であった。
The evaluation values obtained by these conventional methods are so-called macroscopic values such as the speed of sound in the bone and the amount of bone mineral.

【0005】一般に骨は、外側を覆う皮質骨と、その内
側にある海綿骨とから成っており、このうち海綿骨は、
図3に示すように、比較的弾性波を吸収する硬い骨梁1
10と、骨梁110の間に存在し、軟らかくて弾性波の
伝達性が比較的よい骨髄120とから構成されている。
加齢などにより骨の量が減少してくると、骨梁110が
細くなったり消滅したりしてくるため、骨梁110同士
の間隔が大きくなると考えられるが、このような骨梁間
隔などの骨の微視的な構造は、上記骨中の音速や骨塩量
からは直接的に知ることができない。
[0005] In general, bone is composed of cortical bone that covers the outside and cancellous bone inside the cortical bone.
As shown in FIG. 3, a hard trabecular bone 1 that relatively absorbs elastic waves
10 and a bone marrow 120 which is present between the trabecular bone 110 and which is soft and has relatively good transmission of elastic waves.
When the amount of bone decreases due to aging or the like, the trabecular bone 110 becomes thin or disappears, and thus it is considered that the distance between the trabecular bones 110 becomes large. The microscopic structure of bone cannot be directly known from the speed of sound and the amount of bone mineral in the bone.

【0006】このような状況に対し、近年、骨の総合的
な評価を行うために、骨の微視的構造を直接的に評価す
ることができる装置が要望されている。
In response to such a situation, in recent years, there has been a demand for an apparatus capable of directly evaluating the microscopic structure of bone in order to comprehensively evaluate the bone.

【0007】本発明は、このような課題に鑑みなされた
ものであり、骨の微視的構造に関する評価値を求めるこ
とができる新たなタイプの超音波骨評価装置を提供する
ことを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a new type of ultrasonic bone evaluation apparatus capable of obtaining an evaluation value relating to the microscopic structure of bone. .

【0008】[0008]

【課題を解決するための手段】前述の目的を達成するた
めに、本発明に係る超音波骨評価装置は、被検体に対し
て超音波を送波する送波手段と、前記被検体を透過した
超音波を受波する受波手段と、受波信号を周波数分析し
て受波信号スペクトルを求める周波数分析手段と、求め
られた受波信号スペクトルにおけるピークの周期性に基
づいて被検体内の骨に関する評価値を演算する評価値演
算手段とを有することを特徴とする。
In order to achieve the above-mentioned object, an ultrasonic bone evaluation apparatus according to the present invention is provided with a transmitting means for transmitting an ultrasonic wave to a subject, and a transmitting means for transmitting the ultrasound. The receiving means for receiving the ultrasonic wave, the frequency analyzing means for frequency-analyzing the received signal to obtain the received signal spectrum, and the inside of the subject based on the periodicity of the peak in the obtained received signal spectrum. And an evaluation value calculation means for calculating an evaluation value regarding the bone.

【0009】また、本発明に係る超音波骨評価装置は、
前記周波数分析手段が前記受波信号をフーリエ変換する
ことにより前記受波信号スペクトルを求め、前記評価値
演算手段が前記受波信号スペクトルに更にフーリエ変換
を施し、この結果得られる二次スペクトルに現れるピー
クの位置に基づいて前記評価値を求めることを特徴とす
る。
Further, the ultrasonic bone evaluation apparatus according to the present invention is
The frequency analysis means obtains the received signal spectrum by performing a Fourier transform on the received signal, and the evaluation value calculation means further performs a Fourier transform on the received signal spectrum and appears in a secondary spectrum obtained as a result. The evaluation value is obtained based on the position of the peak.

【0010】[0010]

【作用】まず、本発明の原理を説明する。First, the principle of the present invention will be described.

【0011】パルス波のような多くの周波数成分を含む
超音波を、図3に示すような海綿骨骨を含む被検体に照
射し、透過超音波を受波した場合、得られる受波信号の
スペクトルは図4に示すようになる。図4から分かるよ
うに、受波信号のスペクトルには図中Rに示す周期的な
ピークが観察される。
When an ultrasonic wave containing many frequency components such as a pulse wave is irradiated to a subject including cancellous bone as shown in FIG. 3 and a transmitted ultrasonic wave is received, the received signal obtained is The spectrum is as shown in FIG. As can be seen from FIG. 4, periodic peaks shown by R in the figure are observed in the spectrum of the received signal.

【0012】このようなスペクトルの周期性は、海綿骨
の微視的構造を反映したものと考えられる。すなわち、
海綿骨は、超音波に対して一種のフィルタとして作用
し、このフィルタとしての効果は、海綿骨の微視的な構
造、特に骨梁同士の間隔を反映する。骨梁と骨髄の超音
波伝搬特性からいって、骨梁間隔に合った波長の超音波
ほど透過しやすいので、受波信号のスペクトルにおい
て、海綿骨を透過しやすい波長に対応する周波数成分の
強度が高くなるからである。従って、海綿骨内の骨梁の
間隔が狭い場合は、比較的波長の短い、すなわち比較的
高周波の成分がよく透過されるため、受波信号のスペク
トルには高い周波数を基本周波数とする高調波成分が強
く現れ、これらが周期的なピークを形成する。このた
め、骨梁が密な場合は、受波信号のスペクトルのピーク
の周期が大きくなる。これに対し、海綿骨の骨梁間隔が
大きくなると、よく透過される超音波の波長が大きく
(すなわち、周波数が小さく)なるため、受波信号スペ
クトルに現れるピークの周期が小さくなる。
Such periodicity of the spectrum is considered to reflect the microscopic structure of cancellous bone. That is,
The cancellous bone acts as a kind of filter for ultrasonic waves, and the effect of this filter reflects the microscopic structure of the cancellous bone, particularly the distance between trabecular bones. According to the ultrasonic wave propagation characteristics of trabecular bone and bone marrow, ultrasonic waves with a wavelength matching the trabecular space are more likely to pass through.Therefore, in the spectrum of the received signal, the intensity of the frequency component corresponding to the wavelength that easily passes through the cancellous bone. Is higher. Therefore, when the trabecular space in the cancellous bone is narrow, components with a relatively short wavelength, that is, relatively high frequencies, are well transmitted, so that the spectrum of the received signal contains harmonics with a high frequency as the fundamental frequency. The components appear strongly and they form periodic peaks. Therefore, when the trabecular bone is dense, the period of the peak of the spectrum of the received signal becomes large. On the other hand, when the trabecular spacing of the cancellous bone becomes large, the wavelength of the ultrasonic waves that are often transmitted becomes large (that is, the frequency becomes small), so the period of the peak appearing in the received signal spectrum becomes small.

【0013】従って、本発明は、この受波信号スペクト
ルの周期性と骨の微視的構造との関係に注目し、受波信
号スペクトルにおけるピークの繰り返しの周期性を求
め、これに基づいて骨の微視的構造に関する評価値を算
出する。
Therefore, the present invention pays attention to the relationship between the periodicity of the received signal spectrum and the microscopic structure of the bone, obtains the periodicity of peak repetition in the received signal spectrum, and based on this, An evaluation value regarding the microscopic structure of is calculated.

【0014】すなわち、本発明の構成によれば、送波手
段から放射された超音波は、骨を透過して受波手段によ
って検出される。その際の受波信号が、周波数分析手段
によって分析され、受波信号のスペクトルが求められ
る。評価値算出手段は、その受波信号スペクトルのピー
クの周期性を検出し、この周期性に基づいて骨の評価値
を算出する。
That is, according to the structure of the present invention, the ultrasonic wave radiated from the transmitting means is transmitted through the bone and detected by the receiving means. The received signal at that time is analyzed by the frequency analysis means to obtain the spectrum of the received signal. The evaluation value calculation means detects the periodicity of the peak of the received signal spectrum, and calculates the bone evaluation value based on this periodicity.

【0015】より具体的には、評価値演算手段は、受波
信号をフーリエ変換することにより得られた受波信号ス
ペクトルに対し更にフーリエ変換を施し、二次スペクト
ルを求める。受波信号スペクトルに周期性が存在する
と、その周期性に対応したピークが二次スペクトルに現
れるので、この二次スペクトルにおいてピークが現れる
位置に基づいて骨の評価値を定める。
More specifically, the evaluation value calculation means further performs Fourier transform on the received signal spectrum obtained by Fourier transforming the received signal to obtain a secondary spectrum. If the received signal spectrum has periodicity, a peak corresponding to the periodicity appears in the secondary spectrum. Therefore, the bone evaluation value is determined based on the position where the peak appears in the secondary spectrum.

【0016】[0016]

【実施例】以下、本発明に係る超音波骨評価装置の一実
施例を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an ultrasonic bone evaluation device according to the present invention will be described below with reference to the drawings.

【0017】図1は、本発明に係る超音波骨評価装置の
概略構成を示すブロック図である。図において、互いに
対向する一対の振動子10a,10bは、図示しない走
査ユニットに固定されている。被検体を検査する際に
は、振動子10a,10bの間に被検体(例えば、踵)
100を配置して、超音波の送受波を行う。このとき、
図示しない走査制御部を通じて走査ユニット全体を駆動
することにより、一対の振動子10a,10bを、被検
体100に対して順次走査することができる。
FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic bone evaluation apparatus according to the present invention. In the figure, a pair of transducers 10a and 10b facing each other is fixed to a scanning unit (not shown). When inspecting a subject, the subject (for example, the heel) is placed between the transducers 10a and 10b.
100 is arranged to transmit / receive ultrasonic waves. At this time,
By driving the entire scanning unit through a scanning control unit (not shown), the pair of transducers 10a and 10b can sequentially scan the subject 100.

【0018】振動子10a,10bは、それぞれ送受信
ユニット12a,12bに接続されている。送受信ユニ
ット12a,12bは、それぞれ振動子10a,10b
に対して送信パルスを供給すると共に、振動子10a,
10bからの受波信号を取り込む。本実施例では、振動
子10a,10bはどちらも送受両用であり、適宜使い
分けることができる。なお、本実施例においては、送波
側の振動子からは、多くの周波数成分を含んだインパル
ス状の超音波パルスが送波される。
The vibrators 10a and 10b are connected to the transmission / reception units 12a and 12b, respectively. The transmission / reception units 12a and 12b are respectively provided with the vibrators 10a and 10b.
To the oscillator 10a,
The received signal from 10b is taken in. In this embodiment, both of the vibrators 10a and 10b are for both transmission and reception, and can be used properly. It should be noted that, in the present embodiment, an impulse-shaped ultrasonic pulse including many frequency components is transmitted from the transmitting-side transducer.

【0019】送受信ユニット12a,12bは、計測制
御部14からの制御に従い、送信パルスの発生や受波信
号の取り込みを行う。また、送受信ユニット12a,1
2bは、A/D変換器16に接続されており、送受信ユ
ニット12a又は12bによって振動子10a又は10
bから取り込まれた受波信号は、A/D変換器16でデ
ジタル化された後、計測制御部14を介して演算処理部
18に入力される。
The transmission / reception units 12a and 12b generate transmission pulses and take in received signals under the control of the measurement controller 14. In addition, the transmission / reception units 12a, 1
2b is connected to the A / D converter 16 and is connected to the transducer 10a or 10 by the transmission / reception unit 12a or 12b.
The received signal fetched from b is digitized by the A / D converter 16 and then input to the arithmetic processing unit 18 via the measurement control unit 14.

【0020】図2は、演算処理部18の機能ブロック図
であり、図に示すように、演算処理部18は、第1フー
リエ変換部20、第2フーリエ変換部22及び評価値算
出部24を有している。
FIG. 2 is a functional block diagram of the arithmetic processing unit 18. As shown in the figure, the arithmetic processing unit 18 includes a first Fourier transform unit 20, a second Fourier transform unit 22, and an evaluation value calculation unit 24. Have

【0021】A/D変換器16によってデジタル化され
た受波信号は、まず第1フーリエ変換部20に入力され
る。第1フーリエ変換部20は、受波信号をフーリエ変
換することにより、受波信号のスペクトルを求める。求
められた受波信号スペクトルのデータは、第2フーリエ
変換部22に入力される。第2フーリエ変換部22は、
受波信号スペクトルのデータに対して更にフーリエ変換
を施す。すなわち、第2フーリエ変換部22は、受波信
号スペクトルを周波数の関数と見て、その受波信号のス
ペクトル自体を更に周波数分析する。受波信号スペクト
ルに周期的なピークが存在する場合は、この受波信号ス
ペクトル自体の周波数分析により、その周期性が検出さ
れる。
The received signal digitized by the A / D converter 16 is first input to the first Fourier transform section 20. The first Fourier transform unit 20 obtains the spectrum of the received signal by Fourier transforming the received signal. The obtained received signal spectrum data is input to the second Fourier transform unit 22. The second Fourier transform unit 22
Fourier transform is further applied to the data of the received signal spectrum. That is, the second Fourier transform unit 22 views the received signal spectrum as a function of frequency and further frequency-analyzes the spectrum of the received signal itself. When there are periodic peaks in the received signal spectrum, the periodicity is detected by frequency analysis of the received signal spectrum itself.

【0022】図5は、図4に示すような周期的なピーク
を有する受波信号スペクトルをフーリエ変換したときに
得られるスペクトルの例である。図5において、縦軸は
強度であり、横軸は受波信号スペクトルに現れる繰り返
し成分の周波数である。以下、この受波信号スペクトル
のフーリエ変換結果のことを二次スペクトルと呼ぶ。
FIG. 5 shows an example of a spectrum obtained by Fourier-transforming the received signal spectrum having the periodic peaks shown in FIG. In FIG. 5, the vertical axis represents intensity and the horizontal axis represents the frequency of the repetitive component appearing in the received signal spectrum. Hereinafter, the result of Fourier transform of the received signal spectrum will be referred to as a secondary spectrum.

【0023】図5に示すように、受波信号の二次スペク
トルには特徴的なピークAが現れる。このピークAは、
受波信号スペクトルにおけるピークの繰り返しによるも
のであると考えられる。従って、二次スペクトルのピー
クから受波信号スペクトルの周期性を検出することがで
きる。
As shown in FIG. 5, a characteristic peak A appears in the secondary spectrum of the received signal. This peak A is
It is considered that this is due to the repetition of peaks in the received signal spectrum. Therefore, the periodicity of the received signal spectrum can be detected from the peak of the secondary spectrum.

【0024】そこで、本実施例では、評価値算出部24
は、第2フーリエ変換部22で得られた二次スペクトル
のデータを受け取り、この二次スペクトルにおけるピー
クの位置Tを検出し、これを骨に関する評価値として出
力する。この評価値が大きいということは、受波信号ス
ペクトルにおけるピーク繰り返しの周波数が大きいこ
と、すなわち受波信号スペクトルのピークの繰り返し周
期が小さいことを示し、これは骨梁間隔が粗であること
を示す。逆に、この評価値が小さいことは、骨梁間隔が
密であることを示す。
Therefore, in this embodiment, the evaluation value calculation unit 24
Receives the data of the secondary spectrum obtained by the second Fourier transform unit 22, detects the position T of the peak in the secondary spectrum, and outputs this as an evaluation value for bone. A large evaluation value indicates that the peak repetition frequency in the received signal spectrum is large, that is, the peak repetition period in the received signal spectrum is small, which indicates that the trabecular spacing is coarse. . On the contrary, a small evaluation value indicates that the trabecular spaces are close.

【0025】このように、本実施例によれば、受波信号
スペクトルを更に周波数分析することにより、受波信号
スペクトルに含まれる繰り返し成分の周期性(すなわ
ち、ピークの間隔)に関する評価値を得ることができ
る。受波信号スペクトルのピーク間隔は骨梁間隔を反映
しているので、その評価値は、骨の微視的構造における
一つの特徴量である骨梁間隔を評価するための指標値と
なる。
As described above, according to the present embodiment, by further frequency-analyzing the received signal spectrum, an evaluation value regarding the periodicity (that is, the interval between peaks) of the repetitive components included in the received signal spectrum is obtained. be able to. Since the peak spacing of the received signal spectrum reflects the trabecular spacing, the evaluation value is an index value for evaluating the trabecular spacing, which is one feature amount in the microscopic structure of bone.

【0026】なお、本実施例は、受波信号スペクトルの
ピークの繰り返しに注目したものであったが、このピー
クの繰り返しは、1MHzを超えるかなり高い周波数帯
域にならないと現れない。ところが、骨を含む生体自体
は高い周波数成分に対する透過性が小さいので、この繰
り返し部分のレベルは、透過性の大きい比較的周波数の
低い成分の受波信号レベル(図4のスペクトルのメイン
ローブM)に比べてかなり低くなってしまう。このた
め、ピークの繰り返し部分は、回路自体のノイズの影響
を受けやすい。そこで、本実施例では、被検体に対して
何回も超音波パルスを透過させて受波信号データを採取
し、それらを加算処理(あるいは加算平均処理)するこ
とにより、ランダムに発生するノイズの影響を低減す
る。
In this embodiment, attention was paid to the repetition of peaks of the received signal spectrum, but this repetition of peaks does not appear unless the frequency band is considerably higher than 1 MHz. However, since the living body including bone itself has low transparency to high-frequency components, the level of this repeated portion is the received signal level of the relatively low-frequency component with high transparency (main lobe M of the spectrum in FIG. 4). It will be much lower than. Therefore, the repeated portion of the peak is easily affected by the noise of the circuit itself. Therefore, in the present embodiment, the ultrasonic pulse is transmitted to the subject many times, the received signal data is sampled, and addition processing (or addition averaging processing) is performed on the received signal data. Reduce the impact.

【0027】また、受波信号スペクトルのピークの繰り
返しは、メインローブより遥かに高い周波数帯に現れる
ので、ピークの周期性の検出にはメインローブ付近のデ
ータは基本的に必要ない。そこで、ノイズの影響を低減
する方法としては、メインローブ付近の受波信号レベル
が飽和してもよいものとして超音波パルスの送信パワー
を大きくし、ピークの繰り返しが現れる高周波数の領域
の受波レベルを大きくする方法もある。
Further, since the peak repetition of the received signal spectrum appears in a frequency band much higher than the main lobe, data near the main lobe is basically unnecessary for detecting the periodicity of the peak. Therefore, as a method of reducing the influence of noise, increase the transmission power of the ultrasonic pulse by assuming that the received signal level near the main lobe may be saturated, and increase the received power in the high frequency region where peak repetition appears. There is also a way to increase the level.

【0028】また、以上に説明した実施例では、受波信
号スペクトルのピークの周期性を検出するために、受波
信号スペクトルをフーリエ変換して二次スペクトルを求
めたが、これに限らず、受波信号スペクトル自体からピ
ークを検出してピーク同士の間隔を求め、そのピーク間
隔を評価値として採用することもできる。
In the embodiment described above, the secondary spectrum is obtained by Fourier transforming the received signal spectrum in order to detect the periodicity of the peak of the received signal spectrum. However, the present invention is not limited to this. It is also possible to detect peaks from the received signal spectrum itself, find the interval between the peaks, and use the peak interval as an evaluation value.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
受波信号スペクトルに現れるピークの繰り返しの周期性
を検出することにより、骨の微視的構造を示す特徴量の
一つである骨梁間隔に関する評価値を得ることができ
る。
As described above, according to the present invention,
By detecting the repeating periodicity of the peaks appearing in the received signal spectrum, it is possible to obtain an evaluation value regarding the trabecular spacing, which is one of the feature quantities indicating the microscopic structure of bone.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る超音波骨評価装置の概略構成を
示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic bone evaluation apparatus according to the present invention.

【図2】 本発明に係る超音波骨評価装置の演算処理部
の機能ブロック図である。
FIG. 2 is a functional block diagram of an arithmetic processing unit of the ultrasonic bone evaluation apparatus according to the present invention.

【図3】 海綿骨の構造を説明するための図である。FIG. 3 is a diagram for explaining the structure of cancellous bone.

【図4】 骨を透過した超音波を受波したときの受波信
号のスペクトルを示す図である。
FIG. 4 is a diagram showing a spectrum of a received signal when an ultrasonic wave transmitted through a bone is received.

【図5】 受波信号スペクトルに更にフーリエ変換を施
して得られる二次スペクトルを示す図である。
FIG. 5 is a diagram showing a secondary spectrum obtained by further performing a Fourier transform on the received signal spectrum.

【符号の説明】[Explanation of symbols]

10a,10b 振動子、12a,12b 送受信ユニ
ット、14 計測制御部、16 A/D変換器、18
演算処理部、20 第1フーリエ変換部、22第2フー
リエ変換部、24 評価値算出部。
10a, 10b vibrator, 12a, 12b transmitting / receiving unit, 14 measurement control unit, 16 A / D converter, 18
Arithmetic processing unit, 20 first Fourier transform unit, 22 second Fourier transform unit, 24 evaluation value calculation unit.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A61B 8/00 - 8/15 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) A61B 8/00-8/15

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検体に対して超音波を送波する送波手
段と、 前記被検体を透過した超音波を受波する受波手段と、 受波信号を周波数分析して受波信号スペクトルを求める
周波数分析手段と、 求められた受波信号スペクトルにおけるピークの周期性
に基づいて被検体内の骨に関する評価値を演算する評価
値演算手段と、 を有することを特徴とする超音波骨評価装置。
1. A wave transmitting means for transmitting an ultrasonic wave to a subject, a wave receiving means for receiving an ultrasonic wave transmitted through the subject, and a received signal spectrum by frequency-analyzing the received signal. Ultrasonic bone evaluation, which comprises: a frequency analysis unit that calculates the evaluation value; and an evaluation value calculation unit that calculates an evaluation value of the bone in the subject based on the periodicity of peaks in the received signal spectrum that has been obtained. apparatus.
【請求項2】 請求項1に記載の超音波骨評価装置にお
いて、 前記周波数分析手段は、前記受波信号をフーリエ変換す
ることにより前記受波信号スペクトルを求め、 前記評価値演算手段は、前記受波信号スペクトルに更に
フーリエ変換を施し、この結果得られる二次スペクトル
に現れるピークの位置に基づいて前記評価値を求めるこ
とを特徴とする超音波骨評価装置。
2. The ultrasonic bone evaluation device according to claim 1, wherein the frequency analysis unit obtains the received signal spectrum by performing a Fourier transform on the received signal, and the evaluation value calculation unit includes the evaluation value calculation unit. An ultrasonic bone evaluation apparatus, characterized in that the received signal spectrum is further subjected to Fourier transform, and the evaluation value is obtained based on the position of the peak appearing in the secondary spectrum obtained as a result.
JP08563395A 1995-04-11 1995-04-11 Ultrasonic bone evaluation device Expired - Lifetime JP3472376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08563395A JP3472376B2 (en) 1995-04-11 1995-04-11 Ultrasonic bone evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08563395A JP3472376B2 (en) 1995-04-11 1995-04-11 Ultrasonic bone evaluation device

Publications (2)

Publication Number Publication Date
JPH08280672A JPH08280672A (en) 1996-10-29
JP3472376B2 true JP3472376B2 (en) 2003-12-02

Family

ID=13864245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08563395A Expired - Lifetime JP3472376B2 (en) 1995-04-11 1995-04-11 Ultrasonic bone evaluation device

Country Status (1)

Country Link
JP (1) JP3472376B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10624613B2 (en) * 2016-01-15 2020-04-21 Butterfly Network, Inc. Ultrasound signal processing circuitry and related apparatus and methods
US10605789B2 (en) * 2017-02-23 2020-03-31 Southern Research Institute Ultrasonic inspection system employing spectral and time domain processing of ultrasonic signal

Also Published As

Publication number Publication date
JPH08280672A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
US5143069A (en) Diagnostic method of monitoring skeletal defect by in vivo acoustic measurement of mechanical strength using correlation and spectral analysis
Droin et al. Velocity dispersion of acoustic waves in cancellous bone
JP3432204B2 (en) Ultrasound diagnostic equipment
EP0064399B1 (en) Ultrasonic measuring method
JP4338026B2 (en) Method and apparatus for non-invasive examination of bone
AU689570B2 (en) Method and device for estimating and characterising bone properties
US8419643B2 (en) Ultrasonic method and apparatus for assessment of bone
JP2883290B2 (en) Ultrasonic bone evaluation device
US7785259B2 (en) Detection of motion in vibro-acoustography
EP0123427A2 (en) Ultrasonic medium characterization
Gerig et al. Statistics of ultrasonic scatterer size estimation with a reference phantom
US20060253025A1 (en) Ultrasonic Bone Assessment Apparatus and Method
JP2596701B2 (en) Bone evaluation device
KR20180037351A (en) Apparatus and method for estimating bone structure using ultrasonic nonlinear parameter
US20080132775A1 (en) Ultrasound measurement techniques for bone analysis
JP3472376B2 (en) Ultrasonic bone evaluation device
KR101840349B1 (en) Apparatus and method for estimating bone mineral density using ultrasonic sum frequency component
US20110046517A1 (en) Method and system for monitoring skeletal defects
US5730135A (en) Ultrasonic bone diagnostic apparatus and method
KR20210059953A (en) Method for estimating bone mineral density and bone structure using ultrasonic attenuation coefficient and phase velocity
WO2021010836A1 (en) Method and system for using wave analysis for speed of sound measurement
JP3317988B2 (en) Ultrasound bone diagnostic equipment
KR20020082378A (en) A osteoporosis apparatus and method by ultrasound longitudinal transmission
KR102364309B1 (en) Method for estimating bone mineral density and bone structure using ultrasonic attenuation coefficient and backscatter coefficient
JPH0348789A (en) Cw doppler device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term