JPH04221057A - Formation of wear resistant hard coating film - Google Patents

Formation of wear resistant hard coating film

Info

Publication number
JPH04221057A
JPH04221057A JP41340590A JP41340590A JPH04221057A JP H04221057 A JPH04221057 A JP H04221057A JP 41340590 A JP41340590 A JP 41340590A JP 41340590 A JP41340590 A JP 41340590A JP H04221057 A JPH04221057 A JP H04221057A
Authority
JP
Japan
Prior art keywords
film
wear
comparative example
composition
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41340590A
Other languages
Japanese (ja)
Other versions
JP3045184B2 (en
Inventor
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2413405A priority Critical patent/JP3045184B2/en
Publication of JPH04221057A publication Critical patent/JPH04221057A/en
Application granted granted Critical
Publication of JP3045184B2 publication Critical patent/JP3045184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To efficiently form a coating film having superior wear resistance and adhesion. CONSTITUTION:A wear resistant coating film of 0.8-10mum thickness having a chemical compsn. represented by a formula (VxTi1-x)(NyC1-y) (where 0.25<=x<=0.75 and 0.6<=y<=1) is formed on the surface of a substrate by arc discharge with a cathode as an evaporating source in vacuum of 1X10<-3>-5X10<-2>Torr.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は耐摩耗性硬質皮膜形成方
法に関し、詳細には密着性の優れた耐摩耗性皮膜を効率
良く形成する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a hard wear-resistant coating, and more particularly to a method for efficiently forming a wear-resistant coating with excellent adhesion.

【0002】0002

【従来の技術】高速度工具鋼や超硬合金工具鋼等を製作
する場合は、耐摩耗性等の性能をより優れたものとする
ことを目的として、工具基材の表面にTi等の窒化物や
炭化物よりなる耐摩耗性皮膜を形成することが行なわれ
ている。
[Prior Art] When manufacturing high-speed tool steel, cemented carbide tool steel, etc., nitriding such as Ti is applied to the surface of the tool base material in order to improve performance such as wear resistance. Formation of a wear-resistant film made of carbide or carbide has been carried out.

【0003】上記耐摩耗性皮膜を形成する方法としては
、従来よりCVD法(化学的蒸着法)及びPVD法(物
理的蒸着法)が知られている。但し前者の方法では母材
が高温処理に曝されて母材特性が劣化するおそれがある
ことから、母材特性も重要視される工具の場合では後者
の方法が好まれており、中でも比較的低温条件でコーテ
ィング処理できるイオンプレーティング法等によるTi
N皮膜等の形成が汎用されている。
CVD (chemical vapor deposition) and PVD (physical vapor deposition) are conventionally known methods for forming the above-mentioned wear-resistant coating. However, the former method exposes the base material to high-temperature treatment, which may cause deterioration of the base material properties, so the latter method is preferred for tools where base material properties are also important. Ti by ion plating method that can be coated under low temperature conditions
Formation of N film etc. is commonly used.

【0004】該TiN皮膜はTiC皮膜に比べて耐熱性
が良好であって、切削時の加工熱や摩擦熱による工具す
くい面のクレータ摩耗を抑制する機能を発揮する。しか
しながらTiN皮膜はTiC皮膜に比べると硬度が低い
為被削材と接する逃げ面に発生するフランク摩耗に対し
ては脆弱であり、フランク摩耗に対してはむしろTiC
皮膜の方が高い耐久性を示す。
The TiN film has better heat resistance than the TiC film, and exhibits the function of suppressing crater wear on the rake face of the tool due to machining heat and frictional heat during cutting. However, TiN film has lower hardness than TiC film, so it is vulnerable to flank wear that occurs on the flank surface that contacts the workpiece, and TiN film is more susceptible to flank wear than TiC film.
Films exhibit higher durability.

【0005】そこで耐熱性や硬度が共に優れた皮膜とし
て、イオンプレーティング法やスパッタリング法等のP
VD法によるTiAlN,TiAlC,或はTiAlC
N等(以下TiAlN等ということがある)の皮膜が提
案されている[特開昭62−56565,ジャーナル・
バキューム・ソサエティ・テクノロジー(J. Vac
.Sci.Technol.) A第4(6)巻,19
86年,第2717頁,J. of Solid St
ate Chemistry,70,1987 年,第
318 〜322 頁]。
[0005] Therefore, as a film with excellent heat resistance and hardness, P coatings using ion plating method, sputtering method, etc.
TiAlN, TiAlC, or TiAlC by VD method
A film of N, etc. (hereinafter sometimes referred to as TiAlN, etc.) has been proposed [Japanese Patent Application Laid-Open No. 62-56565, Journal
Vacuum Society Technology (J. Vac
.. Sci. Technol. ) Volume A 4(6), 19
1986, p. 2717, J. of Solid St
ate Chemistry, 70, 1987, pp. 318-322].

【0006】ところで上記PVD法はイオンのエネルギ
ーを利用するコーティング法であり、低温状態で蒸着が
おこなわれることから、CVD法に見られるような母材
特性の劣化は招かないものの、母材とコーティング皮膜
との間に熱による拡散層が形成されないので、密着性に
関してはPVDコーティング膜はCVDコーティング膜
に劣るのが一般的である。
By the way, the above-mentioned PVD method is a coating method that utilizes the energy of ions, and since the deposition is carried out at a low temperature, it does not cause the deterioration of the base material properties as seen in the CVD method, but Since no thermal diffusion layer is formed between the film and the film, PVD coating films are generally inferior to CVD coating films in terms of adhesion.

【0007】また前記TiAlN等の皮膜自体もTiN
に比べて密着性が低いので、前記TiAlN等の皮膜が
有する耐摩耗性や高硬度という本来の機能も十分発揮さ
れていない。
[0007] Furthermore, the film itself such as TiAlN is also TiN.
Since the adhesion is lower than that of TiAlN, the original functions of the TiAlN film, such as wear resistance and high hardness, are not fully exhibited.

【0008】尚イオンプレーティング法としては例えば
特公昭59−18474,18475号公報に開示され
ている技術があり、金属元素成分のイオン化が主として
金属元素蒸気自身の放電によってなされるタイプのもの
であって、反応ガスの分圧を1×10−4〜9×10−
4Torrの高真空度とすることによって密着性の高い
被覆鋼や被覆超硬合金を得ようとする手法が提案されて
いる。
As the ion plating method, for example, there is a technique disclosed in Japanese Patent Publication Nos. 59-18474 and 18475, in which the ionization of the metal element component is mainly performed by the discharge of the metal element vapor itself. and set the partial pressure of the reaction gas to 1 x 10-4 to 9 x 10-4.
A method has been proposed in which a coated steel or coated cemented carbide with high adhesion is obtained by applying a high degree of vacuum to 4 Torr.

【0009】しかしながら上記技術は高真空度を前提と
するものであることから窒素導入ガスの量も制限され、
反応速度及び成膜速度が遅くなって逆に膜組成の均一性
の点で安定を欠くという問題を有している。
However, since the above technology is based on a high degree of vacuum, the amount of nitrogen gas introduced is also limited.
This has the problem that the reaction rate and film formation rate become slow and, conversely, the film composition lacks stability in terms of uniformity.

【0010】0010

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、耐摩耗性及び密着性に優
れた皮膜を効率よく形成することのできる皮膜形成方法
を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a film forming method that can efficiently form a film with excellent wear resistance and adhesion. It is something to do.

【0011】[0011]

【課題を解決する為の手段】上記目的を達成した本発明
とは、基材表面に耐摩耗性皮膜を形成するにあたり、で
示される化学組成からなり、膜厚が0.8 〜10μm
の耐摩耗性皮膜を1×10−3〜5×10−2Torr
の真空条件下で、蒸発源としてカソードを用いるアーク
放電方式によって形成することを要旨とするものである
[Means for Solving the Problems] The present invention, which achieves the above object, is a method for forming an abrasion-resistant film on the surface of a base material, which has a chemical composition as shown below, and has a film thickness of 0.8 to 10 μm.
Abrasion resistant coating of 1 x 10-3 to 5 x 10-2 Torr
The gist of this method is to form the film under vacuum conditions using an arc discharge method using a cathode as an evaporation source.

【0012】0012

【作用】本発明方法は、カソードを蒸発源とするアーク
放電によって金属成分をイオン化するものであって、イ
オンプレーティング法やスパッタリング法等に代表され
るPVD法によって行なうことができる。上記PVD法
のうちイオンプレーティング法で行なう場合を代表的に
取り上げて以下説明する。前記の様にカソードを蒸発源
とするアーク放電によってイオン化させた金属成分を、
N2雰囲気又はN2/CH4雰囲気中で反応させる。上
記カソードとしてはV及びTiをそれぞれ個別に用いて
もよいが、目的組成と同一組成からなるVxTi1−x
をターゲットとすれば、下記の理由によって皮膜組成の
コントロールが容易であり好ましい。即ち本発明方法に
おいては、各合金成分の蒸発が数十アンペア以上の大電
流域で行なわれるため、カソード物質の組成ずれが殆ん
ど生じないからである。さらにイオン化効率を高くする
ことや反応性を高めること、基板にバイアス電圧を印加
すること等によって一層密着性の優れた皮膜を得ること
ができる。
[Operation] The method of the present invention ionizes metal components by arc discharge using a cathode as an evaporation source, and can be carried out by a PVD method such as an ion plating method or a sputtering method. Among the above-mentioned PVD methods, the case where the ion plating method is used will be described below as a representative example. As mentioned above, the metal components ionized by arc discharge using the cathode as the evaporation source,
The reaction is carried out in a N2 atmosphere or a N2/CH4 atmosphere. Although V and Ti may be used individually as the cathode, VxTi1-x having the same composition as the target composition
It is preferable to target the film composition because it is easy to control the film composition for the following reasons. That is, in the method of the present invention, each alloy component is evaporated in a large current range of several tens of amperes or more, so that almost no compositional deviation of the cathode material occurs. Furthermore, a film with even better adhesion can be obtained by increasing the ionization efficiency, increasing the reactivity, applying a bias voltage to the substrate, etc.

【0013】尚上記皮膜の組成は であることが必要であり、好ましくは0.3 ≦x≦0
.7 、さらに好ましくは0.4 ≦x≦0.6 であ
る。  第1図は超硬母材上に(VxTi1−x)N[
但しx=0.2 ,0.4 ,0.6 ,0.8 ]お
よび(Al0.6Ti0.4)Nをイオンプレーティン
グ法により3μm形成したものについて、マイクロビッ
カースによる硬度を測定した結果を示すグラフである。 これより(VxTi1−x)Nの場合は0.4 ≦x≦
0.6 の範囲において従来の(Al,Ti)Nコーテ
ィングより高硬度な膜が得られることがわかる。
[0013] The composition of the above film must be 0.3≦x≦0, preferably 0.3≦x≦0
.. 7, more preferably 0.4≦x≦0.6. Figure 1 shows (VxTi1-x)N[
However, x = 0.2 , 0.4 , 0.6 , 0.8 ] and (Al0.6Ti0.4)N formed to a thickness of 3 μm by ion plating method, the results of measuring the hardness by micro Vickers are shown. It is a graph. From this, in the case of (VxTi1-x)N, 0.4 ≦x≦
It can be seen that in the range of 0.6, a film with higher hardness than the conventional (Al, Ti)N coating can be obtained.

【0014】図2は同上コーティング膜の密着性をスク
ラッチテストにより評価した結果を示すグラフである。 上記スクラッチテストは粒径0.2mm の球状のダイ
ヤモンド圧子を試料表面に押しつけ、定速で荷重を加え
ながらひっかき、膜のはがれはじめる荷重を臨界荷重と
して読みとり、密着性を評価した。
FIG. 2 is a graph showing the results of evaluating the adhesion of the above coating film by a scratch test. In the above scratch test, a spherical diamond indenter with a grain size of 0.2 mm was pressed against the sample surface, and the sample surface was scratched while applying a load at a constant speed. The load at which the film began to peel off was read as the critical load to evaluate the adhesion.

【0015】これより(VxTi1−x)Nの場合、x
が0.8 以上の範囲では従来の(Al,Ti)Nコー
ティングより高い密着性が得られず、xは0.6 以下
の範囲が好ましいことがわかる。
From this, in the case of (VxTi1-x)N, x
It can be seen that when x is in a range of 0.8 or more, adhesion higher than that of the conventional (Al, Ti)N coating cannot be obtained, and that x is preferably in a range of 0.6 or less.

【0016】切削工具等にコーティングを施して耐摩耗
性を向上させるには、コーティング膜の硬度が高くかつ
母材との密着性が良好であることが必要である。図1,
2より、従来の(Al,Ti)Nコーティングより硬度
,密着性とも優れた皮膜を得るには(VxTi1−x)
Nにおいて0.25≦x≦0.75とすべきであること
がわかる。
[0016] In order to improve wear resistance by applying a coating to a cutting tool or the like, it is necessary that the coating film has high hardness and good adhesion to the base material. Figure 1,
2, to obtain a film with better hardness and adhesion than the conventional (Al, Ti)N coating (VxTi1-x)
It can be seen that 0.25≦x≦0.75 should be satisfied for N.

【0017】尚後述する実施例及び比較例に示す様に、
膜厚が0.8 μm未満の場合は耐摩耗性が不十分とな
り、一方10μmを超える膜自体にクラックが入り易く
、強度が不十分となる。従って本発明に係る耐摩耗性硬
質皮膜の膜厚は0.8 μm以上10μm以下に限定し
た。
[0017] As shown in the Examples and Comparative Examples described later,
If the film thickness is less than 0.8 μm, the abrasion resistance will be insufficient, while if the film thickness exceeds 10 μm, cracks will easily occur and the strength will be insufficient. Therefore, the thickness of the wear-resistant hard coating according to the present invention is limited to 0.8 μm or more and 10 μm or less.

【0018】またイオンプレーティング時のガス分圧を
1×10−3〜5×10−2Torrに限定したのは硬
質皮膜を結晶質とし、耐摩耗性などの工具としての切削
性能を向上させるためである。上記ガス分圧が低すぎる
と成膜速度が遅くなって結晶質の硬質皮膜が得られず、
一方高すぎると化学組成中のNが増加して皮膜の靭性が
劣化して望ましくない。
[0018] Furthermore, the gas partial pressure during ion plating was limited to 1 x 10-3 to 5 x 10-2 Torr in order to make the hard coating crystalline and improve the cutting performance as a tool such as wear resistance. It is. If the above gas partial pressure is too low, the film formation rate will be slow and a crystalline hard film will not be obtained.
On the other hand, if it is too high, N in the chemical composition increases and the toughness of the film deteriorates, which is not desirable.

【0019】さらに本発明は皮膜を形成する基材を限定
するものではなく、WC基超硬合金やサーメットあるい
は高速度鋼等、用途に応じて適宜選択すればよい。
Furthermore, the present invention does not limit the base material on which the film is formed, and may be appropriately selected depending on the application, such as WC-based cemented carbide, cermet, or high-speed steel.

【0020】また本発明では炭窒化物を形成することに
よってTiCの高硬度性(常温硬度Hv:約3200k
g/mm2)を発揮させるものである。即ち本発明に係
る組成式におけるyの値が減少すると、それに応じて硬
度は大となり耐摩耗性が向上する。第3図は、超硬チッ
プ(WC−10%Coを主成分とする)に(V0.6T
i0.4)(NyC1−y)[但しy=0.4 ,0.
6 ,0.8 ,1]を3μm厚で被覆し、被削材S5
0C(HB:180〜200)を切削速度170m/m
in ,送り速度0.25mm/rev,切り込み0.
1mm で切削した時の15分後のクレータ摩耗量を測
定した結果を示す。この結果にみられるように、yが0
.6 未満になると耐酸化性が低下してクレータ摩耗を
起こし易くなるのでyは0.6 以上であることが必要
である。
Furthermore, in the present invention, the high hardness of TiC (room temperature hardness Hv: approximately 3200k) is improved by forming carbonitrides.
g/mm2). That is, when the value of y in the composition formula according to the present invention decreases, the hardness increases accordingly and the wear resistance improves. Figure 3 shows that (V0.6T
i0.4) (NyC1-y) [However, y=0.4,0.
6, 0.8, 1] with a thickness of 3 μm, and the work material S5
Cutting speed of 0C (HB: 180-200) 170m/m
in, feed rate 0.25 mm/rev, depth of cut 0.
The results of measuring the amount of crater wear after 15 minutes when cutting with a thickness of 1 mm are shown. As seen in this result, y is 0
.. If it is less than 6, oxidation resistance decreases and crater wear is likely to occur, so y needs to be 0.6 or more.

【0021】[0021]

【実施例】実施例1 V0.6Ti0.4をカソード電極とするカソードアー
ク方式イオンプレーティング装置の基板ホルダーに超硬
合金製チップ(WC−10%Coを主成分とする)を取
付けた。尚本装置には、耐摩耗性皮膜形成状態の均一性
を確保する為の基材回転機構及びヒータを設置した。
[Example] Example 1 A cemented carbide chip (WC-10% Co as the main component) was attached to a substrate holder of a cathode arc type ion plating apparatus using V0.6Ti0.4 as a cathode electrode. This device was equipped with a base material rotation mechanism and a heater to ensure uniformity in the formation of the wear-resistant film.

【0022】成膜に当たっては、ヒータによって基材温
度を400℃に加熱保持したまま、基材に−70Vのバ
イアス電圧を印加すると共に、装置内に高純度N2ガス
を7×10−3Torrまで導入し、アーク放電を開始
して基材表面に膜厚4μmの皮膜を形成した。膜厚の測
定は、基板ホルダーに同時に取り付けた基材の内の1個
を破断し、膜断面を走査型電子顕微鏡で観察して測定し
たものである。さらに膜組成の定量は、同じく同時に取
り付けた基材につきオージェ分光分析法により膜深さ方
向の分析を行なった、その結果V,Ti,Nの膜厚さ方
向には濃度変化がなく一定で、各成分元素のピーク高さ
から、膜組成は(V0.61Ti0.39)Nと同定し
た。膜中の金属成分比Ti/Vはカソード成分比とずれ
がなく殆んど同一といえる。
During film formation, a bias voltage of -70V was applied to the substrate while maintaining the substrate temperature at 400°C using a heater, and high purity N2 gas was introduced into the apparatus to a temperature of 7 x 10-3 Torr. Then, arc discharge was started to form a film with a thickness of 4 μm on the surface of the base material. The film thickness was measured by breaking one of the base materials attached to the substrate holder at the same time and observing the film cross section with a scanning electron microscope. Furthermore, to quantify the film composition, we analyzed the film depth direction using Auger spectroscopy on the substrates attached at the same time.As a result, there was no change in the concentration of V, Ti, and N in the film thickness direction, and the film was constant. The film composition was identified as (V0.61Ti0.39)N from the peak heights of each component element. The metal component ratio Ti/V in the film has no deviation from the cathode component ratio and can be said to be almost the same.

【0023】実施例2 V0.5Ti0.5カソードを用いた以外は、実施例1
と同一条件で成膜を行なった。膜厚は3.5 μmであ
り、膜組成は(V0.5Ti0.5)Nであった。
Example 2 Example 1 except that a V0.5Ti0.5 cathode was used.
Film formation was performed under the same conditions as . The film thickness was 3.5 μm, and the film composition was (V0.5Ti0.5)N.

【0024】実施例3 反応性ガスとしてN2/CH4混合ガスを用いた以外は
実施例2と同一条件で成膜を行なった。膜厚は4.1 
μmであり、膜組成は(V0.51Ti0.49)(N
0.7 C0.3)であった。
Example 3 Film formation was carried out under the same conditions as in Example 2 except that N2/CH4 mixed gas was used as the reactive gas. Film thickness is 4.1
μm, and the film composition is (V0.51Ti0.49)(N
0.7C0.3).

【0025】(比較例)比較の為次の試料を用意した。 比較例1 実施例1の基材に皮膜を形成しない試料。 比較例2 Tiカソードを用いてN2ガスを7×10−3Torr
まで導入し実施例1と同一条件でTiNの成膜を行なっ
た。膜厚は4.2 μmであった。 比較例3 Al0.6Ti0.4カソードを用いた以外は実施例1
と同一条件で成膜を行なった。膜厚は4.3 μmであ
り、膜組成は(V0.61Ti0.39)Nであった。 比較例4 膜厚が0.7 μmとなるように成膜した以外は実施例
1と同様にして成膜を行った。膜組成は(V0.61T
i0.39)Nであった。 比較例5 膜厚が12μmとなるように成膜した以外は実施例1と
同様にして成膜を行った。膜組成は(V0.6Ti0.
4)Nであった。
(Comparative Example) The following sample was prepared for comparison. Comparative Example 1 A sample in which no film was formed on the substrate of Example 1. Comparative Example 2 N2 gas was heated to 7×10-3 Torr using a Ti cathode.
A TiN film was formed under the same conditions as in Example 1. The film thickness was 4.2 μm. Comparative Example 3 Example 1 except that an Al0.6Ti0.4 cathode was used
Film formation was performed under the same conditions as . The film thickness was 4.3 μm, and the film composition was (V0.61Ti0.39)N. Comparative Example 4 A film was formed in the same manner as in Example 1, except that the film was formed to have a thickness of 0.7 μm. The film composition is (V0.61T
i0.39)N. Comparative Example 5 A film was formed in the same manner as in Example 1 except that the film was formed to have a thickness of 12 μm. The film composition is (V0.6Ti0.
4) It was N.

【0026】実施例1〜3及び比較例1〜5によって得
られた試料を、下記切削条件により10分間の切削試験
に供したフランク摩耗幅及びクレータ摩耗深さを表1に
示す。 切削条件: 被削材        S50C(HB:180 〜2
00)切削速度      170m/min 送り速
度      0.25 mm/rev 切り込み  
    0.1 mm
Table 1 shows the flank wear width and crater wear depth obtained by subjecting the samples obtained in Examples 1 to 3 and Comparative Examples 1 to 5 to a 10 minute cutting test under the following cutting conditions. Cutting conditions: Work material S50C (HB: 180 ~ 2
00) Cutting speed 170m/min Feed rate 0.25 mm/rev Depth of cut
0.1 mm

【0027】[0027]

【表1】 表1より明らかな様に、比較例に比べて本発明例はいず
れも耐摩耗性に優れていた。
[Table 1] As is clear from Table 1, the examples of the present invention were all superior in wear resistance compared to the comparative examples.

【0028】次に超硬ドリルへの適用例を以下に示す。 実施例4 6mmφの超硬ドリル(WC−8%Coを主成分とする
)に実施例1と同一条件にて成膜を行なった。膜厚は4
.5 μmであり膜組成は(Al0.65Ti0.35
)Nであった。
Next, an example of application to a carbide drill will be shown below. Example 4 A film was formed on a 6 mmφ carbide drill (WC-8% Co as the main component) under the same conditions as in Example 1. Film thickness is 4
.. 5 μm, and the film composition is (Al0.65Ti0.35
)N.

【0029】比較例として次の試料を用意した。 比較例6 6mmφの超硬ドリルに比較例2と同一条件でTiNを
成膜した。膜厚は4.4 μmであった。 比較例7 6mmφの超硬ドリルに比較例3と同一条件にて成膜を
行なった。膜厚は4.3 μmであり、膜組成は(V0
.61Ti0.39)Nであった。 比較例8 6mmφの超硬ドリルに実施例4と同一条件で成膜を形
成した。膜厚は0.7 μmであり、膜組成は(V0.
6Ti0.4)Nであった。 比較例9 6mmφの超硬ドリルに実施例4と同一条件にて成膜を
行なった。膜厚は12μmであり、膜組成は(V0.6
Ti0.4)Nであった。
The following sample was prepared as a comparative example. Comparative Example 6 A TiN film was formed on a 6 mm diameter carbide drill under the same conditions as Comparative Example 2. The film thickness was 4.4 μm. Comparative Example 7 A film was formed on a 6 mm diameter carbide drill under the same conditions as Comparative Example 3. The film thickness is 4.3 μm, and the film composition is (V0
.. 61Ti0.39)N. Comparative Example 8 A film was formed on a 6 mm diameter carbide drill under the same conditions as in Example 4. The film thickness is 0.7 μm, and the film composition is (V0.
6Ti0.4)N. Comparative Example 9 A film was formed on a 6 mm diameter carbide drill under the same conditions as in Example 4. The film thickness is 12 μm, and the film composition is (V0.6
Ti0.4)N.

【0030】下記の切削条件で行なった穴明け個数の結
果を表2に示す。 切削条件: 被削材        S50C,13mmt(貫通穴
加工) 切削速度      50 m/min送り速度   
   0.2 mm/rev潤  滑        
エマルジョンによる
Table 2 shows the results of the number of holes drilled under the following cutting conditions. Cutting conditions: Work material S50C, 13mmt (through hole machining) Cutting speed 50 m/min feed rate
0.2 mm/rev lubrication
by emulsion

【0031】[0031]

【表2】 表2より明らかな様に本発明方法で得られた工具は、比
較例に比べて加工個数の大幅な増加が認められ、耐摩耗
性が良好であった。
[Table 2] As is clear from Table 2, the tool obtained by the method of the present invention showed a significant increase in the number of pieces machined compared to the comparative example, and had good wear resistance.

【0032】次にハイスドリルへの適用例を以下に示す
。 実施例5 6mmφハイスドリルに実施例1と同一条件にて成膜を
行った。膜厚は5.5 μmであり、膜組成は(Al0
.63Ti0.37)Nであった。
Next, an example of application to a high speed steel drill will be shown below. Example 5 A film was formed using a 6 mm diameter high speed steel drill under the same conditions as in Example 1. The film thickness is 5.5 μm, and the film composition is (Al0
.. 63Ti0.37)N.

【0033】比較例として次の試料を用意した。 比較例10 6mmφハイスドリルに比較例2と同一条件でTiNを
成膜した。膜厚は4.2 μmであった。 比較例11 6mmφハイスドリルに比較例3と同一条件にて成膜を
行った。膜厚を4.0 μmであり膜組成は(Al0.
60Ti0.40)Nであった。 比較例12 膜厚が0.7 μmとなる様に成膜した以外は実施例1
と同様にして成膜を行った。膜組成は(V0.61Ti
0.39)Nであった。 比較例13 膜厚が12μmとなる様に成膜した以外は実施例1と同
様にして成膜を行った。膜組成は(V0.61Ti0.
39)Nであった。
The following sample was prepared as a comparative example. Comparative Example 10 A TiN film was formed on a 6 mm diameter high speed steel drill under the same conditions as Comparative Example 2. The film thickness was 4.2 μm. Comparative Example 11 A film was formed using a 6 mm diameter high speed steel drill under the same conditions as Comparative Example 3. The film thickness was 4.0 μm and the film composition was (Al0.
60Ti0.40)N. Comparative Example 12 Example 1 except that the film was formed so that the film thickness was 0.7 μm.
Film formation was carried out in the same manner. The film composition is (V0.61Ti
0.39)N. Comparative Example 13 A film was formed in the same manner as in Example 1, except that the film was formed to have a thickness of 12 μm. The film composition is (V0.61Ti0.
39) It was N.

【0034】下記の切削条件で行なった穴明け個数の結
果を表3に示す。 切削条件: 被削材        S50C,10mmt切削速度
      30 m/min送り速度      0
.15 mm/rev 潤  滑        エマ
ルジョンによる
Table 3 shows the results of the number of holes drilled under the following cutting conditions. Cutting conditions: Work material S50C, 10mmt Cutting speed 30 m/min Feed rate 0
.. 15 mm/rev Lubricated by emulsion

【0035】[0035]

【表3】 表3より明らかな様に本発明方法で得られた工具は、比
較例に比べて加工個数の大幅な増加がみられ、耐摩耗性
が良好であった。
[Table 3] As is clear from Table 3, the tool obtained by the method of the present invention showed a significant increase in the number of pieces machined compared to the comparative example, and had good wear resistance.

【0036】[0036]

【発明の効果】本発明は以上の様に構成されているので
、従来のイオンプレーティング法やスパッタリング法に
よって製造する場合よりも密着性,膜組成の均一性及び
生産効率の各面において優れた皮膜形成方法を提供する
ことができる。
[Effects of the Invention] Since the present invention is constructed as described above, it is superior in terms of adhesion, uniformity of film composition, and production efficiency compared to the conventional ion plating method or sputtering method. A film forming method can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る(VxTi1−x)N組成(窒化
物で代表)と硬度の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between (VxTi1-x)N composition (represented by nitride) and hardness according to the present invention.

【図2】本発明に係る(VxTi1−x)Nと臨界荷重
の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between (VxTi1-x)N and critical load according to the present invention.

【図3】(V0.6Ti0.4)(NyC1−y)にお
いてyを変化させた時の超硬チップの切削時のクレータ
摩耗量を示すグラフである。
FIG. 3 is a graph showing the amount of crater wear during cutting of a carbide tip when y is changed in (V0.6Ti0.4) (NyC1-y).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基材表面に耐摩耗性皮膜を形成するにあた
り、 で示される化学組成からなり、膜厚が0.8 〜10μ
mの耐摩耗性皮膜を1×10−3〜5×10−2Tor
rの真空条件下で、蒸発源としてカソードを用いるアー
ク放電方式によって形成することを特徴とする耐摩耗性
硬質皮膜形成方法。
Claim 1: In forming an abrasion-resistant film on the surface of a base material, the film has a chemical composition represented by the following, and has a film thickness of 0.8 to 10 μm.
m wear-resistant coating to 1 x 10-3 to 5 x 10-2 Torr
A method for forming a wear-resistant hard coating, characterized in that the coating is formed by an arc discharge method using a cathode as an evaporation source under vacuum conditions of r.
JP2413405A 1990-12-21 1990-12-21 Wear-resistant hard coating, method for forming the same, and wear-resistant hard coating-coated tool Expired - Lifetime JP3045184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2413405A JP3045184B2 (en) 1990-12-21 1990-12-21 Wear-resistant hard coating, method for forming the same, and wear-resistant hard coating-coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2413405A JP3045184B2 (en) 1990-12-21 1990-12-21 Wear-resistant hard coating, method for forming the same, and wear-resistant hard coating-coated tool

Publications (2)

Publication Number Publication Date
JPH04221057A true JPH04221057A (en) 1992-08-11
JP3045184B2 JP3045184B2 (en) 2000-05-29

Family

ID=18522057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413405A Expired - Lifetime JP3045184B2 (en) 1990-12-21 1990-12-21 Wear-resistant hard coating, method for forming the same, and wear-resistant hard coating-coated tool

Country Status (1)

Country Link
JP (1) JP3045184B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846784A2 (en) * 1996-12-04 1998-06-10 Sumitomo Electric Industries, Ltd. Coated tool and method of manufacturing the same
JPH10237628A (en) * 1997-02-20 1998-09-08 Sumitomo Electric Ind Ltd Coated tool and its production
US6065910A (en) * 1997-07-07 2000-05-23 Mitsubishi Heavy Industries, Ltd. Gear shaper cutting method and apparatus
US6116828A (en) * 1997-04-10 2000-09-12 Mitsubishi Heavy Industries, Ltd. Gear cutting method and apparatus
US6296928B1 (en) 1998-10-27 2001-10-02 Mmc Kobelco Tool Co., Ltd. Hard coating coated member having excellent wear resistance
US6416262B1 (en) 1998-04-01 2002-07-09 Mitsubishi Heavy Industries, Ltd. Gear shaping method and device and spiral bevel gear cutter
WO2006114610A1 (en) * 2005-04-27 2006-11-02 Sheffield Hallam University Pvd coated substrate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846784A2 (en) * 1996-12-04 1998-06-10 Sumitomo Electric Industries, Ltd. Coated tool and method of manufacturing the same
EP0846784A3 (en) * 1996-12-04 2000-12-20 Sumitomo Electric Industries, Ltd. Coated tool and method of manufacturing the same
JPH10237628A (en) * 1997-02-20 1998-09-08 Sumitomo Electric Ind Ltd Coated tool and its production
JP4528373B2 (en) * 1997-02-20 2010-08-18 住友電工ハードメタル株式会社 Coated tool and manufacturing method thereof
US6116828A (en) * 1997-04-10 2000-09-12 Mitsubishi Heavy Industries, Ltd. Gear cutting method and apparatus
US6065910A (en) * 1997-07-07 2000-05-23 Mitsubishi Heavy Industries, Ltd. Gear shaper cutting method and apparatus
US6416262B1 (en) 1998-04-01 2002-07-09 Mitsubishi Heavy Industries, Ltd. Gear shaping method and device and spiral bevel gear cutter
US6296928B1 (en) 1998-10-27 2001-10-02 Mmc Kobelco Tool Co., Ltd. Hard coating coated member having excellent wear resistance
WO2006114610A1 (en) * 2005-04-27 2006-11-02 Sheffield Hallam University Pvd coated substrate
GB2425780A (en) * 2005-04-27 2006-11-08 Univ Sheffield Hallam PVD carbonitride coating
GB2425780B (en) * 2005-04-27 2007-09-05 Univ Sheffield Hallam PVD coated substrate
US8173248B2 (en) 2005-04-27 2012-05-08 Sheffield Hallam University PVD coated substrate

Also Published As

Publication number Publication date
JP3045184B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JP2793773B2 (en) Hard coating, hard coating tool and hard coating member excellent in wear resistance
JP2644710B2 (en) Abrasion resistant coating
JP2638406B2 (en) Wear resistant multilayer hard film structure
Randhawa Cathodic arc plasma deposition technology
US7067191B2 (en) Method to increase wear resistance of a tool or other machine component
JP3488526B2 (en) Hard coatings and hard coatings with excellent wear resistance
US5318840A (en) Wear resistant coating films and their coated articles
US8133598B2 (en) Hard coating film, method of formation thereof, and material coated with hard coating film
JP3480086B2 (en) Hard layer coated cutting tool
KR20100034013A (en) Tool with multilayered metal oxide coating and method for producing the coated tool
WO1991005075A1 (en) Surface-coated hard member for cutting and abrasion-resistant tools
JPH07157862A (en) Wear resistant and welding resistant hard film-coated tool and production thereof
JPH04221057A (en) Formation of wear resistant hard coating film
JP3572728B2 (en) Hard layer coated cutting tool
JP2580330B2 (en) Wear resistant coating
JP2840541B2 (en) Hard coating, hard coating tool and hard coating member excellent in wear resistance
JPH04297568A (en) Surface coated member excellent in wear resistance and formation of film
JPH10317123A (en) Crystalline oriented hard coated member
KR20030062049A (en) Method to improve wear resistance and toughness of coated cutting tools
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JP2867605B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JP2633622B2 (en) Wear-resistant composite members for machine tools
JP2913763B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JPH07197235A (en) Member coated with wear resistant film
JP3679078B2 (en) Hard coating tool

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000208

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11