JPH11125688A - Reactor vibration monitor - Google Patents

Reactor vibration monitor

Info

Publication number
JPH11125688A
JPH11125688A JP9291241A JP29124197A JPH11125688A JP H11125688 A JPH11125688 A JP H11125688A JP 9291241 A JP9291241 A JP 9291241A JP 29124197 A JP29124197 A JP 29124197A JP H11125688 A JPH11125688 A JP H11125688A
Authority
JP
Japan
Prior art keywords
ultrasonic
reactor
pulse signal
vibration
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9291241A
Other languages
Japanese (ja)
Other versions
JP3782559B2 (en
Inventor
Satoru Hashimoto
哲 橋本
Michio Sato
道雄 佐藤
Masatake Sakuma
正剛 佐久間
Shigeru Kanemoto
茂 兼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP29124197A priority Critical patent/JP3782559B2/en
Publication of JPH11125688A publication Critical patent/JPH11125688A/en
Application granted granted Critical
Publication of JP3782559B2 publication Critical patent/JP3782559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To directly measure the vibration of core structure from outside the pressure vessel, by introducing ultrasonic pulse signal into the reactor through the reactor pressure vessel, and receiving and processing the reflection signal from the core structure. SOLUTION: A reactor vibration monitor is constituted of an ultrasonic transducer 1 and the like placed on the outer surface of a reactor pressure vessel 2. The transducer 1 capable of both transmission and reception is connected to an ultrasonic signal processor consisting of an ultrasonic transmitter 6, an ultrasonic receiver 7, a signal processor 8, etc. When electric pulse signal 10 is added from the transmitter 6, ultrasonic pulse signal 1 is generated in the pressure vessel 2, which transmits in core water 12, reflects on the core structure 14 and returns to the transducer 1 as an ultrasonic pulse signal 15, and is converted to electric pulse signal. This signal is processed in a signal processor 8 and the like, and vibration information such as vibration amplitude and waveform 16 is indicated. By using pulse signal of radio frequency, Doppler shift can be utilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉などの圧力
容器内の構造物の振動を測定する原子炉振動監視装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor vibration monitoring device for measuring the vibration of a structure in a pressure vessel such as a nuclear reactor.

【0002】[0002]

【従来の技術】一般に、原子炉における炉内構造物の振
動を測定するには、測定対象となる機器、例えばジェッ
トポンプ,ジェットポンプ計装配管などに加速度計を取
り付けて直接振動を計測したり、炉外に加速度計を取り
付けて、その加速度計の出力信号に基づいて炉内の振動
振幅や振動周波数の推定を行っている。
2. Description of the Related Art In general, in order to measure the vibration of a reactor internal structure in a nuclear reactor, an accelerometer is attached to a device to be measured, such as a jet pump or a jet pump instrumentation pipe, and the vibration is directly measured. In addition, an accelerometer is attached outside the furnace, and a vibration amplitude and a vibration frequency in the furnace are estimated based on an output signal of the accelerometer.

【0003】また、従来では、炉内に設置された中性子
束検出器の出力信号の揺らぎから間接的に炉内構造物の
振動を推定する方法が採用されている。
[0003] Conventionally, a method of indirectly estimating the vibration of the furnace internal structure from the fluctuation of the output signal of the neutron flux detector installed in the furnace has been adopted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来の技術において、加速度計により直接振動を計測
する場合には、測定対象となる機器、例えばジェットポ
ンプ,ジェットポンプ計装配管に直接加速度計を取り付
ける必要があり、測定箇所が多い場合には、加速度計の
数が多くなるばかりでなく、加速度計の出力信号を伝送
するケーブルの本数も多くなり、コスト高になるという
課題、また原子炉から信号を取り出すための信号ぺネト
レーション(信号取出口)でのケーブルの本数が増加す
るという課題があった。
However, in the above-mentioned prior art, when the vibration is directly measured by the accelerometer, the accelerometer is directly mounted on a device to be measured, for example, a jet pump or a jet pump instrumentation pipe. If it is necessary to attach the sensor and there are many measurement points, not only the number of accelerometers will increase, but also the number of cables that transmit the output signals of the accelerometer will increase, which will increase the cost. There is a problem that the number of cables at a signal penetration (signal outlet) for extracting a signal increases.

【0005】また、加速度計や中性子束検出器の出力信
号に基づいて炉外から振動を推定する方法は、間接的な
計測であるため、測定精度が低いという課題があった。
Further, the method of estimating the vibration from outside the furnace based on the output signals of the accelerometer and the neutron flux detector has a problem that the measurement accuracy is low because it is an indirect measurement.

【0006】本発明は上述した事情を考慮してなされた
もので、原子炉圧力容器の外側に超音波トランスジュー
サを設置して、加速度計およびケーブルの数量の削減を
図るとともに、炉内構造物の振動を直接計測可能な原子
炉振動監視装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an ultrasonic transducer is installed outside a reactor pressure vessel to reduce the number of accelerometers and cables and to reduce the number of reactor internal structures. An object of the present invention is to provide a reactor vibration monitoring device capable of directly measuring vibration.

【0007】[0007]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の請求項1は、原子炉圧力容器の外面に
設置され超音波パルス信号の送受信が兼用可能な超音波
トランスジューサと、この超音波トランスジューサと電
気的に接続され前記超音波パルス信号を発生させる超音
波送信器と、前記超音波トランスジューサと電気的に接
続され前記超音波パルス信号を受信する超音波受信器
と、前記超音波トランスジューサからの超音波パルス信
号を前記原子炉圧力容器を通して原子炉内に入射させる
一方、この原子炉内の炉内構造物で反射した超音波パル
ス信号が再び前記原子炉圧力容器を通して前記超音波ト
ランスジューサを経て前記超音波受信器に受信される超
音波パルス信号を処理する信号処理装置と、この信号処
理装置により処理された前記炉内構造物の振動情報を表
示する表示装置とを備えたことを特徴とする。
According to the present invention, there is provided an ultrasonic transducer installed on the outer surface of a reactor pressure vessel and capable of transmitting and receiving ultrasonic pulse signals. An ultrasonic transmitter that is electrically connected to the ultrasonic transducer and generates the ultrasonic pulse signal; an ultrasonic receiver that is electrically connected to the ultrasonic transducer and receives the ultrasonic pulse signal; The ultrasonic pulse signal from the ultrasonic transducer is made incident on the reactor through the reactor pressure vessel, and the ultrasonic pulse signal reflected by the internal structure of the reactor is again transmitted through the reactor pressure vessel. A signal processing device for processing an ultrasonic pulse signal received by the ultrasonic receiver via a transducer; and a signal processing device for processing the ultrasonic pulse signal. And characterized by comprising a display device for displaying the vibration information of the furnace structure.

【0008】請求項2は、請求項1記載の原子炉振動監
視装置において、超音波パルス信号が無線周波数パルス
信号であることを特徴とする。
A second aspect of the present invention is the reactor vibration monitoring apparatus according to the first aspect, wherein the ultrasonic pulse signal is a radio frequency pulse signal.

【0009】請求項3は、請求項1記載の原子炉振動監
視装置において、超音波トランスジューサが1次元に複
数個配列され、信号処理装置は、これらの超音波トラン
スジューサの超音波の送信のタイミングを変化させると
ともに、受信される超音波パルス信号を時間的に遅延さ
せて加算して反射される超音波パルス信号を測定するこ
とを特徴とする。
According to a third aspect of the present invention, in the reactor vibration monitoring apparatus according to the first aspect, a plurality of ultrasonic transducers are arranged one-dimensionally, and the signal processing device determines the transmission timing of the ultrasonic waves from these ultrasonic transducers. The method is characterized in that the ultrasonic pulse signal is reflected and the reflected ultrasonic pulse signal is measured by adding the received ultrasonic pulse signal while delaying the ultrasonic pulse signal in time.

【0010】請求項4は、請求項1記載の原子炉振動監
視装置において、超音波トランスジューサが原子炉圧力
容器の外面に沿って移動可能に構成されたことを特徴と
する。
A fourth aspect of the present invention is the reactor vibration monitoring device according to the first aspect, wherein the ultrasonic transducer is configured to be movable along the outer surface of the reactor pressure vessel.

【0011】請求項5は、請求項1ないし4のいずれか
に記載の原子炉振動監視装置において、信号処理装置が
測定した信号の周波数分析を行って炉内構造物の固有振
動周波数を算出し、表示装置は前記固有振動周波数の変
化を表示することを特徴とする。
According to a fifth aspect of the present invention, in the reactor vibration monitoring device according to any one of the first to fourth aspects, a frequency analysis of a signal measured by the signal processing device is performed to calculate a natural vibration frequency of the reactor internal structure. The display device displays the change of the natural vibration frequency.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明に係る原子炉振動監視装置の
第1実施形態を示す構成図である。図1に示すように、
本実施形態の超音波トランスジューサ1は、原子炉圧力
容器2の外周面に設置されているとともに、超音波パル
スの送受信が兼用可能である。また、超音波トランスジ
ューサ1は、ケーブル3によって原子炉格納容器4の信
号取出口4aを経て原子炉格納容器4外(または原子炉
格納容器4内)に設置された超音波信号処理装置5に電
気的に接続されている。
FIG. 1 is a configuration diagram showing a first embodiment of a reactor vibration monitoring device according to the present invention. As shown in FIG.
The ultrasonic transducer 1 of the present embodiment is installed on the outer peripheral surface of the reactor pressure vessel 2 and can also transmit and receive ultrasonic pulses. Further, the ultrasonic transducer 1 is electrically connected to the ultrasonic signal processing device 5 installed outside the reactor containment vessel 4 (or inside the reactor containment vessel 4) via the signal outlet 4a of the reactor containment vessel 4 by the cable 3. Connected.

【0014】この超音波信号処理装置5は、超音波パル
ス信号を発生させるための超音波送信器6と、反射した
超音波パルス信号を受信する超音波受信器7と、この超
音波受信器7で受信した超音波パルス信号を処理する信
号処理装置8とから構成されている。そして、超音波信
号処理装置5は、表示装置9と電気的に接続され、この
表示装置9は超音波トランスジューサ1および超音波信
号処理装置5によって計測された振動波形や振動のスペ
クトルなどを表示する。
The ultrasonic signal processing device 5 includes an ultrasonic transmitter 6 for generating an ultrasonic pulse signal, an ultrasonic receiver 7 for receiving a reflected ultrasonic pulse signal, and an ultrasonic receiver 7 for receiving the reflected ultrasonic pulse signal. And a signal processing device 8 for processing the ultrasonic pulse signal received at the step S1. The ultrasonic signal processing device 5 is electrically connected to the display device 9, and the display device 9 displays a vibration waveform, a vibration spectrum, and the like measured by the ultrasonic transducer 1 and the ultrasonic signal processing device 5. .

【0015】次に、本実施形態の作用を図2〜図5に基
づいて説明する。
Next, the operation of the present embodiment will be described with reference to FIGS.

【0016】図2に示すように、本実施形態の超音波ト
ランスジューサ1に超音波送信器6から電気パルス信号
(DCパルス信号)10を加えると、超音波トランスジ
ューサ1内で電気パルス信号10が超音波信号に変換さ
れ、原子炉圧力容器2内に超音波パルス信号11が発生
する。
As shown in FIG. 2, when an electric pulse signal (DC pulse signal) 10 is applied from the ultrasonic transmitter 6 to the ultrasonic transducer 1 of the present embodiment, the electric pulse signal 10 is superposed in the ultrasonic transducer 1. The ultrasonic pulse signal 11 is generated in the reactor pressure vessel 2 after being converted into an acoustic wave signal.

【0017】この超音波パルス信号11は、原子炉圧力
容器2内を伝搬し、炉水12中に放射される。この炉水
12中を伝搬した超音波パルス信号13は、例えばジェ
ットポンプ,ジェットポンプ計装配管などの原子炉の炉
内構造物14に当たって反射し、再び炉水12,原子炉
圧力容器2内を伝搬して超音波トランスジューサ1に戻
ってくる。
The ultrasonic pulse signal 11 propagates in the reactor pressure vessel 2 and is radiated into the reactor water 12. The ultrasonic pulse signal 13 propagated in the reactor water 12 strikes a reactor internal structure 14 such as a jet pump or a jet pump instrumentation pipe, and is reflected therefrom. The ultrasonic pulse signal 13 passes through the reactor water 12 and the reactor pressure vessel 2 again. The light propagates and returns to the ultrasonic transducer 1.

【0018】この戻ってきた超音波パルス信号15は、
超音波トランスジューサ1内で電気パルス信号に変換さ
れた後、超音波受信器7で信号の増幅およびフィルタリ
ングなどの信号処理が行われる。
The returned ultrasonic pulse signal 15 is
After being converted into an electric pulse signal in the ultrasonic transducer 1, the ultrasonic receiver 7 performs signal processing such as signal amplification and filtering.

【0019】さらに、超音波受信器7の信号は、例えば
マイクロコンピュータや周波数復調器(FΜ復調器、F
Μ:Frequency Modulation)で構成される信号処理装置
8で、ディジタル信号に変換され、その信号処理によっ
て振動情報が得られる。
Further, the signal from the ultrasonic receiver 7 is output to, for example, a microcomputer or a frequency demodulator (FΜ demodulator, F
Μ: Frequency Modulation), the signal processing device 8 converts the signal into a digital signal, and the signal processing provides vibration information.

【0020】そして、信号処理装置8により処理された
炉内構造物14の振動情報が表示装置9に表示される。
すなわち、表示装置9では、このときの振動振幅波形1
6,振動の周波数応答や振動振幅、振動位相の変化傾向
(トレンド)が表示される。
Then, the vibration information of the in-furnace structure 14 processed by the signal processing device 8 is displayed on the display device 9.
That is, in the display device 9, the vibration amplitude waveform 1
6. Changes in the frequency response, vibration amplitude, and vibration phase of the vibration (trend) are displayed.

【0021】次に、図3に基づいて超音波パルス信号に
より振動を測定する方法を説明する。図3に示すよう
に、使用する超音波パルス信号11は、DCパルス信号
10である。超音波トランスジューサ1から超音波パル
ス信号11が原子炉圧力容器2を経由して炉水12中に
放射される。この放射された超音波パルス信号13は、
炉内構造物14に当たって反射する。
Next, a method of measuring vibration by an ultrasonic pulse signal will be described with reference to FIG. As shown in FIG. 3, the ultrasonic pulse signal 11 to be used is the DC pulse signal 10. An ultrasonic pulse signal 11 is emitted from the ultrasonic transducer 1 into the reactor water 12 via the reactor pressure vessel 2. The emitted ultrasonic pulse signal 13 is
The light impinges on the internal structure 14 and is reflected.

【0022】この反射して戻ってきた超音波パルス信号
15は、再び原子炉圧力容器2内を伝搬して超音波トラ
ンスジューサ1で検出される。この場合、図4に示すよ
うに、送信される超音波パルス信号11と受信される超
音波パルス信号15は、伝搬距離に応じて分離される。
次に、炉内構造物14が振動している場合、受信された
超音波パルス信号15の検出される時間は、炉内構造物
14の振動振幅に比例して変動する。振動していないと
きの伝搬時間をT(秒)とすると、この伝搬時間Tは、
次のように表される。すなわち、
The reflected ultrasonic pulse signal 15 propagates again in the reactor pressure vessel 2 and is detected by the ultrasonic transducer 1. In this case, as shown in FIG. 4, the transmitted ultrasonic pulse signal 11 and the received ultrasonic pulse signal 15 are separated according to the propagation distance.
Next, when the in-furnace structure 14 is vibrating, the time at which the received ultrasonic pulse signal 15 is detected fluctuates in proportion to the vibration amplitude of the in-furnace structure 14. Assuming that the propagation time when there is no vibration is T (second), this propagation time T is
It is expressed as follows. That is,

【数1】T=2×(D/V1 +L/V2 ) …(1) ここで、V1 は原子炉圧力容器2の超音波の音速度、V
2 は炉水12の超音波の音速度、Dは原子炉圧力容器2
の板厚、Lは原子炉圧力容器2と炉内構造物14との間
の距離である。
T = 2 × (D / V 1 + L / V 2 ) (1) where V 1 is the sound speed of the ultrasonic wave of the reactor pressure vessel 2,
2 is the sound speed of the ultrasonic wave of the reactor water 12, D is the reactor pressure vessel 2.
, L is the distance between the reactor pressure vessel 2 and the reactor internals 14.

【0023】そして、炉内構造物14が振動して、振動
振幅がΔLの場合、Lは(L+ΔL)になるので、超音
波の伝搬時間Tの変化分をΔtとすると、
When the furnace internal structure 14 vibrates and the vibration amplitude is ΔL, L becomes (L + ΔL). Therefore, if the change of the ultrasonic wave propagation time T is Δt,

【数2】 (Equation 2)

【数3】ΔL=−2×V2 ×Δt …(3) のように求まることになる。したがって、信号処理装置
8で伝搬時間の変化分Δtを測定すれば、振動振幅ΔL
を測定することができる。
ΔL = −2 × V 2 × Δt (3) Therefore, if the signal processor 8 measures the change Δt in the propagation time, the vibration amplitude ΔL
Can be measured.

【0024】また、超音波パルス信号を発生させる時間
間隔をTs(秒)とすると、その時間間隔Ts(秒)毎
に離散的に振動振幅を測定することができるので、測定
結果は図5に示したような離散的な信号が得られる。サ
ンプリング定理を使用すれば、周波数f(Hz)の振動
信号を再生するためには、超音波パルス信号を発生させ
る時間間隔Ts(秒)が(4)式のようになる。すなわ
ち、
If the time interval for generating the ultrasonic pulse signal is Ts (seconds), the vibration amplitude can be measured discretely at each time interval Ts (seconds). A discrete signal as shown is obtained. If the sampling theorem is used, the time interval Ts (second) at which the ultrasonic pulse signal is generated in order to reproduce the vibration signal of the frequency f (Hz) is as shown in the following equation (4). That is,

【数4】f=1/(2×Ts) …(4) 例えば、100Ηzの振動振幅を再生するためには、2
00Hz(Ts=50msec )間隔で超音波を発生させ
ればよいことになる。
F = 1 / (2 × Ts) (4) For example, to reproduce a vibration amplitude of 100 ° z, 2
Ultrasonic waves need only be generated at intervals of 00 Hz (Ts = 50 msec).

【0025】このように本実施形態によれば、超音波ト
ランスジューサ1が原子炉圧力容器2の外周面に設置さ
れたことにより、従来のように炉内構造物14に直接加
速度計を設置する必要がなくなる。そのため、原子炉圧
力容器2から信号を取り出すためのケーブルや信号取出
口が不要となる。その結果、ケーブル数を削減すること
が可能となり、安価な監視装置を提供することができ
る。
As described above, according to the present embodiment, since the ultrasonic transducer 1 is installed on the outer peripheral surface of the reactor pressure vessel 2, it is necessary to install an accelerometer directly on the reactor internal structure 14 as in the related art. Disappears. Therefore, a cable and a signal outlet for extracting a signal from the reactor pressure vessel 2 are not required. As a result, the number of cables can be reduced, and an inexpensive monitoring device can be provided.

【0026】図6は本発明に係る原子炉振動監視装置の
第2実施形態を示す構成図、図7(A),(B)は第2
実施形態において送信RFパルスと受信RFパルスの時
間関係および周波数関係を示すタイミングチャートであ
る。なお、前記第1実施形態と同一の部分には同一の符
号を付して説明する。以下の各実施形態も同様である。
FIG. 6 is a block diagram showing a second embodiment of the reactor vibration monitoring apparatus according to the present invention, and FIGS. 7A and 7B show the second embodiment.
5 is a timing chart showing a time relationship and a frequency relationship between a transmission RF pulse and a reception RF pulse in the embodiment. The same parts as those in the first embodiment will be described with the same reference numerals. The same applies to the following embodiments.

【0027】第2実施形態では、超音波送信器6から発
生する超音波パルス信号として、図6および図7(A)
に示すようなRF(無線周波数)パルス信号17が使用
される。すなわち、超音波トランスジューサ1に図7
(A)に示すRFパルス信号17を加えると、その結果
として発生する超音波パルス信号もRFパルス信号とな
る。この時のRFパルス信号の搬送波(キャリア)の周
波数をf(Hz)とする。このRFパルス信号17が炉
水12中を伝搬し、炉内構造物14に当たって反射して
くると、再び超音波トランスジューサ1で受信される。
In the second embodiment, as an ultrasonic pulse signal generated from the ultrasonic transmitter 6, FIGS.
An RF (radio frequency) pulse signal 17 as shown in FIG. That is, the ultrasonic transducer 1 shown in FIG.
When the RF pulse signal 17 shown in (A) is added, the resulting ultrasonic pulse signal also becomes an RF pulse signal. The frequency of the carrier of the RF pulse signal at this time is f (Hz). When this RF pulse signal 17 propagates in the reactor water 12 and hits the internal structure 14 of the furnace, and is reflected, it is received by the ultrasonic transducer 1 again.

【0028】この受信されたRFパルス信号18は、図
4に示すように送信される超音波パルス信号11および
受信される超音波パルス信号15と同様に、伝搬時間T
または(T+Δt)の時間間隔で観測される。炉内構造
物14の振動によって、反射するRFパルス信号18は
ドップラシフトを起こすため、反射するRFパルス信号
18の周波数は変化している。この場合の周波数変化量
をΔfとすると、周波数変化量Δfは、(5)式で計算
される。
The received RF pulse signal 18 has a propagation time T like the transmitted ultrasonic pulse signal 11 and the received ultrasonic pulse signal 15 as shown in FIG.
Or it is observed at a time interval of (T + Δt). Since the reflected RF pulse signal 18 causes a Doppler shift due to the vibration of the in-furnace structure 14, the frequency of the reflected RF pulse signal 18 changes. Assuming that the amount of frequency change in this case is Δf, the amount of frequency change Δf is calculated by equation (5).

【0029】[0029]

【数5】Δf=2×v×f/V2 …(5) ここで、v(m/sec )は、炉内構造物14の振動速度
である。周波数変化量Δfの測定方法は、例えば、信号
処理装置8内において、周波数復調回路を使用して測定
される。
Δf = 2 × v × f / V 2 (5) where v (m / sec) is the vibration speed of the furnace internal structure 14. The method of measuring the frequency change Δf is measured, for example, in the signal processing device 8 using a frequency demodulation circuit.

【0030】(5)式において、周波数変化量Δfを測
定すれば、振動速度v(m/sec )を逆算することがで
きる。この場合も振動速度は離散的に測定されるので、
図5に示した方法と同様に、測定値を信号処理装置8に
取り込み、サンプリング定理を利用して振動速度波形を
合成する。
In the equation (5), if the frequency change Δf is measured, the vibration velocity v (m / sec) can be calculated backward. Also in this case, the vibration velocity is measured discretely,
Similar to the method shown in FIG. 5, the measured value is taken into the signal processing device 8, and the vibration velocity waveform is synthesized using the sampling theorem.

【0031】このデータを利用することにより、振動振
幅波形16や振動の加速度波形に変換され、これらが表
示装置9に表示される。
By utilizing this data, it is converted into a vibration amplitude waveform 16 and a vibration acceleration waveform, which are displayed on the display device 9.

【0032】このように本実施形態によれば、前記第1
実施形態で用いたDCパルス信号の代わりに、RFパル
ス信号16を使用したことにより、炉内構造物14の振
動に伴って発生する超音波パルス信号のドップラシフト
を検出することができ、振動振幅および振動速度を同時
に測定することができ、測定精度を向上することができ
る。
As described above, according to the present embodiment, the first
By using the RF pulse signal 16 instead of the DC pulse signal used in the embodiment, it is possible to detect the Doppler shift of the ultrasonic pulse signal generated with the vibration of the in-furnace structure 14, and to detect the vibration amplitude. And the vibration speed can be measured at the same time, and the measurement accuracy can be improved.

【0033】図8は本発明に係る原子炉振動監視装置の
第3実施形態を示す構成図である。この第3実施形態で
は、図8に示すように複数個の超音波トランスジューサ
1a,1b,1c,1d,1e,…1nを原子炉圧力容
器2の外周面に対して1次元に配列し、信号処理装置8
によりこれらの超音波トランスジューサ1a,1b,1
c,1d,1e,…1nの超音波パルス信号13a,1
3b,13c,13d,13e,…13nの送信タイミ
ングを変化させるとともに、受信される超音波パルス信
号15a,15b,15c,15d,15e,…15n
を時間的に遅延させて加算して超音波反射パルスを測定
する。
FIG. 8 is a block diagram showing a third embodiment of the reactor vibration monitoring apparatus according to the present invention. In the third embodiment, a plurality of ultrasonic transducers 1a, 1b, 1c, 1d, 1e,... 1n are one-dimensionally arranged on the outer peripheral surface of the reactor pressure vessel 2 as shown in FIG. Processing unit 8
, These ultrasonic transducers 1a, 1b, 1
The ultrasonic pulse signals 13a, 13 of c, 1d, 1e,.
.. 13n while changing the transmission timing of the ultrasonic pulse signals 15a, 15b, 15c, 15d, 15e,.
Are delayed in time and added to measure the ultrasonic reflected pulse.

【0034】したがって、第3実施形態では、超音波ト
ランスジューサ1a,1b,1c,1d,1e,…1n
を設置した各点での振動振幅または振動速度が測定する
ことができるので、振動分布を測定することができる。
この振動分布を信号処理装置8で処理して表示装置9に
表示することにより、監視員に分かり易い情報を提供す
ることができる。
Therefore, in the third embodiment, the ultrasonic transducers 1a, 1b, 1c, 1d, 1e,.
Since the vibration amplitude or the vibration speed at each point where is installed can be measured, the vibration distribution can be measured.
By processing this vibration distribution by the signal processing device 8 and displaying it on the display device 9, it is possible to provide easy-to-understand information to the observer.

【0035】このように第3実施形態によれば、複数個
の超音波トランスジューサ1a,1b,1c,1d,1
e,…1nの送信のタイミングを制御し、炉内に入射す
る超音波の伝搬方向を高速で制御することができるよう
になるので、測定対象物を高精度に選定することができ
るばかりでなく、炉内構造物14の振動分布の位相も測
定可能となり、測定精度を向上させることができる。
As described above, according to the third embodiment, a plurality of ultrasonic transducers 1a, 1b, 1c, 1d, 1
e,... 1n, so that the transmission direction of the ultrasonic wave incident into the furnace can be controlled at a high speed, so that not only can the measurement target be selected with high accuracy. Also, the phase of the vibration distribution of the furnace internal structure 14 can be measured, and the measurement accuracy can be improved.

【0036】また、受信される超音波パルス信号15
a,15b,15c,15d,15e,…15nを時間
的に遅延させて加算するので、白色雑音は打ち消されて
減少し、信号は加算され大きくなるので、超音波信号の
SN比も向上し、測定精度を向上させることができる。
The received ultrasonic pulse signal 15
a, 15b, 15c, 15d, 15e,... 15n are added with a time delay, the white noise is reduced by cancellation, and the signal is added and increased, so that the S / N ratio of the ultrasonic signal is also improved. Measurement accuracy can be improved.

【0037】図9は本発明に係る原子炉振動監視装置の
第4実施形態を示す構成図である。この第4実施形態で
は、図9に示すように超音波トランスジューサ1が原子
炉圧力容器2の外周面に沿って移動可能に構成されてい
る。この超音波トランスジューサ1を移動させるには、
例えば原子炉圧力容器2の外周面にレールなどを敷設
し、このレールに沿って超音波トランスジューサ1を電
動または手動により移動させる。
FIG. 9 is a block diagram showing a fourth embodiment of the reactor vibration monitoring apparatus according to the present invention. In the fourth embodiment, as shown in FIG. 9, the ultrasonic transducer 1 is configured to be movable along the outer peripheral surface of the reactor pressure vessel 2. To move the ultrasonic transducer 1,
For example, a rail or the like is laid on the outer peripheral surface of the reactor pressure vessel 2, and the ultrasonic transducer 1 is electrically or manually moved along the rail.

【0038】このように第4実施形態によれば、超音波
トランスジューサ1を原子炉圧力容器2の外周面に沿っ
て移動可能に構成したことにより、超音波トランスジュ
ーサ1の移動した各点での振動振幅または振動速度を測
定することができるので、測定対象物を高精度に選定で
きるばかりでなく、炉内構造物14の振動分布を測定す
ることができる。この振動分布を信号処理装置8により
処理して表示装置9で表示することによって、監視員に
分かりやすい情報を提供することができる。
As described above, according to the fourth embodiment, since the ultrasonic transducer 1 is configured to be movable along the outer peripheral surface of the reactor pressure vessel 2, vibration at each point where the ultrasonic transducer 1 moves is described. Since the amplitude or the vibration speed can be measured, not only can the measurement target be selected with high accuracy, but also the vibration distribution of the furnace internal structure 14 can be measured. By processing this vibration distribution by the signal processing device 8 and displaying it on the display device 9, it is possible to provide easy-to-understand information to the observer.

【0039】図10(A),(B)は本発明に係る原子
炉振動監視装置の第5実施形態において固有振動数の表
示方法を示す説明図,しきい値の設定方法を示す説明図
である。
FIGS. 10A and 10B are an explanatory view showing a method of displaying a natural frequency and a method of setting a threshold value in a fifth embodiment of the reactor vibration monitoring apparatus according to the present invention. is there.

【0040】この第5実施形態では、信号処理装置8内
で、測定した振動振幅,振動速度の信号の周波数分析を
行い、炉内構造物14の固有振動数を算出して、この固
有振動数(F)19aの経時変化(ΔF)19bのよう
に表示装置9に表示すれば、長期間の振動の変化を容易
に認識することができるので、炉内の振動異常を早期に
検出することができる。
In the fifth embodiment, a frequency analysis of the measured vibration amplitude and vibration speed signals is performed in the signal processing device 8 to calculate a natural frequency of the furnace internal structure 14, and the natural frequency is calculated. (F) By displaying the change over time (ΔF) 19b of 19a on the display device 9, it is possible to easily recognize a change in vibration over a long period of time. it can.

【0041】このように第5実施形態によれば、信号処
理装置8で図10(A)に示すように出力信号を周波数
分析を行い、表示装置9で図10(B)に示すように炉
内構造物14の固有振動周波数の経時変化を表示させる
ことにより、測定した振動信号に基づいて振動の変化傾
向(トレンド)を表示することができるので、振動異常
の把握が容易になり、炉内構造物14の信頼性を向上さ
せることができる。
As described above, according to the fifth embodiment, the signal processor 8 analyzes the frequency of the output signal as shown in FIG. 10A, and the display device 9 analyzes the frequency of the output signal as shown in FIG. By displaying the change over time of the natural vibration frequency of the internal structure 14, the change tendency (trend) of the vibration can be displayed based on the measured vibration signal. The reliability of the structure 14 can be improved.

【0042】[0042]

【発明の効果】以上説明したように、本発明の請求項1
によれば、超音波トランスジューサが原子炉圧力容器の
外面に設置されたことにより、原子炉圧力容器の外側か
ら炉内構造物の振動を測定することができる。これによ
り、振動測定対象物の変更が容易となるばかりでなく、
測定の準備が容易となるため、作業工数を削減すること
ができる。また、原子炉圧力容器内にケーブルを設置す
る必要がないため、ケーブルの物量の削減が可能とな
る。
As described above, according to the first aspect of the present invention,
According to the method, the vibration of the reactor internal structure can be measured from the outside of the reactor pressure vessel by installing the ultrasonic transducer on the outer surface of the reactor pressure vessel. This makes it easy to change the vibration measurement object,
Since the preparation for the measurement is facilitated, the number of work steps can be reduced. Further, since there is no need to install a cable in the reactor pressure vessel, the amount of cable can be reduced.

【0043】請求項2によれば、請求項1記載の原子炉
振動監視装置において、超音波パルス信号が無線周波数
パルス信号であることから、炉内構造物の振動に伴って
発生する超音波パルス信号のドップラシフトを検出する
ことができ、振動振幅および振動速度を同時に測定する
ことができ、測定精度を向上することができる。
According to the second aspect of the present invention, in the reactor vibration monitoring device according to the first aspect, since the ultrasonic pulse signal is a radio frequency pulse signal, the ultrasonic pulse generated due to the vibration of the internal structure of the reactor. The Doppler shift of the signal can be detected, the vibration amplitude and the vibration speed can be measured simultaneously, and the measurement accuracy can be improved.

【0044】請求項3によれば、請求項1記載の原子炉
振動監視装置において、超音波トランスジューサが1次
元に複数個配列され、信号処理装置は、これらの超音波
トランスジューサの超音波の送信のタイミングを変化さ
せるとともに、受信される超音波パルス信号を時間的に
遅延させて加算して反射される超音波パルス信号を測定
することにより、複数個の超音波トランスジューサの送
信のタイミングを制御し、炉内に入射する超音波の伝搬
方向を高速で制御することができるようになるので、測
定対象物を高精度に選定できるばかりでなく、炉内構造
物の振動分布の位相も測定可能となり、測定精度を向上
させることができる。
According to a third aspect of the present invention, in the reactor vibration monitoring device according to the first aspect, a plurality of ultrasonic transducers are arranged one-dimensionally, and the signal processing device transmits the ultrasonic waves from these ultrasonic transducers. By changing the timing, measuring the reflected ultrasonic pulse signal by adding and delaying the received ultrasonic pulse signal in time, controlling the transmission timing of the plurality of ultrasonic transducers, Since the direction of propagation of ultrasonic waves incident into the furnace can be controlled at high speed, not only can the measurement target be selected with high accuracy, but also the phase of the vibration distribution of the furnace internal structure can be measured. Measurement accuracy can be improved.

【0045】また、受信される超音波パルス信号を時間
的に遅延させて加算するので、白色雑音は打ち消されて
減少し、信号は加算され大きくなるので、超音波信号の
SN比も向上し、測定精度の向上を図ることが可能とな
る。
Further, since the received ultrasonic pulse signals are added with a time delay, the white noise is canceled and reduced, and the signals are added and increased, so that the S / N ratio of the ultrasonic signal is also improved. Measurement accuracy can be improved.

【0046】請求項4によれば、超音波トランスジュー
サを原子炉圧力容器の外面に沿って移動させて振動測定
を行うので、測定対象物を高精度に選定できるばかりで
なく、炉内構造物の振動分布の測定も可能となり、測定
精度の向上を図ることが可能となる。
According to the fourth aspect, since the vibration measurement is performed by moving the ultrasonic transducer along the outer surface of the reactor pressure vessel, not only the object to be measured can be selected with high precision, but also the structure inside the reactor can be measured. Vibration distribution can be measured, and measurement accuracy can be improved.

【0047】請求項5によれば、信号処理装置は測定し
た信号の周波数分析を行って炉内構造物の固有振動周波
数を算出し、表示装置は固有振動周波数の変化を表示す
ることにより、測定した振動信号に基づいて振動の変化
傾向(トレンド)を表示することができるので、振動異
常の把握が容易になり、炉内構造物の信頼性を向上させ
ることができる。
According to the fifth aspect, the signal processing device performs a frequency analysis of the measured signal to calculate a natural vibration frequency of the furnace internal structure, and the display device displays a change in the natural vibration frequency, thereby performing the measurement. Since the change tendency (trend) of the vibration can be displayed based on the vibration signal obtained, it is easy to grasp the vibration abnormality, and the reliability of the furnace internal structure can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る原子炉振動監視装置の第1実施形
態を示す構成図。
FIG. 1 is a configuration diagram showing a first embodiment of a reactor vibration monitoring device according to the present invention.

【図2】第1実施形態において超音波信号の伝搬状態を
示す構成図。
FIG. 2 is a configuration diagram showing a propagation state of an ultrasonic signal in the first embodiment.

【図3】第1実施形態において反射超音波信号を利用し
て振動測定を行う方法を示す説明図。
FIG. 3 is an explanatory view showing a method of performing vibration measurement using a reflected ultrasonic signal in the first embodiment.

【図4】第1実施形態において送信される超音波パルス
信号と受信される超音波パルス信号を示すタイミングチ
ャート。
FIG. 4 is a timing chart showing an ultrasonic pulse signal transmitted and an ultrasonic pulse signal received in the first embodiment.

【図5】第1実施形態において離散的な振動振幅の測定
値から実際の振動波形を再構成する方法を示す図。
FIG. 5 is a diagram showing a method of reconstructing an actual vibration waveform from discrete vibration amplitude measurement values in the first embodiment.

【図6】本発明に係る原子炉振動監視装置の第2実施形
態を示す構成図。
FIG. 6 is a configuration diagram showing a second embodiment of the reactor vibration monitoring device according to the present invention.

【図7】(A),(B)は第2実施形態において送信R
Fパルスと受信RFパルスの時間関係および周波数関係
を示すタイミングチャート。
FIGS. 7A and 7B show transmission R in the second embodiment;
6 is a timing chart showing a time relationship and a frequency relationship between an F pulse and a received RF pulse.

【図8】本発明に係る原子炉振動監視装置の第3実施形
態を示す構成図。
FIG. 8 is a configuration diagram showing a third embodiment of the reactor vibration monitoring device according to the present invention.

【図9】本発明に係る原子炉振動監視装置の第4実施形
態を示す構成図。
FIG. 9 is a configuration diagram showing a fourth embodiment of the reactor vibration monitoring device according to the present invention.

【図10】(A),(B)は本発明に係る原子炉振動監
視装置の第5実施形態において固有振動数の表示方法を
示す説明図,しきい値の設定方法を示す説明図。
FIGS. 10A and 10B are an explanatory view showing a method of displaying a natural frequency and a method of setting a threshold value in a reactor vibration monitoring apparatus according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超音波トランスジューサ 2 原子炉圧力容器 3 ケーブル 4 原子炉格納容器 4a 信号取出口 5 超音波信号処理装置 6 超音波送信器 7 超音波受信器 8 信号処理装置 9 表示装置 10 電気パルス信号(DCパルス信号) 11 超音波パルス信号 12 炉水 13 超音波パルス信号 14 炉内構造物 15 超音波パルス信号 16 振動振幅波形 17 RFパルス信号 18 RFパルス信号 19a 固有振動数 19b 経時変化 DESCRIPTION OF SYMBOLS 1 Ultrasonic transducer 2 Reactor pressure vessel 3 Cable 4 Reactor containment vessel 4a Signal outlet 5 Ultrasonic signal processing device 6 Ultrasonic transmitter 7 Ultrasonic receiver 8 Signal processing device 9 Display device 10 Electric pulse signal (DC pulse 11) Ultrasonic pulse signal 12 Reactor water 13 Ultrasonic pulse signal 14 Furnace internal structure 15 Ultrasonic pulse signal 16 Vibration amplitude waveform 17 RF pulse signal 18 RF pulse signal 19a Natural frequency 19b Temporal change

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐久間 正剛 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 兼本 茂 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masatake Sakuma 8th Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Yokohama Office (72) Inventor Shigeru Kanemoto 8th Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Toshiba Yokohama Office

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器の外面に設置され超音波
パルス信号の送受信が兼用可能な超音波トランスジュー
サと、この超音波トランスジューサと電気的に接続され
前記超音波パルス信号を発生させる超音波送信器と、前
記超音波トランスジューサと電気的に接続され前記超音
波パルス信号を受信する超音波受信器と、前記超音波ト
ランスジューサからの超音波パルス信号を前記原子炉圧
力容器を通して原子炉内に入射させる一方、この原子炉
内の炉内構造物で反射した超音波パルス信号が再び前記
原子炉圧力容器を通して前記超音波トランスジューサを
経て前記超音波受信器に受信される超音波パルス信号を
処理する信号処理装置と、この信号処理装置により処理
された前記炉内構造物の振動情報を表示する表示装置と
を備えたことを特徴とする原子炉振動監視装置。
An ultrasonic transducer installed on an outer surface of a reactor pressure vessel and capable of transmitting and receiving an ultrasonic pulse signal, and an ultrasonic transmitter electrically connected to the ultrasonic transducer to generate the ultrasonic pulse signal An ultrasonic receiver electrically connected to the ultrasonic transducer and receiving the ultrasonic pulse signal; and causing the ultrasonic pulse signal from the ultrasonic transducer to enter the reactor through the reactor pressure vessel. On the other hand, the ultrasonic pulse signal reflected by the internal structure of the reactor is again processed by the ultrasonic pressure transducer through the ultrasonic transducer through the ultrasonic pressure transducer and the ultrasonic pulse signal received by the ultrasonic receiver. And a display device for displaying vibration information of the furnace internals processed by the signal processing device. Reactor vibration monitoring device.
【請求項2】 請求項1記載の原子炉振動監視装置にお
いて、超音波パルス信号は、無線周波数パルス信号であ
ることを特徴とする原子炉振動監視装置。
2. The reactor vibration monitoring device according to claim 1, wherein the ultrasonic pulse signal is a radio frequency pulse signal.
【請求項3】 請求項1記載の原子炉振動監視装置にお
いて、超音波トランスジューサは、1次元に複数個配列
され、信号処理装置は、これらの超音波トランスジュー
サの超音波の送信のタイミングを変化させるとともに、
受信される超音波パルス信号を時間的に遅延させて加算
して反射される超音波パルス信号を測定することを特徴
とする原子炉振動監視装置。
3. The reactor vibration monitoring device according to claim 1, wherein a plurality of ultrasonic transducers are arranged one-dimensionally, and the signal processing device changes the transmission timing of the ultrasonic waves from these ultrasonic transducers. With
A reactor vibration monitoring device characterized in that a received ultrasonic pulse signal is delayed in time and added to measure a reflected ultrasonic pulse signal.
【請求項4】 請求項1記載の原子炉振動監視装置にお
いて、超音波トランスジューサは、原子炉圧力容器の外
面に沿って移動可能に構成されたことを特徴とする原子
炉振動監視装置。
4. The reactor vibration monitoring device according to claim 1, wherein the ultrasonic transducer is configured to be movable along an outer surface of the reactor pressure vessel.
【請求項5】 請求項1ないし4のいずれかに記載の原
子炉振動監視装置において、信号処理装置は、測定した
信号の周波数分析を行って炉内構造物の固有振動周波数
を算出し、表示装置は前記固有振動周波数の変化を表示
することを特徴とする原子炉振動監視装置。
5. The reactor vibration monitoring device according to claim 1, wherein the signal processing device performs frequency analysis of the measured signal to calculate a natural vibration frequency of the reactor internal structure, and displays the calculated natural vibration frequency. A device for monitoring a reactor vibration, wherein the device displays a change in the natural vibration frequency.
JP29124197A 1997-10-23 1997-10-23 Reactor vibration monitoring device Expired - Lifetime JP3782559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29124197A JP3782559B2 (en) 1997-10-23 1997-10-23 Reactor vibration monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29124197A JP3782559B2 (en) 1997-10-23 1997-10-23 Reactor vibration monitoring device

Publications (2)

Publication Number Publication Date
JPH11125688A true JPH11125688A (en) 1999-05-11
JP3782559B2 JP3782559B2 (en) 2006-06-07

Family

ID=17766314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29124197A Expired - Lifetime JP3782559B2 (en) 1997-10-23 1997-10-23 Reactor vibration monitoring device

Country Status (1)

Country Link
JP (1) JP3782559B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121067A (en) * 2005-10-27 2007-05-17 Toshiba Corp Data collection/management system for intermittent operation apparatus
JP2008309493A (en) * 2007-06-12 2008-12-25 Toshiba Corp Apparatus and method for calibrating ultrasonic vibration displacement gauge
WO2009035098A1 (en) 2007-09-13 2009-03-19 Kabushiki Kaisha Toshiba Vibration monitoring device and method
WO2009041404A1 (en) * 2007-09-25 2009-04-02 Kabushiki Kaisha Toshiba Oscillation evaluation device and evaluation method
JP2009288164A (en) * 2008-05-30 2009-12-10 Toshiba Corp Vibration monitoring device and monitoring method
JP2010145372A (en) * 2008-12-22 2010-07-01 Toshiba Corp Ultrasonic probe, movable carriage for probe attachment/detachment, movable carriage for retrieving probe installation position, system for ultrasonic probe attachment/detachment, and method for attachment of ultrasonic probe
JP2010185884A (en) * 2010-05-31 2010-08-26 Toshiba Corp Device and method for monitoring vibration-deterioration
JP2010243254A (en) * 2009-04-02 2010-10-28 Toshiba Corp Method and system for monitoring oscillation of nuclear reactor
JP2011022160A (en) * 2010-09-30 2011-02-03 Toshiba Corp Oscillation-deterioration monitoring device and method
WO2011077713A1 (en) * 2009-12-22 2011-06-30 株式会社 東芝 Atomic reactor vibration monitoring device and monitoring method
JP2011137841A (en) * 2011-04-15 2011-07-14 Toshiba Corp Ultrasonic vibration measuring system
JP2011154040A (en) * 2011-04-08 2011-08-11 Toshiba Corp Apparatus for monitoring of reactor vibration
JP2011214952A (en) * 2010-03-31 2011-10-27 Toshiba Corp Device and method for monitoring vibration of structure
ES2380478A1 (en) * 2008-03-25 2012-05-14 Kabushiki Kaisha Toshiba Nuclear reactor vibration surveillance system and its method
KR101250334B1 (en) 2012-01-18 2013-04-03 한국수력원자력 주식회사 Apparatus and method of vibration measurement for comprehensive vibration assessment of reactor vessel internals
JP2013113646A (en) * 2011-11-28 2013-06-10 Hitachi-Ge Nuclear Energy Ltd Reactor vibration monitoring apparatus and reactor vibration monitoring method
US9082518B2 (en) 2011-11-11 2015-07-14 Hitachi-Ge Nuclear Energy, Ltd. Nuclear reactor vibration monitoring apparatus and method of monitoring nuclear reactor vibration

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121067A (en) * 2005-10-27 2007-05-17 Toshiba Corp Data collection/management system for intermittent operation apparatus
JP2008309493A (en) * 2007-06-12 2008-12-25 Toshiba Corp Apparatus and method for calibrating ultrasonic vibration displacement gauge
JP4551920B2 (en) * 2007-09-13 2010-09-29 株式会社東芝 Vibration / deterioration monitoring apparatus and method
WO2009035098A1 (en) 2007-09-13 2009-03-19 Kabushiki Kaisha Toshiba Vibration monitoring device and method
JP2009068987A (en) * 2007-09-13 2009-04-02 Toshiba Corp Device and method for monitoring vibration and abrasive degradation due to it
US8701493B2 (en) 2007-09-13 2014-04-22 Kabushiki Kaisha Toshiba Vibration monitoring apparatus and vibration monitoring method
US20110154900A1 (en) * 2007-09-13 2011-06-30 Kabushiki Kaisha Toshiba Vibration monitoring apparatus and vibration monitoring method
WO2009041404A1 (en) * 2007-09-25 2009-04-02 Kabushiki Kaisha Toshiba Oscillation evaluation device and evaluation method
ES2380478A1 (en) * 2008-03-25 2012-05-14 Kabushiki Kaisha Toshiba Nuclear reactor vibration surveillance system and its method
US8774340B2 (en) 2008-03-25 2014-07-08 Kabushiki Kaisha Toshiba Nuclear reactor vibration surveillance system and its method
TWI408699B (en) * 2008-03-25 2013-09-11 Toshiba Kk Nuclear reactor vibration surveillance system and its method
JP2009288164A (en) * 2008-05-30 2009-12-10 Toshiba Corp Vibration monitoring device and monitoring method
JP2010145372A (en) * 2008-12-22 2010-07-01 Toshiba Corp Ultrasonic probe, movable carriage for probe attachment/detachment, movable carriage for retrieving probe installation position, system for ultrasonic probe attachment/detachment, and method for attachment of ultrasonic probe
JP2010243254A (en) * 2009-04-02 2010-10-28 Toshiba Corp Method and system for monitoring oscillation of nuclear reactor
WO2011077713A1 (en) * 2009-12-22 2011-06-30 株式会社 東芝 Atomic reactor vibration monitoring device and monitoring method
JP2011133241A (en) * 2009-12-22 2011-07-07 Toshiba Corp System and method for monitoring vibration of nuclear reactor
US9099206B2 (en) 2009-12-22 2015-08-04 Kabushiki Kaisha Toshiba Nuclear reactor vibration monitoring device and monitoring method thereof
JP2011214952A (en) * 2010-03-31 2011-10-27 Toshiba Corp Device and method for monitoring vibration of structure
JP2010185884A (en) * 2010-05-31 2010-08-26 Toshiba Corp Device and method for monitoring vibration-deterioration
JP4630949B2 (en) * 2010-05-31 2011-02-09 株式会社東芝 Vibration / deterioration monitoring apparatus and method
JP2011022160A (en) * 2010-09-30 2011-02-03 Toshiba Corp Oscillation-deterioration monitoring device and method
JP2011154040A (en) * 2011-04-08 2011-08-11 Toshiba Corp Apparatus for monitoring of reactor vibration
JP2011137841A (en) * 2011-04-15 2011-07-14 Toshiba Corp Ultrasonic vibration measuring system
US9082518B2 (en) 2011-11-11 2015-07-14 Hitachi-Ge Nuclear Energy, Ltd. Nuclear reactor vibration monitoring apparatus and method of monitoring nuclear reactor vibration
JP2013113646A (en) * 2011-11-28 2013-06-10 Hitachi-Ge Nuclear Energy Ltd Reactor vibration monitoring apparatus and reactor vibration monitoring method
KR101250334B1 (en) 2012-01-18 2013-04-03 한국수력원자력 주식회사 Apparatus and method of vibration measurement for comprehensive vibration assessment of reactor vessel internals

Also Published As

Publication number Publication date
JP3782559B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JPH11125688A (en) Reactor vibration monitor
EP0544859B1 (en) A system for measuring the transfer time of a sound-wave
US8774340B2 (en) Nuclear reactor vibration surveillance system and its method
JPH1073655A (en) Method for measuring distance between vehicle and object
US6758815B2 (en) Apparatus and method for indicating mechanical stiffness properties of body tissue
EP0338592B1 (en) An ultrasonic doppler blood flow velocity detection apparatus and a method for detecting blood flow velocity
US4453238A (en) Apparatus and method for determining the phase sensitivity of hydrophones
RU85001U1 (en) DOPPLER ACOUSTIC LOCATOR FOR MONITORING THE WIND FIELD AND TURBULENCE IN THE ATMOSPHERIC BOUNDARY LAYER
JP6815786B2 (en) Ultrasonic displacement measuring device and ultrasonic displacement measuring method
EP2354808B1 (en) Object probing device, object probing program, and object probing method
JPH11295179A (en) Abnormal place detecting device
JPH10153657A (en) Two frequency sls device
JP2779563B2 (en) Transmitter and receiver for Doppler acoustic radar
JP2001074836A (en) Display device for bistatic active sonar
JPH0348789A (en) Cw doppler device
JP3314991B2 (en) Ultrasonic Doppler device
JPH08285938A (en) Ultrasonic distance measuring apparatus using wave-guiding rod
JP3287938B2 (en) Water depth measuring method and apparatus
JPH09318340A (en) Rod length measurement device
JP2017106748A (en) Bi-static active sonar device and receiver thereof
JPH08194059A (en) Ultrasonic distance measuring apparatus
JPH0933318A (en) Ultrasonic liquid level measuring method
JPS60129678A (en) Sodar apparatus
JP2001141438A (en) Device for measuring thickness of bottom mud
JP3002065U (en) Multiple reflected wave automatic extinction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term