JPH0348789A - Cw doppler device - Google Patents

Cw doppler device

Info

Publication number
JPH0348789A
JPH0348789A JP1184202A JP18420289A JPH0348789A JP H0348789 A JPH0348789 A JP H0348789A JP 1184202 A JP1184202 A JP 1184202A JP 18420289 A JP18420289 A JP 18420289A JP H0348789 A JPH0348789 A JP H0348789A
Authority
JP
Japan
Prior art keywords
signal
oscillator
beat
output
wobbler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1184202A
Other languages
Japanese (ja)
Inventor
Yasuto Takeuchi
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP1184202A priority Critical patent/JPH0348789A/en
Publication of JPH0348789A publication Critical patent/JPH0348789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To reduce CW-like interference disturbance that the Doppler device receives as much as possible by providing a wobbler oscillator which generates a signal varying in voltage periodically at a constant variation rate. CONSTITUTION:The wobbler oscillator 1 generates a saw-tooth wave. An FM oscillator 2 is modulated with the output of the oscillator 1 to generate an FM wave-which increases linearly in frequency. The output is amplified 3 and sent from an ultrasonic probe 4. An echo signal reflected by a reflection body is received by the probe 4, amplifed 5, and inputted to a beat signal generator 6. The signal from the FM oscillator 2 is also inputted to the generator 6 to generate beats of the difference between the two signals. Then a band-pass filter(BPF) 7 removes an unnecessary high frequency signal and a low frequency signal from the beat signal. Then the output is amplified by a low frequency amplifier 8 and converted by an AD converter 9 into a digital signal, which is processed by the Fourier transform of an FFT 10. Consequently, the CW-like interference disturbance that the device receives can be reduced as much as possible.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は各種用途のCWドプラ装置に関し、特に外部か
らCWによる干渉妨害を目立たなくしたCWドプラ装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a CW Doppler apparatus for various uses, and more particularly to a CW Doppler apparatus in which interference caused by CW from the outside is made less noticeable.

(従来の技術) 医用超音波診断装置、車輌等の速度測定装置等では超音
波CW倍信号送信用のトランスデユーサから送信し、運
動物体からドプラ偏移を受けたエコーを受信して、血流
等の流れている方向や視線方向の速度等の情報を得てい
る。
(Prior art) Medical ultrasonic diagnostic equipment, speed measurement devices for vehicles, etc. transmit ultrasonic CW signals from a transducer and receive Doppler-shifted echoes from moving objects. Information such as the direction in which the stream is flowing and the speed in the line of sight direction is obtained.

(発明が解決しようとする課題) ところで、この場合の送信信号はCWであるため、受信
回路に入力されて受信を妨害しないように工夫されてい
るが、他のCW的な信号の干渉妨害を如何に受けないよ
うにするかという観点からは、従来、シールドを厳重に
するという以外には特別の対策が施されていない。この
妨害を完全に無くすために厳重なシールドを施すことは
成る程度以上になると実現は困難であった。特にテレメ
ータ等を伴う超小型装置や、個人の携帯を可能にするよ
うな安価な装置には実施が困難であった。
(Problem to be Solved by the Invention) By the way, since the transmitted signal in this case is CW, it is devised to prevent it from being input to the receiving circuit and interfering with reception. From the perspective of how to prevent damage, no special measures have been taken so far other than strict shielding. It has been difficult to implement a strict shield to completely eliminate this interference. In particular, it has been difficult to implement this method for ultra-small devices with telemeters, etc., and for inexpensive devices that can be carried by individuals.

又、従来の装置は音場を介して侵入する超音波的なCW
妨害には全く無力である。
In addition, conventional devices do not use ultrasonic CW that enters through the sound field.
It is completely powerless to interfere.

本発明は上記の点に鑑みてなされたもので、その目的は
、CWドプラ装置が受けるCW的な干渉妨害を極力少な
くすることのできるCWドプラ装置を実現することにあ
る。
The present invention has been made in view of the above points, and its purpose is to realize a CW Doppler device that can minimize CW interference received by the CW Doppler device.

(課題を解決するための手段) 前記の課題を解決するために、本発明においては、シス
テムのキャリヤ周波数をウオブリングさせる。このウオ
ブリングは、目的とする観測対象のドプラシフト成分の
観測、分析には殆ど無害であり、且つ、観測対象を含む
周辺の有感領域から帰投する固定反射(クラッタ)とシ
ステムのキャリヤとの成すビートが効果的にクラッタ除
去フィルタ(ドプラフィルタ)で除去できる範囲に収ま
る程度に実施される。このキャリヤウオブリングの目的
とするところは、一定周波数の(即ちCW的な)外部干
渉とキャリヤとの成すビートが周波数スペクトル上に分
散化された形で生じ、その結果、さもなければ生じた筈
の輝線スペクトル的干渉妨害をドプラ信号の周波数分析
結果において分散化された形で目立たなくすることにあ
る。
(Means for Solving the Problems) In order to solve the above problems, in the present invention, the carrier frequency of the system is wobbled. This wobbling is almost harmless to the observation and analysis of the Doppler shift component of the observation target, and is caused by the beat formed by the fixed reflections (clutter) returning from the surrounding sensitive area including the observation target and the carrier of the system. is carried out to the extent that it can be effectively removed by a clutter removal filter (Doppler filter). The purpose of this carrier wobbling is that the beats formed by constant frequency (i.e., CW) external interference and the carrier are dispersed over the frequency spectrum, so that the beats that would otherwise have occurred are The object of this invention is to make the emission line spectral interference inconspicuous in a dispersed form in the frequency analysis results of Doppler signals.

前記手法を実施するための本発明の最も好ましい実施形
式は、周期的に電圧が一定の変化率により変化する信号
を発生するウォブラ発振器と、該ウォブラ発振器の出力
信号により変調されたFM信号を出力するFM発振器と
、受信信号と、前記FM発振器の出力信号とからなる差
の周波数のビート信号を発生するビート信号発生器とを
具備することを特徴とするものである。
The most preferred embodiment of the present invention for carrying out the above method includes a wobbler oscillator that generates a signal whose voltage periodically changes at a constant rate of change, and an FM signal modulated by the output signal of the wobbler oscillator. The FM oscillator is characterized by comprising an FM oscillator that generates an FM oscillator, and a beat signal generator that generates a beat signal having a frequency difference between a received signal and an output signal of the FM oscillator.

(作用) システムのキャリヤがウオブリングされているので、外
部からのCW的な妨害はビート信号発生器においては最
早一定周波数にはならず、周波数分析結果においては分
散されて目立たなくなるので、実質上妨害とならなくな
る。
(Function) Since the carrier of the system is wobbling, external CW interference no longer becomes a constant frequency in the beat signal generator, and is dispersed and becomes unnoticeable in the frequency analysis results, so it is effectively an interference. It will no longer be.

(実施f!’1) 以下、図面を参照して本発明の実施例を詳細に説明する
(Embodiment f!'1) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は超音波を例とした本発明の一実施例の構成ブロ
ック図である。図において、1は例えば鋸歯状波のよう
な一定の変化率で電圧が変化するような信号を発生する
ウォブラ発振器、2はウォブラ発振器の電圧波形に比例
して周波数が変化するFM波を発振するFM発振器であ
る。FM発振器2の出力信号は送信増幅器3で電力増幅
されて、超音波探触子4の送信用発振子から超音波信号
に変換されて送波される。超音波探触子4は送信専用の
送信振動子と受信専用の受信振動子とで構成されている
。送信された信号は反射体A、B、C等から反射されて
超音波探触子4に戻り、受信用振動子において電気信号
に変換される。
FIG. 1 is a block diagram of an embodiment of the present invention using ultrasound as an example. In the figure, 1 is a wobbler oscillator that generates a signal whose voltage changes at a constant rate of change, such as a sawtooth wave, and 2 is an FM wave whose frequency changes in proportion to the voltage waveform of the wobbler oscillator. It is an FM oscillator. The output signal of the FM oscillator 2 is power-amplified by the transmission amplifier 3, converted into an ultrasound signal from the transmission oscillator of the ultrasound probe 4, and transmitted. The ultrasonic probe 4 is composed of a transmitting transducer exclusively used for transmission and a receiving transducer exclusively used for receiving. The transmitted signal is reflected from the reflectors A, B, C, etc., returns to the ultrasound probe 4, and is converted into an electrical signal by the receiving transducer.

5は超音波探触子4からの受信信号を増幅する受信増幅
器である。6は受信増幅器5からの受信信号とFM発振
器2からの信号を受けて両信号の差のビート信号を発生
するビート信号発生器(復調器)、7はビート信号の内
、不要な高域信号及び低域信号を除く帯域濾波器(以下
BPFという)である。以後、この出力は低周波増幅器
8で増幅され、AD変換器9でディジタル信号に変換さ
れ、FFTl0でフーリエ変換されて信号処理される。
5 is a reception amplifier that amplifies the reception signal from the ultrasound probe 4. 6 is a beat signal generator (demodulator) that receives the received signal from the receiving amplifier 5 and the signal from the FM oscillator 2 and generates a beat signal that is the difference between the two signals; 7 is an unnecessary high-frequency signal among the beat signals; and a bandpass filter (hereinafter referred to as BPF) that removes low-frequency signals. Thereafter, this output is amplified by a low frequency amplifier 8, converted to a digital signal by an AD converter 9, and subjected to Fourier transform and signal processing by FFT10.

この低周波増幅器8以後の回路は通常のドプラ装置と同
様である。
The circuit after this low frequency amplifier 8 is similar to a normal Doppler device.

次に、上記のように構成された実施例の動作を説明する
。ウォブラ発振器1は例えば鋸歯状波を発生する。この
周期はその装置の目的とする最遠距離の目標までの距離
を想定して定めである。周期をTとし、最遠距離の目標
までの距離をDとすれば、 周期T −2D / c     但しC:音速FM発
振器2はウォブラ発振器1の出力により変調されて直線
状に周波数が増加するFM波を発生する。この出力は送
信増幅器3で増幅され、超音波探触子4の送振振動子か
ら送波される。反射体から反射されたエコー信号は超音
波探触子4の受信振動子で受信され、受信増幅器5で増
幅され、ビート信号発生器6に入力される。ビート信号
発生器6にはFM発振器2からの信号も人力されていて
、2信号の差のビートを発生する。このビートは反射体
への距離により異なり、距離d、の反射体Cからのエコ
ー信号によるビートは、距離d2の反射体Bからのエコ
ー信号によるビートよりも周波数が高く、反射体Bから
のエコー信号によるビートは距離d、の反射体Aからの
エコー信号によるビートよりも周波数が高い。従って最
遠距離の目標C近辺の反射体により生ずるクラッタが計
測を目的とするドプラシフト成分と区別できればよい。
Next, the operation of the embodiment configured as described above will be explained. The wobbler oscillator 1 generates, for example, a sawtooth wave. This period is determined based on the assumption of the distance to the farthest target of the device. If the period is T and the distance to the farthest target is D, the period is T -2D/c where C: The sonic FM oscillator 2 is an FM whose frequency increases linearly by being modulated by the output of the wobbler oscillator 1. generate waves. This output is amplified by the transmission amplifier 3 and transmitted from the transmission transducer of the ultrasound probe 4. The echo signal reflected from the reflector is received by the receiving transducer of the ultrasonic probe 4, amplified by the receiving amplifier 5, and input to the beat signal generator 6. The beat signal generator 6 also receives the signal from the FM oscillator 2, and generates a beat that is the difference between the two signals. This beat varies depending on the distance to the reflector, and the beat due to the echo signal from reflector C at distance d has a higher frequency than the beat due to the echo signal from reflector B at distance d2. The beat due to the signal has a higher frequency than the beat due to the echo signal from reflector A at distance d. Therefore, it is only necessary that the clutter caused by the reflector near the target C at the farthest distance can be distinguished from the Doppler shift component that is the object of measurement.

これを数値を以て説明する。鋸歯状波の周波数上昇率を
0. 51(z/μSとする。最遠方のクラッタからの
帰投時間が300μs(音速1500m/sとして深度
22. 5 c m)であったとすると、FM信号はこ
の帰投時間の間に150Hz程の差を生じ、従ってクラ
ッタに対し150Hzのビートを生じさせる。しかし、
この周波数は、BPF7によりカットオフされる。一方
本来の目的観測対象である血流等からのドプラシフトを
有するエコーはこの周波数よりもずっと高いドプラシフ
トを有するので、1.50 Hzまでのクラッタを除去
するためのBPF7には妨げられずに通過する。このよ
うにして目的とするドプラシフトされたエコー信号は低
周波増幅器8に至り、そこで増幅され、AD変換器9で
ディジタル化されて、FF T 1.0でフーリエ変換
され、以後通常の信号処理をされる。
This will be explained using numerical values. Set the frequency increase rate of the sawtooth wave to 0. 51 (z/μS). If the return time from the farthest clutter is 300 μs (depth 22.5 cm assuming sound speed of 1500 m/s), the FM signal will have a difference of about 150 Hz during this return time. occurs, thus producing a 150 Hz beat for clutter. However,
This frequency is cut off by BPF7. On the other hand, echoes with a Doppler shift from blood flow, etc., which is the original target for observation, have a Doppler shift much higher than this frequency, so they pass unhindered by BPF7, which removes clutter up to 1.50 Hz. . In this way, the target Doppler-shifted echo signal reaches the low frequency amplifier 8, where it is amplified, digitized by the AD converter 9, Fourier transformed by FFT 1.0, and then subjected to normal signal processing. be done.

ところで、外部からCW干渉があった場合を考えると、
上記の鋸歯状波の上昇率が0.5Hz/μs即ち500
 K Hz / sであり、上記のCW干渉成分は総エ
ネルギーとしてはそのまま残るが、周波数的には分析デ
ータ収集時間幅として5〜10m5を単位とすると、そ
の時間内でウオブリング発振の結果、2.5KHz〜5
KHzの幅に亘って周波数軸上での分布が起こる。つま
り、もともとCWだった干渉信号がこのシステムのドプ
ラ信号又は分析用出力の段階ではチャー・ブされ、分散
化されてしまった形で表れる。従って、超音波周波数を
ウオブリングして変化させた場合、CW干渉波が入って
きても干渉波は観測ドプラシフト周波数軸上に集中せず
、エネルギー分散した形で生じ、散らされて目立たなく
なる。具体的にはノイズフロアが僅かに持ち上がったよ
うに見えるに留まり、診断や計測の邪魔にならなくなる
。これを第2図により説明する。(イ)は従来のドプラ
装置におけるCW妨害波のスペクトラム11を示す図、
(ロ)は実施例の装置における分散化されたCW妨害波
のスペクトラム12を示す図である。
By the way, considering the case where there is CW interference from the outside,
The rate of rise of the above sawtooth wave is 0.5Hz/μs or 500
KHz/s, and the above-mentioned CW interference component remains as it is as a total energy, but in terms of frequency, if the analysis data collection time width is set as a unit of 5 to 10 m5, as a result of wobbling oscillation within that time, 2. 5KHz~5
A distribution on the frequency axis occurs over a width of KHz. In other words, the interference signal, which was originally CW, is chirped and appears in a dispersed form at the stage of the Doppler signal or analysis output of this system. Therefore, when the ultrasonic frequency is changed by wobbling, even if a CW interference wave comes in, the interference wave is not concentrated on the observed Doppler shift frequency axis, but is generated in a dispersed form, and is scattered and becomes less noticeable. Specifically, the noise floor only appears to be raised slightly, and it no longer interferes with diagnosis and measurement. This will be explained with reference to FIG. (A) is a diagram showing the spectrum 11 of CW interference waves in a conventional Doppler device,
(b) is a diagram showing a spectrum 12 of dispersed CW interference waves in the device of the embodiment.

図において、13はドプラシフト信号である。CW妨害
波のスペクトラム11と分散化されたCW妨害波12の
総エネルギー量は等しいが、分散化されたCW妨害波1
2の振幅は小さく殆ど目立たなくなっていることを示し
ている。14は僅かに持ち上がったノイズフロアである
In the figure, 13 is a Doppler shift signal. The total energy amount of the CW interference wave spectrum 11 and the dispersed CW interference wave 12 is equal, but the dispersed CW interference wave 1
2 shows that the amplitude is small and almost unnoticeable. 14 is a slightly raised noise floor.

尚、本発明は上記の実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

ウォブラ発振器の波形は直線的に変化する鋸歯状波であ
って、これが最も容易で確実であるが、後段のFFTl
0で周期的にデータのフレームを切り取ってFFT処理
をするような作業をしているのなら、そのフレーム毎に
上昇FM(アップチャープ)と下降FM(ダウンチャー
ブ)を繰り返すのがよい。第3図にその場合の波形を示
す。図において示される波形は上昇FMと下降FMが交
互に繰り返す三角波形のウオブリングFM波形である。
The waveform of the wobbler oscillator is a linearly varying sawtooth wave, which is the easiest and most reliable method, but the waveform of the subsequent FFTl
If you are doing work such as periodically cutting out data frames and performing FFT processing on them, it is better to repeat rising FM (up chirp) and falling FM (down chirp) for each frame. FIG. 3 shows the waveform in that case. The waveform shown in the figure is a wobbling FM waveform of a triangular waveform in which rising FM and falling FM alternately repeat.

23はウオブリングFM波形21の上昇から下降へ、又
は、下降から上昇への変曲点、22はデータ分析区間で
ある。このように変曲点があるとドプラ信号を耳で聞く
場合に耳障りになるので、第4図に示すような正弦波で
変調したものにするのもよい。図において、22はデー
タ分析区間、25は正弦波によるウォルブリングFM波
形である。
23 is an inflection point from a rise to a fall or from a fall to a rise in the wobbling FM waveform 21, and 22 is a data analysis section. If there is such an inflection point, the Doppler signal will be unpleasant to listen to, so it may be better to modulate it with a sine wave as shown in FIG. 4. In the figure, 22 is a data analysis section, and 25 is a wolving FM waveform with a sine wave.

このような手法はCWドプラの場合だけでなく、パルス
ドプラにも適用可能である。
Such a method is applicable not only to CW Doppler but also to pulsed Doppler.

(発明の効果) 以上詳細に説明したように本発明によれば、簡単な方法
でCW的な干渉妨害を少なくし、無害化させることがで
きるようになり、実用上の効果は大きい。
(Effects of the Invention) As described in detail above, according to the present invention, CW interference can be reduced and rendered harmless by a simple method, and the practical effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図はCW
妨害による影響を示す図で、(イ)は従来の装置による
場合を示す図、(ロ)は本実施例による場合を示す図、 第3図は異なるウオブリング波形を用いた場合の図、 第4図は更に異なるウオブリング波形を用いた場合の図
である。 1・・・ウオブリング発振器 2・・・FM発振器 4・・・超音波探触子 6・・・ビート信号発生器 7・・・BPF
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a CW
Figures illustrating the effects of interference, (a) is a diagram showing the case using the conventional device, (b) is a diagram showing the case according to this embodiment, Fig. 3 is a diagram showing the case when different wobbling waveforms are used, and Fig. 4 The figure shows a case where a different wobbling waveform is used. 1... Wobbling oscillator 2... FM oscillator 4... Ultrasonic probe 6... Beat signal generator 7... BPF

Claims (1)

【特許請求の範囲】 周期的に電圧が一定の変化率により変化する信号を発生
するウォブラ発振器(1)と、 該ウォブラ発振器(1)の出力信号により変調されたF
M信号を出力するFM発振器(2)と、受信信号と、前
記FM発振器(2)の出力信号とからなる差の周波数の
ビート信号を発生するビート信号発生器(6)とを具備
することを特徴とするCWドプラ装置。
[Claims] A wobbler oscillator (1) that generates a signal whose voltage periodically changes at a constant rate of change, and an F modulated by the output signal of the wobbler oscillator (1).
The FM oscillator (2) outputs an M signal, and the beat signal generator (6) generates a beat signal having a frequency difference between the received signal and the output signal of the FM oscillator (2). Characteristics of CW Doppler equipment.
JP1184202A 1989-07-17 1989-07-17 Cw doppler device Pending JPH0348789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184202A JPH0348789A (en) 1989-07-17 1989-07-17 Cw doppler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184202A JPH0348789A (en) 1989-07-17 1989-07-17 Cw doppler device

Publications (1)

Publication Number Publication Date
JPH0348789A true JPH0348789A (en) 1991-03-01

Family

ID=16149145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184202A Pending JPH0348789A (en) 1989-07-17 1989-07-17 Cw doppler device

Country Status (1)

Country Link
JP (1) JPH0348789A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253949A (en) * 2003-10-10 2005-09-22 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2006061693A (en) * 2004-08-27 2006-03-09 General Electric Co <Ge> Method for practicing continuous wave doppler ultrasonic wave using two-dimensional matrix array and its device
WO2006043603A1 (en) * 2004-10-20 2006-04-27 Kabushiki Kaisha Toshiba Ultrasonic doppler diagnosis device
JP2006142006A (en) * 2004-10-20 2006-06-08 Toshiba Corp Ultrasonic doppler diagnosis device
CN103070701A (en) * 2012-12-28 2013-05-01 深圳先进技术研究院 Ultrasonic modulation imaging system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253949A (en) * 2003-10-10 2005-09-22 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2006061693A (en) * 2004-08-27 2006-03-09 General Electric Co <Ge> Method for practicing continuous wave doppler ultrasonic wave using two-dimensional matrix array and its device
WO2006043603A1 (en) * 2004-10-20 2006-04-27 Kabushiki Kaisha Toshiba Ultrasonic doppler diagnosis device
JP2006142006A (en) * 2004-10-20 2006-06-08 Toshiba Corp Ultrasonic doppler diagnosis device
US8372010B2 (en) 2004-10-20 2013-02-12 Kabushiki Kaisha Toshiba Ultrasonic doppler diagnosis device
CN103070701A (en) * 2012-12-28 2013-05-01 深圳先进技术研究院 Ultrasonic modulation imaging system and method

Similar Documents

Publication Publication Date Title
US6213951B1 (en) Medical diagnostic ultrasound method and system for contrast specific frequency imaging
JPH06506055A (en) Utilizing Doppler modulation parameters for amplitude estimation
EP0123427A2 (en) Ultrasonic medium characterization
EP0321717B1 (en) Ultrasonic speckle velocity measurement method and apparatus
JP3093823B2 (en) Ultrasound Doppler diagnostic device
EP0885593A3 (en) Ultrasonic diagnosing apparatus
JPH11125688A (en) Reactor vibration monitor
Wilhjelm et al. Target velocity estimation with FM and PW echo ranging Doppler systems I. Signal analysis
JPH0226971B2 (en)
CN104111450B (en) A kind of method and system utilizing dipulse detection target micro-Doppler feature
JPH0348789A (en) Cw doppler device
Li et al. Decorrelation of intravascular echo signals: Potentials for blood velocity estimation
JPH04215744A (en) Speed measuring apparatus
RU2159942C1 (en) Procedure detecting location of living objects and microwave locator for realization of procedure
JP5260897B2 (en) Ultrasonic diagnostic equipment
Wilhjelm et al. Coherent FM Doppler system (US blood flow measurement)
JP3472376B2 (en) Ultrasonic bone evaluation device
RU2496410C1 (en) Device for distance registration of processes of patient&#39;s heart beats and respiration
JPS60222040A (en) Continuous ultrasonic doppler apparatus
JPS6329263Y2 (en)
JPS63315037A (en) Ultrasonic continuous wave doppler diagnostic apparatus
JPH0395477A (en) Ultrasonic detector
JPH03198839A (en) Ultrasonic diagnosing apparatus
JPH02246949A (en) Ultrasonic doppler blood flow meter
JPH01236041A (en) Method and device for measuring ultrasonic speckle speed