JPH04220556A - Remote field eddy flow testing device - Google Patents

Remote field eddy flow testing device

Info

Publication number
JPH04220556A
JPH04220556A JP2411877A JP41187790A JPH04220556A JP H04220556 A JPH04220556 A JP H04220556A JP 2411877 A JP2411877 A JP 2411877A JP 41187790 A JP41187790 A JP 41187790A JP H04220556 A JPH04220556 A JP H04220556A
Authority
JP
Japan
Prior art keywords
detection
coil
defect
tube
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2411877A
Other languages
Japanese (ja)
Inventor
Tatsuya Suzuki
達也 鈴木
Yoshihisa Shindo
進藤 嘉久
Hiroshi Hoshikawa
洋 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2411877A priority Critical patent/JPH04220556A/en
Publication of JPH04220556A publication Critical patent/JPH04220556A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable an interference signal due to a pipe supporting plate to be excluded and a defect to be detected even if there is the defect at a part where the pipe supporting plate of a heat-transfer pipe is located. CONSTITUTION:A detection coil 3 which is wound around a holder 6 at a tip part of a probe guide pipe 4 is divided into two portions in reference to an axis and detection coils 3a and 3b in semi-circular rind are connected differentially. The coils 3a and 3b are generated due to excitation of an excitation coil 2, receive an electromagnetic energy which flows into a test electrically conductive pipe 1, and then sends a difference signal of the detection voltage to an impedance analyzer 10. The analyzer 10 compares frequency and phase of the difference signal of an excitation voltage of the coil 2 and the coils 3a and 3b. While operating in this manner, the guide pipe 4 moves at a constant speed within the electrically conductive pipe 1. Then, if there is a defect 1a at a part where a pipe-supporting plate 14 is located, differentially connected coils 3a and 3b detect and erase each signal at half part of the supporting plate 14 but the detection signal of the defect remains. The difference signal of this detection signal is sent to the analyzer 10 and an X-Y plotter 13 displays the defect detection signal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えばナトリウム冷却
高速増殖炉の蒸気発生器等の熱交換器における伝熱管の
欠陥を検出するためのリモートフィールド渦流試験装置
の改良に係り、熱交換器伝熱管の供用期間中検査に使用
するものである。
[Field of Industrial Application] The present invention relates to an improvement of a remote field eddy current test device for detecting defects in heat transfer tubes in heat exchangers such as steam generators of sodium-cooled fast breeder reactors. This is used to inspect heat pipes during their service life.

【0002】0002

【従来の技術】リモートフィールド渦流試験の原理は、
図4に示すように管1の内部に挿入された励磁コイル2
より発生した電磁エネルギーは点線矢印のように管1の
周壁を透過して管1の外部に達した後、管1の外面に沿
って長手方向に伝播し、管径の2倍程度より遠方の位置
において、再び管1の周壁を透過して管1の内部に戻る
。管1の内部に戻った電磁エネルギーは、管周壁の情報
を含むので、管径の2倍程度より遠方の位置において検
出コイル3にて検出を行えば、良好な感度で管1の欠陥
を検出できる。また、電磁波が導体内部を通過する場合
には、その通過距離に比例して位相推移が生じるので、
検出信号の位相変位角から管肉厚変化分の検出ができる
[Prior art] The principle of remote field eddy current testing is
Excitation coil 2 inserted inside tube 1 as shown in FIG.
The generated electromagnetic energy passes through the circumferential wall of the tube 1 and reaches the outside of the tube 1 as indicated by the dotted arrow, and then propagates along the outer surface of the tube 1 in the longitudinal direction, reaching a point farther away than about twice the tube diameter. At this position, it passes through the peripheral wall of the tube 1 again and returns to the inside of the tube 1. The electromagnetic energy returned to the inside of the tube 1 contains information about the tube peripheral wall, so if the detection coil 3 performs detection at a position farther away than about twice the tube diameter, defects in the tube 1 can be detected with good sensitivity. can. Also, when electromagnetic waves pass inside a conductor, a phase shift occurs in proportion to the distance traveled, so
Changes in pipe wall thickness can be detected from the phase displacement angle of the detection signal.

【0003】実際にリモートフィールド渦流探傷を行う
ための装置の構成を図5によって説明すると、1は試験
伝熱管、2は励磁コイル、3は検出コイルで、この励磁
コイル2と検出コイル3は管1の管径の2倍程度以上の
間隔を存してプローブ案内管4の先端部に固設したホル
ダー5,6に巻装されている。プローブ案内管4の基端
部に駆動部7が設けられている。インピーダンスアナラ
イザ10には発信器9が内蔵されており、発信器9から
の発信出力は出力増幅器11を経て励磁コイル2を励磁
するようになっている。そして励磁コイル励磁電圧がイ
ンピーダンスアナライザ10に送られるようになってい
る。励磁コイル2の励磁により発生する電磁エネルギー
は、一旦管1外へ通り抜け、管1の外周に沿って長手方
向に伝播し、再び管1内に流入した後検出コイル3で受
信され、その検出電圧が前記インピーダンスアナライザ
10に送られるようになっている。尚、12はデジボル
、13はX−Yプロッタである。
The configuration of an apparatus for actually performing remote field eddy current flaw detection will be explained with reference to FIG. 5. 1 is a test heat transfer tube, 2 is an excitation coil, and 3 is a detection coil. The probe guide tube 4 is wound around holders 5 and 6 fixed to the tip of the probe guide tube 4 with an interval of about twice the tube diameter of the probe guide tube 4 or more. A driving section 7 is provided at the proximal end of the probe guide tube 4 . The impedance analyzer 10 has a built-in oscillator 9, and the output from the oscillator 9 passes through an output amplifier 11 to excite the exciting coil 2. The excitation coil excitation voltage is then sent to the impedance analyzer 10. The electromagnetic energy generated by excitation of the excitation coil 2 passes through the tube 1, propagates along the outer circumference of the tube 1 in the longitudinal direction, flows into the tube 1 again, is received by the detection coil 3, and is detected by the detection voltage. is sent to the impedance analyzer 10. Note that 12 is a digivolt, and 13 is an X-Y plotter.

【0004】このように構成された従来のリモートフィ
ールド渦流試験装置による試験伝熱管の人工欠陥の検出
について説明すると、図5に示すように試験伝熱管1内
にプローブ案内管4を挿入し、インピーダンスアナライ
ザ10の発信器9から出力を発信し、その発信出力を出
力増幅器11で増幅した上、励磁コイル2を励磁する。 この時の励磁コイル励磁電圧はインピーダンスアナライ
ザ10に送られる。励磁コイル2の励磁により発生した
電磁エネルギーは一旦伝熱管1外に通り抜けるが、再び
伝熱管1内に流入する。この流入した電磁エネルギーは
検出コイル3で受信され、検出コイル3の検出電圧がイ
ンピーダンスアナライザ10に送られる。そして励磁コ
イル励磁電圧と検出コイル3の検出電圧により位相角信
号を得る。このような作動を行いつつプローブ案内管4
を試験伝熱管1内を10〜30mm/sec 程度の速
度で矢印のように移動することにより位相角信号により
、X−Yプロッタ13に欠陥検出信号が表示される。
To explain the detection of artificial defects in a test heat exchanger tube using the conventional remote field eddy current testing apparatus configured as described above, as shown in FIG. An output is transmitted from the oscillator 9 of the analyzer 10, and the output is amplified by the output amplifier 11, and then the excitation coil 2 is excited. The excitation coil excitation voltage at this time is sent to the impedance analyzer 10. The electromagnetic energy generated by the excitation of the excitation coil 2 passes outside the heat exchanger tube 1 once, but flows into the heat exchanger tube 1 again. This flowing electromagnetic energy is received by the detection coil 3, and the detected voltage of the detection coil 3 is sent to the impedance analyzer 10. Then, a phase angle signal is obtained from the excitation voltage of the excitation coil and the detection voltage of the detection coil 3. While performing such operations, the probe guide tube 4
A defect detection signal is displayed on the X-Y plotter 13 using a phase angle signal by moving the test tube 1 at a speed of about 10 to 30 mm/sec as shown by the arrow.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記のリモ
ートフィールド渦流試験装置では、図6に示すように伝
熱管1の管支持板14が位置する部分に欠陥(周方向に
均一に分布しない局部減肉)1aがあった場合には、欠
陥検出信号が管支持板14の信号よりも小さいため、欠
陥検出信号は管支持板14の信号に打消されて、欠陥検
出ができないものである。
[Problems to be Solved by the Invention] However, in the remote field eddy current testing device described above, as shown in FIG. In the case where there is 1a, the defect detection signal is smaller than the signal from the tube support plate 14, so the defect detection signal is canceled by the signal from the tube support plate 14, making it impossible to detect the defect.

【0006】そこで本発明は、伝熱管の管支持板が位置
する部分に欠陥がある場合にも管支持板による妨害信号
を排除し、欠陥の検出を可能にしたリモートフィールド
渦流試験装置を提供しようとするものである。
Therefore, the present invention provides a remote field eddy current testing device that eliminates interference signals caused by the tube support plate and makes it possible to detect defects even if there is a defect in the portion of the heat exchanger tube where the tube support plate is located. That is.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明のリモートフィールド渦流試験装置は、プロー
ブ案内管の外周に、試験伝熱管の管径の2倍程度以上の
間隔を存して保持固定された検出コイル及び励磁コイル
と、励磁コイルを励磁する出力を発する発信器を内蔵し
、励磁コイルの励磁電圧と検出コイルの検出電圧の高さ
及び位相を比較するインピーダンスアナライザと、前記
発信器からの発信出力を増幅する出力増幅器とからなる
リモートフィールド渦流試験装置において、前記検出コ
イルを周方向で複数個に分割絶縁した構成となし、少く
とも一対の検出コイルの信号差を、検出コイルどうしを
差動的に接続することにより、または各々の検出コイル
をそれぞれインピーダンスアナライザに接続し、インピ
ーダンスアナライザの出力を減算処理することにより、
得られるようにしたことを特徴とするものである。
[Means for Solving the Problems] A remote field eddy current test device of the present invention for solving the above problems has an interval on the outer periphery of the probe guide tube that is approximately twice or more the tube diameter of the test heat transfer tube. an impedance analyzer that includes a fixed detection coil and an excitation coil, a transmitter that emits an output to excite the excitation coil, and compares the height and phase of the excitation voltage of the excitation coil and the detected voltage of the detection coil; In a remote field eddy current test device consisting of an output amplifier that amplifies the output output from the detector, the detection coil is divided into a plurality of insulated parts in the circumferential direction, and the signal difference between at least one pair of detection coils is detected by the detection coil. By differentially connecting them, or by connecting each detection coil to an impedance analyzer and subtracting the output of the impedance analyzer,
It is characterized in that it can be obtained.

【0008】[0008]

【作用】上記構成のリモートフィールド渦流試験装置は
、少くとも一対の検出コイルの信号差を、検出コイルど
うしを差動的に接続することにより、または各々の検出
コイルをそれぞれインピーダンスアナライザに接続し、
インピーダンスアナライザの出力を減算処理することに
より、得られるようにしたので、伝熱管の欠陥検出時、
管支持板が位置する部分に欠陥があった場合、一対の検
出コイルのうち欠陥のある方の検出コイルでは、欠陥信
号と支持板信号の和が検出され、欠陥のない方の検出コ
イルでは支持板信号のみが検出される。この信号の差を
とることにより、管支持板の信号が消去され、欠陥信号
が消去されず残る。従って、管支持板が位置する部分で
の伝熱管の欠陥を検出することができる。
[Operation] The remote field eddy current test device configured as described above detects the signal difference between at least one pair of detection coils by differentially connecting the detection coils, or by connecting each detection coil to an impedance analyzer,
This is obtained by subtracting the output of the impedance analyzer, so when detecting defects in heat exchanger tubes,
If there is a defect in the part where the tube support plate is located, the defective one of the pair of detection coils will detect the sum of the defect signal and the support plate signal, and the non-defect detection coil will detect the support plate signal. Only plate signals are detected. By taking the difference between these signals, the signal of the tube support plate is erased, and the defect signal remains without being erased. Therefore, it is possible to detect defects in the heat exchanger tube at the portion where the tube support plate is located.

【0009】[0009]

【実施例】本発明のリモールフィールド試験装置の一実
施例を図1によって説明する。図1中、図5と同一符号
は同一物を示すので、その説明を省略する。プローブ案
内管4の先端部に固設したホルダー6に巻装された検出
コイル3は、図2に示すように周方向で軸対称に2分割
され、この2分割された半円リング状の検出コイル3a
,3bが絶縁され、各々の検出コイルが差動的に結線さ
れ、さらにインピーダンスアナライザ10に接続されて
いる。
[Embodiment] An embodiment of the remote field testing apparatus of the present invention will be explained with reference to FIG. In FIG. 1, the same reference numerals as those in FIG. 5 indicate the same parts, so the explanation thereof will be omitted. The detection coil 3 wound around a holder 6 fixed at the tip of the probe guide tube 4 is divided into two axially symmetrical parts in the circumferential direction as shown in FIG. Coil 3a
, 3b are insulated, and each detection coil is differentially wired and further connected to an impedance analyzer 10.

【0010】このように構成されたリモートフィールド
渦流試験装置は、図1,図2に示すようにプローブ案内
管4を試験伝熱管1内に挿入し、インピーダンスアナラ
イザ10の発信器9から出力を発信し、その発信出力を
出力増幅器11で増幅した上、励磁コイル2を励磁する
。この時励磁コイル励磁電圧はインピーダンスアナライ
ザ10に送られる。励磁コイル2の励磁により発生した
電磁エネルギーは一旦試験伝熱管1外へ通り抜けるが、
再び試験伝熱管1内に流入する。この流入した電磁エネ
ルギーは半円リングの差動的に結線された検出コイル3
a,3bで受信され、検出コイル3a,3bの検出電圧
の差信号がインピーダンスアナライザ10に送られる。 そして励磁コイル励磁電圧と検出コイル3a,3bの検
出電圧の差信号の高さ及び位相が比較される。このよう
な作動を行いつつプローブ案内管4を試験伝熱管1内を
10〜30mm/sec 程度の速度で矢印のように移
動する。そして図1に示すように試験伝熱管1の管支持
板14が位置する部分に欠陥(周方向に均一に分布しな
い局部減肉)1aがあった場合、一対の検出コイル3a
,3bが軸対称の管支持板14の片半部の信号を各々検
出するが、検出コイル3a,3bが差動的に結線されて
いるため管支持板14の各々の片半部の信号が消去され
、管支持板14の一方の片半部にある欠陥の検出信号が
消去されずに残り、この検出信号の差信号がインピーダ
ンスアナライザ10に送られ、X−Yプロッタ13に振
幅変化及び位相変化による欠陥検出信号が表示され、管
支持板14が位置する部分での試験伝熱管1の欠陥1a
を検出することができる。以後プローブ案内管4の移動
により管支持板14が位置しない部分での試験伝熱管1
の欠陥1b〜1fは従来と同様に検出できる。
[0010] In the remote field eddy current test apparatus configured as described above, the probe guide tube 4 is inserted into the test heat transfer tube 1 as shown in FIGS. 1 and 2, and the output is transmitted from the transmitter 9 of the impedance analyzer 10. The transmitted output is amplified by the output amplifier 11, and the excitation coil 2 is excited. At this time, the excitation coil excitation voltage is sent to the impedance analyzer 10. The electromagnetic energy generated by the excitation of the excitation coil 2 passes through the test heat exchanger tube 1, but
It flows into the test heat exchanger tube 1 again. This inflow electromagnetic energy is transferred to the differentially connected detection coil 3 of the semicircular ring.
a and 3b, and a difference signal between the detection voltages of the detection coils 3a and 3b is sent to the impedance analyzer 10. Then, the height and phase of the difference signal between the excitation coil excitation voltage and the detection voltages of the detection coils 3a and 3b are compared. While carrying out such operations, the probe guide tube 4 is moved inside the test heat exchanger tube 1 at a speed of about 10 to 30 mm/sec as shown by the arrow. As shown in FIG. 1, if there is a defect (local thinning that is not uniformly distributed in the circumferential direction) 1a in the portion of the test heat exchanger tube 1 where the tube support plate 14 is located, a pair of detection coils 3a
, 3b detect the signals of each half of the tube support plate 14 which are axially symmetrical, but since the detection coils 3a and 3b are differentially connected, the signals of each half of the tube support plate 14 are The detection signal of the defect on one half of the tube support plate 14 remains without being erased, and the difference signal of this detection signal is sent to the impedance analyzer 10, and the X-Y plotter 13 shows the amplitude change and phase. The defect detection signal due to the change is displayed, and the defect 1a of the test heat exchanger tube 1 is displayed at the part where the tube support plate 14 is located.
can be detected. Thereafter, due to the movement of the probe guide tube 4, the test heat exchanger tube 1 was
The defects 1b to 1f can be detected in the same manner as in the conventional method.

【0011】上記実施例は、検出コイル3を周方向で軸
対称に分割し、この2分割の検出コイル3a,3bを差
動的に結線したものであるが、検出コイル3は図3に示
すように周方向で多数に、本例では9分割し、この9分
割の検出コイル3′a〜3′iを差動的に結線しても良
いものである。この各検出コイル3′a〜3′iはホル
ダー6上に支持され、夫々が絶縁されている。
In the above embodiment, the detection coil 3 is divided axially symmetrically in the circumferential direction, and the two divided detection coils 3a and 3b are differentially connected.The detection coil 3 is shown in FIG. The detection coils 3'a to 3'i may be divided into a large number of parts in the circumferential direction, nine in this example, and connected differentially to the nine parts. Each of the detection coils 3'a to 3'i is supported on a holder 6 and is insulated from each other.

【0012】この実施例のリモートフィールド渦流試験
装置も前記実施例のリモートフィールド渦流試験装置と
同様に使用して試験伝熱管1の欠陥を検出するもので、
図1に示すように試験伝熱管1の管支持板14が位置す
る部分に欠陥(周方向に均一に分布しない局部減肉)1
aがあった場合、少くとも一対の検出コイルでもって管
支持板14の軸対称部分の信号を各々検出するが、検出
コイルを差動的に接続することにより管支持板14の軸
対称部分の信号が消去され、管支持板14の欠陥の検出
信号が消去されずに残り、この差信号がインピーダンス
アナライザ10に送られ、X−Yプロッタ13に振幅変
化及び位相変化による欠陥検出信号が表示され、管支持
板14が位置する部分での試験伝熱管1の欠陥1aを検
出することができる。以後プローブ案内管4の移動によ
り、管支持板14が位置しない部分での試験伝熱管1の
欠陥1b〜1fは従来と同様に検出できる。
The remote field eddy current testing device of this embodiment is also used to detect defects in the test heat transfer tube 1 in the same manner as the remote field eddy current testing device of the previous embodiment.
As shown in FIG. 1, there is a defect (local thinning that is not uniformly distributed in the circumferential direction) 1 in the part where the tube support plate 14 of the test heat exchanger tube 1 is located.
a, the signals of the axially symmetrical portions of the tube support plate 14 are detected by at least one pair of detection coils, but by differentially connecting the detection coils, the signals of the axially symmetrical portions of the tube support plate 14 are detected. The signal is erased, the defect detection signal of the tube support plate 14 remains without being erased, and this difference signal is sent to the impedance analyzer 10, and the defect detection signal based on the amplitude change and phase change is displayed on the X-Y plotter 13. , it is possible to detect the defect 1a of the test heat exchanger tube 1 in the portion where the tube support plate 14 is located. Thereafter, by moving the probe guide tube 4, defects 1b to 1f of the test heat exchanger tube 1 in the portion where the tube support plate 14 is not located can be detected in the same manner as in the conventional method.

【0013】[0013]

【発明の効果】以上の通り本発明のリモートフィールド
渦流試験装置によれば、伝熱管の欠陥検出時、管支持板
が位置する部分に局部減肉等の欠陥があっても一対の検
出コイルが軸対称の管支持板の信号を検出し、この信号
の差を検出コイルどうしを差動的に接続することにより
、または各々の検出コイルをそれぞれインピーダンスア
ナライザに接続し、インピーダンスアナライザの出力を
減算処理することにより、得られるようにしたので、管
支持板の信号のみ消去され、欠陥信号が消去されずに残
る。従って、管支持板が位置する部分での伝熱管の欠陥
を検出することができる。
As described above, according to the remote field eddy current testing device of the present invention, when detecting a defect in a heat transfer tube, even if there is a defect such as local thinning in the portion where the tube support plate is located, the pair of detection coils Detect the signal of the axially symmetrical tube support plate and calculate the difference between the signals by differentially connecting the detection coils, or by connecting each detection coil to an impedance analyzer and subtracting the output of the impedance analyzer. As a result, only the signal of the tube support plate is erased, and the defect signal remains without being erased. Therefore, it is possible to detect defects in the heat exchanger tube at the portion where the tube support plate is located.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のリモールフィールド渦流試験装置の一
実施例を示す側面図である。
FIG. 1 is a side view showing an embodiment of the remote field eddy current testing device of the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along the line AA in FIG. 1;

【図3】本発明のリモートフィールド渦流試験装置の他
の実施例における検出コイルの断面図である。
FIG. 3 is a sectional view of a detection coil in another embodiment of the remote field eddy current testing device of the present invention.

【図4】リモートフィールド渦流試験の原理を示す図で
ある。
FIG. 4 is a diagram showing the principle of remote field eddy current testing.

【図5】リモートフィールド渦流試験装置の従来例を示
す側面図である。
FIG. 5 is a side view showing a conventional example of a remote field eddy current test device.

【図6】伝熱管の管支持板が位置する部分に欠陥がある
状態を示す図である。
FIG. 6 is a diagram showing a state in which there is a defect in the portion of the heat exchanger tube where the tube support plate is located.

【符号の説明】 1    試験伝熱管 2    励磁コイル 3    検出コイル 3a,3b    一対の分割した検出コイル3′a〜
3′i    多数の分割した検出コイル4    プ
ローブ案内管 5,6    ホルダー 7    駆動部 9    発信器 10    インピーダンスアナライザ11    出
力増幅器
[Explanation of symbols] 1 Test heat exchanger tube 2 Excitation coil 3 Detection coils 3a, 3b A pair of divided detection coils 3'a~
3'i Multiple divided detection coils 4 Probe guide tubes 5, 6 Holder 7 Drive section 9 Transmitter 10 Impedance analyzer 11 Output amplifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  プローブ案内管の外周に、試験伝熱管
の管径の2倍程度以上の間隔を存して保持固定された検
出コイル及び励磁コイルと、励磁コイルを励磁する出力
を発する発信器を内蔵し、励磁コイルの励磁電圧と検出
コイルの検出電圧の高さ及び位相を比較するインピーダ
ンスアナライザと、前記発信器からの発信出力を増幅す
る出力増幅器とからなるリモートフィールド渦流試験装
置において、前記検出コイルを周方向で複数個に分割絶
縁した構成となし、少くとも一対の検出コイルの信号差
を、検出コイルどうしを差動的に接続することにより、
または各々の検出コイルをそれぞれインピーダンスアナ
ライザに接続し、インピーダンスアナライザの出力を減
算処理することにより、得られるようにしたことを特徴
とするリモートフィールド渦流試験装置。
Claim 1: A detection coil and an excitation coil held and fixed on the outer periphery of the probe guide tube with an interval of approximately twice the tube diameter of the test heat exchanger tube or more, and a transmitter that emits an output to excite the excitation coil. In the remote field eddy current test device, the remote field eddy current test device includes an impedance analyzer that has a built-in impedance analyzer that compares the height and phase of the excitation voltage of the excitation coil and the detection voltage of the detection coil, and an output amplifier that amplifies the transmission output from the oscillator. The detection coil is divided and insulated into a plurality of pieces in the circumferential direction, and the signal difference between at least one pair of detection coils is detected by differentially connecting the detection coils.
Alternatively, a remote field eddy current test device characterized in that the detection coils are connected to respective impedance analyzers and the outputs of the impedance analyzers are subtracted.
JP2411877A 1990-12-20 1990-12-20 Remote field eddy flow testing device Pending JPH04220556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2411877A JPH04220556A (en) 1990-12-20 1990-12-20 Remote field eddy flow testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2411877A JPH04220556A (en) 1990-12-20 1990-12-20 Remote field eddy flow testing device

Publications (1)

Publication Number Publication Date
JPH04220556A true JPH04220556A (en) 1992-08-11

Family

ID=18520798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2411877A Pending JPH04220556A (en) 1990-12-20 1990-12-20 Remote field eddy flow testing device

Country Status (1)

Country Link
JP (1) JPH04220556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127665A (en) * 2008-11-26 2010-06-10 Japan Atomic Energy Agency Eddy current flaw detection system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298052A (en) * 1987-02-19 1988-12-05 アトミック エナジー オブ カナダ リミテツド Eddy current probe
JPS6435261A (en) * 1987-07-30 1989-02-06 Mitsubishi Heavy Ind Ltd Probe for isolated eddy current
JPH03120457A (en) * 1989-10-03 1991-05-22 Idemitsu Eng Co Ltd Method and apparatus for eddy current flaw detection of ferromagnetic metallic pipe
JPH04125464A (en) * 1990-09-18 1992-04-24 Ishikawajima Harima Heavy Ind Co Ltd Eddy current test method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298052A (en) * 1987-02-19 1988-12-05 アトミック エナジー オブ カナダ リミテツド Eddy current probe
JPS6435261A (en) * 1987-07-30 1989-02-06 Mitsubishi Heavy Ind Ltd Probe for isolated eddy current
JPH03120457A (en) * 1989-10-03 1991-05-22 Idemitsu Eng Co Ltd Method and apparatus for eddy current flaw detection of ferromagnetic metallic pipe
JPH04125464A (en) * 1990-09-18 1992-04-24 Ishikawajima Harima Heavy Ind Co Ltd Eddy current test method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127665A (en) * 2008-11-26 2010-06-10 Japan Atomic Energy Agency Eddy current flaw detection system

Similar Documents

Publication Publication Date Title
US4808927A (en) Circumferentially compensating eddy current probe with alternately polarized receiver coil
JP3406649B2 (en) An eddy current probe with a differential transmission / reception method including a wrist-shaped cylinder composed of multiple coil units
US6456066B1 (en) Eddy current pipeline inspection device and method
CN105241952B (en) A kind of channel bend defect inspection method and detection means based on far-field eddy
KR20060131748A (en) Method and system for torsional wave inspection of heat exchanger tubes
JPS63109367A (en) Flaw detecting sensor for conductive body
JPH01123143A (en) Method and apparatus for detection of flaw by eddy current
Sadek NDE technologies for the examination of heat exchangers and boiler tubes-principles, advantages and limitations
CA2274562C (en) Method and apparatus for scanning a plurality of parallel pipes using tube-to-tube through transmission
KR101966168B1 (en) Eddy Current Inspection Apparatus for Nondestructive Test
JPH09189682A (en) Method for inspecting flaw
JP2008032508A (en) Piping inspection device and piping inspection method
Sun et al. A remote field eddy current NDT probe for the inspection of metallic plates
JPH04220556A (en) Remote field eddy flow testing device
KR101977921B1 (en) A nondestructive testing apparatus including spiral direction current induction means
JPH11133003A (en) Ppm electromagnetic ultrasonic transducer and device and method for detecting flaw using ppm electromagnetic ultrasonic transducer
JP2004251839A (en) Pipe inner surface flaw inspection device
JP3769067B2 (en) Defect detection method and apparatus for stretched workpiece
KR100360978B1 (en) Nondestructive RFEC inspection system for tube in tubes
CN210834769U (en) Pulse eddy current inspection probe for omnibearing detection of internal defects of small-diameter tube bundle
JPH10288606A (en) Rotary-type eddy current flaw detecting probe
JPH02126153A (en) Tube inspecting device using remote field eddy current method
JP5145073B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
JPH10508374A (en) Eddy current hybrid probe
JPH01201151A (en) Method and apparatus for inspecting internal corrosion of pipe or tube with relatively small diameter