JPH08334561A - Ultrasonic doppler-type ground speed measuring apparatus - Google Patents

Ultrasonic doppler-type ground speed measuring apparatus

Info

Publication number
JPH08334561A
JPH08334561A JP16294995A JP16294995A JPH08334561A JP H08334561 A JPH08334561 A JP H08334561A JP 16294995 A JP16294995 A JP 16294995A JP 16294995 A JP16294995 A JP 16294995A JP H08334561 A JPH08334561 A JP H08334561A
Authority
JP
Japan
Prior art keywords
doppler
ultrasonic
wave
frequency
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16294995A
Other languages
Japanese (ja)
Inventor
Keiichi Watanabe
恵一 渡辺
Kazuo Otsuka
一雄 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP16294995A priority Critical patent/JPH08334561A/en
Publication of JPH08334561A publication Critical patent/JPH08334561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE: To obtain an ultrasonic Doppler-type ground speed measuring apparatus by which a precise ground speed can be computed by receiving reflected waves of ultrasonic waves from road surface and finding the frequency and the magnitude of Doppler waves on the basis of received waves. CONSTITUTION: By using continuous waves which are output by an oscillator 1, an ultrasonic transmitter 2 transmits ultrasonic waves to a road surface. Reflected waves from the road surface which contains Doppler waves are received by an ultrasonic receiver 3 so as to be amplified 4. A multiplier 5 multiplies a received signal by the continuous waves of the oscillator 1, and only a Doppler signal is taken out by a low-pass filter 6. The output of the filter 6 is digital-converted digitally by a zero-crossing comparator 7, and a counter 8 finds a Doppler frequency. In addition, a voltmeter 9 finds an amplitude value on the basis of the output of the filter 6. At this time, the amplitude value differs according to the unevenness or the wet state of the road surface, and a frequency is dropped at a high speed or the like. Consequently, the relationship among a vehicle speed, the amplitude value and the frequency is computed in advance so as to be found, the relationship is stored in a vehicle- speed computation circuit 10, and a precise vehicle speed can be computed on the basis of the frequency and the amplitude value of the counter 8 and the voltmeter 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波によるドップラ
を用いた対地速度計測装置に関するもので、自動車など
移動体のABS装置やナビゲーションシステム等に用い
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground speed measuring device using ultrasonic Doppler and is used for an ABS device for a mobile body such as an automobile or a navigation system.

【0002】[0002]

【従来の技術】従来、超音波ドップラを利用した対地速
度計測方法が提案されている。この方法は、図2に示す
ように、超音波を路面に送信して得られる受信波のドッ
プラ周波数から対地速度を計測するもので、車速をV、
音速をc、送受信角をθ、送信周波数をf0 とすると、
ドップラ周波数fd は理論的には次式(1)から求めら
れる。
2. Description of the Related Art Conventionally, a ground speed measuring method using ultrasonic Doppler has been proposed. As shown in FIG. 2, this method measures the ground speed from the Doppler frequency of the received wave obtained by transmitting ultrasonic waves to the road surface.
When the speed of sound is c, the transmission / reception angle is θ, and the transmission frequency is f 0 ,
The Doppler frequency f d is theoretically obtained from the following equation (1).

【0003】 fd =(2Vcosθ/c+V・cosθ)f0 (1)F d = (2Vcos θ / c + V · cos θ) f 0 (1)

【0004】しかしながら、実際には高速時やウェット
路面などで上式よりドップラ周波数が小さくなり、速度
が低く計測されるという問題があった。高速時の誤差要
因は、車速に比べ音速がそれほど高くないために送信か
ら受信までの時間に送受信点がずれてしまうためであ
り、解析や実験により明らかにされている。そこで、こ
の送受信点のズレを幾何学的に求めた補正式を用いて改
良したものがある(特開平4-357486、特開平4-25298
5)。しかしながら、送受信器には指向性があるため、
送信器正面以外にも多くの超音波が送信されている。し
たがって、正面のみに送信された超音波の伝搬経路だけ
で補正するのではなく、正面以外の方向へ送信された超
音波の伝搬経路を含めて補正する必要がある。
However, in actuality, there is a problem that the Doppler frequency becomes smaller than the above equation at high speed or on a wet road surface, and the speed is measured low. The cause of the error at high speed is that the sound speed is not so high compared to the vehicle speed, so that the transmission / reception point shifts in the time from transmission to reception, which has been clarified by analysis and experiments. Therefore, there is a method in which the deviation of the transmission / reception point is improved by using a correction formula obtained geometrically (JP-A-4-357486, JP-A-4-25298).
Five). However, because the transceiver is directional,
Many ultrasonic waves are transmitted in addition to the front of the transmitter. Therefore, it is necessary to correct not only the propagation path of the ultrasonic wave transmitted only to the front side but also the propagation path of the ultrasonic wave transmitted to the direction other than the front side.

【0005】また、雨水等で濡れたウェット路面では乾
燥したアスファルト路面とは異なり、水により凹凸が無
くなり超音波が正反射して路面からの散乱波が戻りにく
くなって、S/Nが低くドップラ周波数が求めにくくな
る。また、高速時と同様にドップラ周波数が低く計測さ
れること、ばらつきが大きいことが実験的に分かってい
る。このため、従来、周波数のばらつきからウェット状
態を判定し、センサ正面からの散乱波ではない低いドッ
プラ周波数成分を取り除いて車速を求めているものがあ
る(特開平2-176491)。しかしながら、これは、周波数
分布やばらつきを求めるには時間がかかるという実用上
の問題がある。
Unlike dry asphalt roads, wet roads wet with rainwater and the like have no irregularities due to water, ultrasonic waves are specularly reflected, and scattered waves from roads are less likely to return, resulting in low S / N and Doppler. It becomes difficult to find the frequency. Further, it is experimentally known that the Doppler frequency is measured low and the variation is large as in the case of high speed. For this reason, conventionally, there is a method in which a vehicle speed is obtained by determining a wet state from frequency variations and removing low Doppler frequency components which are not scattered waves from the front of the sensor (Japanese Patent Laid-Open No. 2-176491). However, this has a practical problem that it takes time to obtain the frequency distribution and variations.

【0006】[0006]

【発明が解決しようとする課題】ドップラ周波数が式1
より低く計測される要因は、本発明者等の行った超音波
の伝搬解析により、 (1) 対地速度に比べ超音波の伝搬速度がそれほど高くな
いために送信器と受信器の位置がずれる。 (2) 超音波の送信器、受信器とも周波数特性、指向性を
持ち、また、路面の超音波の散乱特性も形状によって反
射特性が異なる。 (3) 乾燥した路面とウェット路面では超音波の反射特性
に違いがある。によることがわかっている。
The Doppler frequency is expressed by the equation (1).
The factors that are measured to be lower are (1) the positions of the transmitter and the receiver are misaligned because the ultrasonic wave propagation speed is not so high compared to the ground speed according to the ultrasonic wave propagation analysis performed by the present inventors. (2) Both ultrasonic transmitters and receivers have frequency characteristics and directivity, and the scattering characteristics of ultrasonic waves on the road surface differ depending on the shape. (3) There is a difference in ultrasonic wave reflection characteristics between a dry road surface and a wet road surface. I know.

【0007】以下、どのような問題があるか、図を用い
て説明する。前記(1)は、図3に示すように、従来か
ら指摘されていて、送信器、受信器の位置ずれによって
送受信角が変化するため、受信波は式1とは異なるドッ
プラ周波数を持つ。しかしながら、実際の超音波送信器
は指向性を持つため、図4に示すように、送信器正面以
外にも超音波が送信される。また、受信器も指向性を持
つため、送信器の出力が高く受信器の感度が高い領域a
からの反射波を強く受信することになる。路面からの反
射波の分布を、その強さとドップラ周波数を用いて第5
図に示すと、式(1)のドップラ周波数fd より低くな
る。対地速度が高くなると、領域aは狭くなり受信波は
弱くなるとともにドップラ周波数分布も低くなる。
What kind of problems will be described below with reference to the drawings. The above (1) has been conventionally pointed out as shown in FIG. 3, and since the transmission / reception angle changes due to the positional deviation of the transmitter and the receiver, the received wave has a Doppler frequency different from that of the equation (1). However, since an actual ultrasonic transmitter has directivity, as shown in FIG. 4, ultrasonic waves are transmitted to other than the front of the transmitter. In addition, since the receiver also has directivity, the area a where the output of the transmitter is high and the sensitivity of the receiver is high
The reflected waves from will be strongly received. The distribution of the reflected wave from the road surface is calculated using the intensity and the Doppler frequency.
As shown in the figure, it becomes lower than the Doppler frequency f d of the equation (1). When the ground speed becomes higher, the area a becomes narrower, the received wave becomes weaker, and the Doppler frequency distribution becomes lower.

【0008】また、路面の反射特性は、鏡面のように入
射方向と反対方向に反射する正反射成分と、全方向へ反
射する拡散反射成分がある。本発明者等の行った音響解
析結果によれば、図6に示すように、凹凸のある路面に
超音波が入射した場合、路面から図8に示す形状を持て
ば、路面から図7に示すような反射波が得られる。図中
のλは超音波の波長である。図7、図8では水が入って
凹凸が小さくなった場合もあわせて示してある。この図
より、凹凸の大きな路面では拡散反射が強く、凹凸が小
さい場合や水で濡れた路面では正反射が強い。この傾向
は路面への入射角度が小さいほど顕著である。送信器お
よび受信器は指向性を持つため、凹凸が小さい場合や水
で濡れた路面のような正反射が強い路面では、図9に示
すように、領域aよりも受信器側に近いbの領域の反射
波が強くなる。したがって、路面反射と送信器および受
信器の指向性を組み合わせて考えると、ドップラ分布の
幅と大きさは図10のようになり、反射波の強い凹凸の
大きな路面では式1よりやや低く、路面からの反射波の
弱い凹凸の小さな路面や濡れた路面ではさらに低くな
る。
The reflection characteristics of the road surface include a specular reflection component that reflects in the direction opposite to the incident direction like a mirror surface and a diffuse reflection component that reflects in all directions. According to the results of the acoustic analysis performed by the present inventors, as shown in FIG. 6, when an ultrasonic wave is incident on a road surface having irregularities, if the shape shown in FIG. Such a reflected wave can be obtained. In the figure, λ is the wavelength of ultrasonic waves. FIG. 7 and FIG. 8 also show the case where the unevenness becomes small due to the entry of water. From this figure, the diffuse reflection is strong on the road surface with large irregularities, and the regular reflection is strong on the road surface with small irregularities or on a road surface wet with water. This tendency is more remarkable as the angle of incidence on the road surface is smaller. Since the transmitter and the receiver have directivity, when the unevenness is small or on a road surface with strong regular reflection such as a road surface wet with water, as shown in FIG. The reflected wave in the area becomes stronger. Therefore, considering the combination of the road surface reflection and the directivity of the transmitter and the receiver, the width and size of the Doppler distribution are as shown in FIG. 10, which is slightly lower than that of Equation 1 on a road surface with strong irregularities of reflected waves. It becomes even lower on a small uneven or uneven road surface where the reflected wave from is weak.

【0009】したがって、実際には送信器および受信器
の指向性と路面の反射特性により、高速時や凹凸が小さ
い路面や濡れた路面では反射波が弱くなってドップラ波
の大きさが小さくなるとともに周波数も式(1)より低
くなる。式(1)からのずれを小さくするためには、送
信器と受信器の指向性を狭くして重なり領域aを小さく
すればよいが、対地速度が高い場合は高出力領域と高感
度領域が重ならなくなり(領域aが存在しない)受信波
が得られなくなる。そのためには、送信器か受信器の指
向性を狭くすればよいが、受信器の指向性が広いと送信
波だけでなく他の音響雑音を拾いやすいので、受信器の
指向性を狭くする方が望ましい。送信器の指向性は速度
測定領域内で重なり領域aが生じるような広さにする。
なお、送信器、受信器の取り付け位置、角度が関係する
のはもちろんのことである。
Therefore, in reality, due to the directivity of the transmitter and the receiver and the reflection characteristics of the road surface, the reflected wave becomes weak and the magnitude of the Doppler wave becomes small at high speed or on a road surface with small unevenness or a wet road surface. The frequency is also lower than that of equation (1). In order to reduce the deviation from the equation (1), the directivity of the transmitter and the receiver may be narrowed to reduce the overlapping area a, but when the ground speed is high, the high output area and the high sensitivity area are No overlapping (no area a exists) and no received wave can be obtained. For that purpose, the directivity of the transmitter or receiver should be narrowed.However, if the directivity of the receiver is wide, it is easy to pick up not only the transmitted waves but also other acoustic noise. Is desirable. The directivity of the transmitter is set so that an overlapping area a is generated in the speed measurement area.
Needless to say, the mounting positions and angles of the transmitter and receiver are relevant.

【0010】実際の送信器、受信器には出力音圧あるい
は受信感度の高いメインローブと呼ばれる領域と正面以
外に出力音圧あるいは感度の高いサイドローブと呼ばれ
る領域がある。送信器にサイドローブがあると、図11
に示すように、正面方向a以外のサイドローブ方向bへ
も強い超音波が送信される。したがって、このとき受信
されるドップラ周波数の分布は低い部分が大きくなり、
ドップラの平均周波数を低下させる。このようなサイド
ローブは受信器でも同様の問題を生じさせるため、正面
方向に対し十分に小さくする必要がある。
In actual transmitters and receivers, there is a region called a main lobe where the output sound pressure or the reception sensitivity is high and a region called a side lobe where the output sound pressure or the sensitivity is high other than the front. If the transmitter has side lobes,
As shown in, strong ultrasonic waves are transmitted in the side lobe direction b other than the frontal direction a. Therefore, the distribution of the Doppler frequency received at this time becomes large in the low part,
Decrease the average frequency of Doppler. Since such a side lobe causes a similar problem in the receiver, it needs to be sufficiently small in the front direction.

【0011】また、上述のように、ドップラ周波数は単
一周波数ではなく分布を持つから、受信器の周波数特性
が平坦でない場合は、図12(a)および(b)に示す
ように受信波に含まれるドップラ分布の振幅が異なって
しまう。したがって、ドップラ周波数が真の値とは違う
ために速度誤差となるので、周波数特性が平坦な受信器
を用いる必要がある。上述のように、超音波ドップラを
用いた対地速度計測装置では、送信器の指向性、受信器
の指向性および周波数特性、路面の反射特性により、受
信波のドップラ周波数の分布および大きさが式(1)よ
り低くなる。
Further, as described above, since the Doppler frequency is not a single frequency but has a distribution, if the frequency characteristics of the receiver are not flat, the received wave will be changed as shown in FIGS. 12 (a) and 12 (b). The included Doppler distributions have different amplitudes. Therefore, since the Doppler frequency is different from the true value and a velocity error occurs, it is necessary to use a receiver having a flat frequency characteristic. As described above, in the ground speed measuring device using ultrasonic Doppler, the directivity of the transmitter, the directivity and frequency characteristics of the receiver, the reflection characteristics of the road surface, the distribution and magnitude of the received wave Doppler frequency It becomes lower than (1).

【0012】本発明の目的は、送信器の指向性、受信器
の指向性および周波数特性を考慮の上、路面からのドッ
プラ波の大きさが小さいほどドップラ周波数が式(1)
より小さくなることを利用して、ドップラ波の大きさと
周波数から対地速度を求める精度の高い超音波ドップラ
式対地速度計測装置を提供することにある。
An object of the present invention is to consider the directivity of the transmitter, the directivity of the receiver and the frequency characteristics, and the smaller the magnitude of the Doppler wave from the road surface, the more the Doppler frequency becomes as expressed by equation (1).
It is an object of the present invention to provide an ultrasonic Doppler-type ground speed measuring device that is highly accurate in obtaining the ground speed from the magnitude and frequency of a Doppler wave by utilizing the fact that it becomes smaller.

【0013】[0013]

【課題を解決するための手段】第1発明の超音波ドップ
ラ式対地速度計測装置(請求項1記載の発明)は、図1
に示すように、路面に対して所定の角度で超音波を送信
する超音波送信手段と、路面からの反射波を受信する超
音波受信手段と、受信波からドップラ波の周波数を求め
るドップラ周波数算出手段と、受信波からドップラ波の
大きさを求めるドップラ波解析手段と、ドップラ波の大
きさと周波数から対地速度を求める車速算出手段から構
成される。
The ultrasonic Doppler type ground speed measuring device (the invention according to claim 1) of the first invention is shown in FIG.
As shown in, the ultrasonic wave transmitting means for transmitting ultrasonic waves at a predetermined angle to the road surface, the ultrasonic wave receiving means for receiving the reflected wave from the road surface, and the Doppler frequency calculation for obtaining the frequency of the Doppler wave from the received wave Means, a Doppler wave analysis means for obtaining the magnitude of the Doppler wave from the received wave, and a vehicle speed calculation means for obtaining the ground speed from the magnitude and frequency of the Doppler wave.

【0014】第2発明の超音波ドップラ式対地速度計測
装置(請求項2記載の発明)は、サイドローブのほとん
ど無い広い指向特性を持つ超音波送信手段と、サイドロ
ーブのほとんど無い狭い指向特性を持つ超音波受信手段
を持つ構成である。
The ultrasonic Doppler type ground speed measuring device of the second invention (the invention according to claim 2) has an ultrasonic transmitting means having a wide directional characteristic with almost no side lobes and a narrow directional characteristic with almost no side lobes. This is a configuration having an ultrasonic wave reception means.

【0015】[0015]

【発明の作用・効果】第1発明のドップラ式対地速度計
測装置は、送信手段より超音波を路面に送信し、路面か
らの反射波を受信手段により受信するもので、路面から
の反射波の強弱とドップラ周波数から対地速度を正確に
求めることができる。ドップラ周波数算出手段は、受信
波からドップラ波の周波数を求め、また、ドップラ波解
析手段は、ドップラ波の大きさを求める。車速算出手段
は、路面からの反射波のドップラ周波数および大きさか
ら対地速度を正確に求めることができる。
The Doppler type ground speed measuring device of the first aspect of the present invention transmits ultrasonic waves to the road surface from the transmitting means and receives reflected waves from the road surface by the receiving means. The ground speed can be accurately obtained from the strength and the Doppler frequency. The Doppler frequency calculation means finds the frequency of the Doppler wave from the received wave, and the Doppler wave analysis means finds the magnitude of the Doppler wave. The vehicle speed calculation means can accurately obtain the ground speed from the Doppler frequency and the magnitude of the reflected wave from the road surface.

【0016】第2発明の超音波ドップラ式対地速度計測
装置は、超音波送信手段と超音波受信手段の特性により
路面からの反射波のドップラ周波数の誤差が小さく、対
地速度を正確に求めることができる。すなわち、第2発
明の超音波ドップラ式対地速度計測装置は、測定速度領
域内にて送信手段の指向性によって定まる送信領域と受
信手段の指向性によって定まる受信領域が重なるように
取り付けられており、路面での超音波の反射の強弱とド
ップラ周波数から高精度に対地速度を求めることができ
る。
In the ultrasonic Doppler type ground speed measuring device of the second invention, the error of the Doppler frequency of the reflected wave from the road surface is small due to the characteristics of the ultrasonic wave transmitting means and the ultrasonic wave receiving means, and the ground speed can be accurately obtained. it can. That is, the ultrasonic Doppler type ground speed measuring device of the second invention is attached so that the transmission area determined by the directivity of the transmission means and the reception area determined by the directivity of the reception means overlap in the measurement speed area, The ground speed can be obtained with high accuracy from the intensity of ultrasonic wave reflection on the road surface and the Doppler frequency.

【0017】[0017]

【実施例】以下、図面を参照して、本発明を代表的な実
施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention will be described below with reference to the drawings.

【第1実施例】第1実施例の超音波ドップラ式対地速度
計測装置は、図13に示すように、発信器1と、発信器
1から出力される連続波を送信する超音波送信器2と、
路面からの反射波を受信する超音波受信器3と、受信波
を増幅するアンプ4と、受信波と送信波を乗算する乗算
器5と、受信波からドップラ波を取り出す低域フィルタ
6と、ドップラ波をデジタル信号に変換するゼロクロス
コンパレータ7と、ドップラ周波数を算出するカウンタ
8と、ドップラ波の振幅を求める電圧計9と、ドップラ
波の振幅値とドップラ周波数から対地速度を求め出力す
る車速算出回路10から成る。
[First Embodiment] As shown in FIG. 13, an ultrasonic Doppler type ground speed measuring apparatus according to the first embodiment includes an oscillator 1 and an ultrasonic transmitter 2 for transmitting a continuous wave output from the oscillator 1. When,
An ultrasonic receiver 3 for receiving a reflected wave from the road surface, an amplifier 4 for amplifying the received wave, a multiplier 5 for multiplying the received wave and the transmitted wave, a low-pass filter 6 for extracting a Doppler wave from the received wave, Zero cross comparator 7 for converting the Doppler wave into a digital signal, counter 8 for calculating the Doppler frequency, voltmeter 9 for calculating the amplitude of the Doppler wave, vehicle speed calculation for calculating and outputting the ground speed from the amplitude value of the Doppler wave and the Doppler frequency It consists of a circuit 10.

【0018】次に、第1実施例の超音波ドップラ式対地
速度計測装置の作用・効果を簡単に説明する。第1実施
例の超音波ドップラ式対地速度計測装置は、発信器1か
ら超音波送信器2に連続波が出力され、超音波送信器2
から路面に超音波が送信される。ドップラ波を含む路面
からの反射波は、超音波受信器3により受信され、この
受信信号がアンプ4により増幅される。受信信号は、発
信器1の出力する連続波と乗算器5で乗算される。さら
に、乗算器5の出力信号を低域フィルタ6に通すことに
よってドップラ信号のみを取り出す。フィルタ6の出力
は、ゼロクロスコンパレータ7によりデジタル変換し、
カウンタ8を用いて周波数を求めることによりドップラ
周波数を求める。
Next, the operation and effect of the ultrasonic Doppler type ground speed measuring apparatus of the first embodiment will be briefly described. In the ultrasonic Doppler type ground speed measuring device of the first embodiment, a continuous wave is output from the transmitter 1 to the ultrasonic transmitter 2, and the ultrasonic transmitter 2
Ultrasonic waves are transmitted to the road surface. The reflected wave from the road surface including the Doppler wave is received by the ultrasonic receiver 3, and this received signal is amplified by the amplifier 4. The received signal is multiplied by the continuous wave output from the oscillator 1 by the multiplier 5. Further, the output signal of the multiplier 5 is passed through the low-pass filter 6 to extract only the Doppler signal. The output of the filter 6 is digitally converted by the zero cross comparator 7,
The Doppler frequency is obtained by obtaining the frequency using the counter 8.

【0019】また、フィルタ6の出力は、電圧計7を用
いて振幅値を求める。路面の凹凸の大きさや路面の濡れ
具合(濡れて水により路面凹凸がなくなった状態)によ
ってドップラ信号の振幅値が異なり、また、ドップラ周
波数は、式(1)より低下する。車速とドップラ信号の
振幅値および周波数の関係は、送信器の指向性と出力音
圧の周波数特性、受信器の指向性と受信感度周波数特
性、送信器と受信器の取り付け位置および角度、路面反
射特性、空気中の超音波の減衰率をもとにあらかじめ計
算によって求めることができる。たとえば、発明者の音
響解析結果によれば、図14(a)および(b)に示す
ような関係が求められている。この関係を車速算出回路
10に記憶しておき、車速を算出して出力する。
Further, the output of the filter 6 uses a voltmeter 7 to obtain an amplitude value. The amplitude value of the Doppler signal differs depending on the size of the unevenness of the road surface and the degree of wetting of the road surface (a condition in which the road surface unevenness is lost by being wet), and the Doppler frequency is lower than that of equation (1). The relationship between the vehicle speed and the amplitude value and frequency of the Doppler signal includes the directivity of the transmitter and the frequency characteristic of the output sound pressure, the directivity of the receiver and the frequency characteristic of the receiving sensitivity, the mounting position and angle of the transmitter and the receiver, and road reflection. It can be calculated in advance based on the characteristics and the attenuation rate of ultrasonic waves in the air. For example, according to the acoustic analysis result of the inventor, the relationships shown in FIGS. 14A and 14B are required. This relationship is stored in the vehicle speed calculation circuit 10, and the vehicle speed is calculated and output.

【0020】第1実施例の超音波ドップラ式対地速度計
測装置は、これにより、高速時や凹凸の小さな路面や雨
などで濡れた路面など反射波の小さな路面でも、ドップ
ラ波の振幅値と周波数から車速を推定して正確な速度を
算出することができる実用上優れた作用・効果を奏す
る。
With the ultrasonic Doppler type ground speed measuring apparatus of the first embodiment, the amplitude value and the frequency of the Doppler wave are thereby reduced even at high speed or on a road surface with small unevenness or a road surface wet with rain. It is possible to estimate the vehicle speed from the vehicle and accurately calculate the vehicle speed, which is excellent in practical use.

【0021】[0021]

【第2実施例】次に、第2実施例の超音波ドップラ式対
地速度計測装置を図15に基づき説明する。第2実施例
の超音波ドップラ式対地速度計測装置は、前記第1実施
例のとほぼ同様であり、主に相違点を中心に説明する。
超音波送信器2は、図15に示すようなサイドローブの
ほとんど無い広い指向性を持ち、超音波受信器3は、図
16に示すようなサイドローブのほとんど無い狭い指向
性を持つ 。ここで、サイドローブのほとんど無いと
は、メインローブに対して30dB以上小さいことをい
う。また、図17(a)および(b)に示すように、低
速から測定速度領域内の最高速まで、送信器2の出力の
高い領域と受信器3の受信感度の高い領域が重なるよう
取り付け位置、角度が設定してある。発信器1から車速
算出回路10までの動作は、第1実施例装置と同様であ
るので、説明を省略する。
[Second Embodiment] Next, an ultrasonic Doppler type ground speed measuring apparatus of a second embodiment will be described with reference to FIG. The ultrasonic Doppler type ground speed measuring device of the second embodiment is almost the same as that of the first embodiment, and the description will be focused on the differences.
The ultrasonic transmitter 2 has a wide directivity with almost no side lobes as shown in FIG. 15, and the ultrasonic receiver 3 has a narrow directivity with almost no side lobes as shown in FIG. Here, “there is almost no side lobe” means that the side lobe is smaller than the main lobe by 30 dB or more. In addition, as shown in FIGS. 17 (a) and 17 (b), from the low speed to the highest speed in the measurement speed range, the mounting position is such that the high output area of the transmitter 2 and the high receiving sensitivity area of the receiver 3 overlap. , The angle is set. The operation from the transmitter 1 to the vehicle speed calculation circuit 10 is the same as that of the device of the first embodiment, so the description thereof is omitted.

【0022】なお、図14(a)および(b)に示す関
係は送信器の送信出力周波数特性や指向性、受信器の受
信感度や指向性、送信器、受信器の取り付け位置、空気
中の超音波の伝搬減衰によって異なる。図14では、代
表的な補正曲線が3本記入されているだけであり、前記
第1実施例装置では間を補間して対地速度を算出してい
るが、路面形状を変えて様々な路面反射特性に対し音響
解析を行い、関係式を導出すればドップラ波の大きさと
周波数から対地速度を正確に求めることができる。な
お、図14(a)および(b)に示す関係は、上記実施
例に限らず、この他、音響解析によらず実験により求め
関係式を算出して用いることもできる。また、ドップラ
波の大きさと周波数と対地速度の関係は、ルックアップ
テーブル化し、直接参照して適用実施することができ
る。
The relationships shown in FIGS. 14 (a) and 14 (b) are the transmission output frequency characteristics and directivity of the transmitter, the receiving sensitivity and directivity of the receiver, the mounting position of the transmitter and the receiver, and It depends on the propagation attenuation of ultrasonic waves. In FIG. 14, only three representative correction curves are entered, and the ground speed is calculated by interpolating between them in the first embodiment device, but various road surface reflections are obtained by changing the road surface shape. If the acoustic analysis is performed on the characteristics and the relational expression is derived, the ground speed can be accurately obtained from the magnitude and frequency of the Doppler wave. Note that the relationships shown in FIGS. 14A and 14B are not limited to those in the above-described embodiment, but in addition to this, it is also possible to calculate and use a relational expression obtained by experiments without using acoustic analysis. Further, the relationship between the magnitude and frequency of the Doppler wave and the ground speed can be applied by directly making a lookup table and referring to it.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例装置の構成図FIG. 1 is a configuration diagram of a first embodiment device.

【図2】超音波ドップラ式対地速度計の測定原理の説明
FIG. 2 is an explanatory view of the measurement principle of the ultrasonic Doppler type ground speed meter.

【図3】送信器および受信器の移動によって生じるドッ
プラ周波数算出式からのずれを示す線図
FIG. 3 is a diagram showing a deviation from a Doppler frequency calculation formula caused by movement of a transmitter and a receiver.

【図4】送信器および受信器の指向性によって生じるド
ップラ周波数算出式からのずれを示す線図
FIG. 4 is a diagram showing a deviation from a Doppler frequency calculation formula caused by directivity of a transmitter and a receiver.

【図5】路面での超音波の反射特性を示す線図FIG. 5 is a diagram showing the reflection characteristics of ultrasonic waves on the road surface.

【図6】路面凹凸による超音波の反射状況を示す線図FIG. 6 is a diagram showing how ultrasonic waves are reflected by uneven road surfaces.

【図7】路面形状と水により路面形状が変わる状況を示
す線図
FIG. 7 is a diagram showing a road surface shape and a situation where the road surface shape changes depending on water.

【図8】図7の形状を持つ路面からの反射波の大きさを
示す線図
8 is a diagram showing the magnitude of reflected waves from a road surface having the shape of FIG.

【図9】凹凸の小さな路面や水等で濡れた路面からのド
ップラ周波数が低くなることを示す線図
FIG. 9 is a diagram showing that the Doppler frequency from a road surface having small unevenness or a road surface wet with water becomes low.

【図10】凹凸の小さな路面や水等で濡れた路面のドッ
プラ周波数分布と大きさを示す線図
FIG. 10 is a diagram showing the Doppler frequency distribution and the size of a road surface having small unevenness or a road surface wet with water.

【図11】送信器と受信器のサイドローブにより生じる
ドップラ周波数算出式からのずれを示す線図
FIG. 11 is a diagram showing a deviation from a Doppler frequency calculation formula caused by side lobes of a transmitter and a receiver.

【図12】受信器の受信感度の周波数特性によって生じ
るドップラ周波数分布の変化を説明する線図
FIG. 12 is a diagram illustrating changes in Doppler frequency distribution caused by frequency characteristics of receiver sensitivity of a receiver.

【図13】第1実施例装置の具体的構成図FIG. 13 is a specific configuration diagram of the first embodiment device.

【図14】路面からのドップラ波の大きさと周波数と車
速の関係を示す線図
FIG. 14 is a diagram showing the relationship between the magnitude and frequency of Doppler waves from the road surface and the vehicle speed.

【図15】第2実施例の超音波送信器の指向性を示す線
FIG. 15 is a diagram showing the directivity of the ultrasonic transmitter of the second embodiment.

【図16】第2実施例の超音波受信器の指向性を示す線
FIG. 16 is a diagram showing the directivity of the ultrasonic receiver of the second embodiment.

【図17】対地速度が変化したときの第2実施例の送信
器の送信領域と受信器の受信領域の重なり具合を示す線
FIG. 17 is a diagram showing how the transmission area of the transmitter and the reception area of the receiver of the second embodiment overlap when the ground speed changes.

【符号の説明】[Explanation of symbols]

1 発信器 2 超音波送信器 3 超音波受信器 4 アンプ 5 乗算器 6 低域フィルタ 7 ゼロクロスコンパレータ 8 カウンタ 9 電圧計 10 車速算出回路 1 Transmitter 2 Ultrasonic transmitter 3 Ultrasonic receiver 4 Amplifier 5 Multiplier 6 Low-pass filter 7 Zero cross comparator 8 Counter 9 Voltmeter 10 Vehicle speed calculation circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 路面に対して所定の角度で超音波を送信
する超音波送信手段と、 路面からの反射波を受信する超音波受信手段と、 受信波からドップラ波の周波数を求めるドップラ周波数
算出手段と、 受信波からドップラ波の大きさを求めるドップラ波解析
手段と、 ドップラ波の大きさと周波数から対地速度を求める対地
速度算出手段と、を備えたことを特徴とする超音波ドッ
プラ式対地速度計測装置。
1. An ultrasonic wave transmitting means for transmitting an ultrasonic wave at a predetermined angle to a road surface, an ultrasonic wave receiving means for receiving a reflected wave from the road surface, and a Doppler frequency calculation for obtaining a frequency of a Doppler wave from the received wave. Means, a Doppler wave analyzing means for obtaining the magnitude of the Doppler wave from the received wave, and a ground speed calculating means for obtaining the ground speed from the magnitude and frequency of the Doppler wave, the ultrasonic Doppler ground speed Measuring device.
【請求項2】 請求項1において超音波送信手段は、サ
イドローブのほとんど無い広い指向特性を持ち、超音波
受信手段はサイドローブのほとんど無い狭い指向特性を
持ち、かつ、測定速度領域内にて超音波送信手段の指向
性によって定まる送信領域と超音波受信手段の指向性に
よって定まる受信領域が重なるように取り付けられたこ
とを特徴とする超音波ドップラ式対地速度計測装置。
2. The ultrasonic wave transmitting means according to claim 1, has a wide directional characteristic with almost no side lobes, and the ultrasonic wave receiving means has a narrow directional characteristic with almost no side lobes, and within the measurement speed range. An ultrasonic Doppler type ground speed measuring device, characterized in that the ultrasonic Doppler type ground speed measuring device is mounted so that a transmission area determined by the directivity of the ultrasonic transmission means and a reception area determined by the directivity of the ultrasonic reception means overlap.
JP16294995A 1995-06-05 1995-06-05 Ultrasonic doppler-type ground speed measuring apparatus Pending JPH08334561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16294995A JPH08334561A (en) 1995-06-05 1995-06-05 Ultrasonic doppler-type ground speed measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16294995A JPH08334561A (en) 1995-06-05 1995-06-05 Ultrasonic doppler-type ground speed measuring apparatus

Publications (1)

Publication Number Publication Date
JPH08334561A true JPH08334561A (en) 1996-12-17

Family

ID=15764331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16294995A Pending JPH08334561A (en) 1995-06-05 1995-06-05 Ultrasonic doppler-type ground speed measuring apparatus

Country Status (1)

Country Link
JP (1) JPH08334561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017167839A (en) * 2016-03-16 2017-09-21 株式会社デンソー On-vehicle device
DE102018109272A1 (en) 2017-04-27 2018-10-31 Shimano Inc. BIKE CONTROL DEVICE
WO2024070053A1 (en) * 2022-09-30 2024-04-04 ダイキン工業株式会社 Environmental state measuring device and method for setting up environmental state measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017167839A (en) * 2016-03-16 2017-09-21 株式会社デンソー On-vehicle device
DE102018109272A1 (en) 2017-04-27 2018-10-31 Shimano Inc. BIKE CONTROL DEVICE
WO2024070053A1 (en) * 2022-09-30 2024-04-04 ダイキン工業株式会社 Environmental state measuring device and method for setting up environmental state measuring device

Similar Documents

Publication Publication Date Title
US7079073B2 (en) Radar device for vehicle and method for adjusting mount angle for mounting radar device on vehicle
US20040174294A1 (en) Systems and methods for monitoring speed
US20050226099A1 (en) Quantitative echo souner and method of quantitative sounding of fish
US20220113173A1 (en) Non-invasive open channel flow meter
US20220236437A1 (en) Method and system for determining top and bottom depth of an under water mud layer
JP2511521B2 (en) Ultrasonic Doppler method ground speedometer
JPH08334561A (en) Ultrasonic doppler-type ground speed measuring apparatus
JPH0213275B2 (en)
JPH02287182A (en) Ultrasonic doppler type ground speed indicator
JPH0228116B2 (en)
US5239516A (en) Ultrasonic ground speedometer utilizing doppler effect of ultrasonic waves
JP3355369B2 (en) Doppler ground speed meter
US6229761B1 (en) Estimating ship velocity through the water and over the ground
JP3390673B2 (en) Water level measurement method
Wanis Design and applications of a vertical beam in acoustic Doppler current profilers
JP2513125Y2 (en) Ground speed detector
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
Swart et al. An acoustic sensor system for determination of macroscopic surface roughness
JPH0367195A (en) Method and instrument for measuring temperature and humidity of atmospheric air by utilizing wave propagation
RU2231083C1 (en) Method for measurement of distance to source of noise radio signal located on flight vehicle by aircraft radar
JPH0357985A (en) Ground vehicle speed meter by ultrasonic doppler method
JPS61241685A (en) Ultrasonic range finder
IMOU et al. Ultrasonic Doppler speed sensor with an offset parabolic reflector
JPH10260254A (en) Self-mixing laser velocity meter
JP2531276Y2 (en) Road surface condition detection device