JPH04218760A - Manufacture of gas sensor - Google Patents

Manufacture of gas sensor

Info

Publication number
JPH04218760A
JPH04218760A JP40339690A JP40339690A JPH04218760A JP H04218760 A JPH04218760 A JP H04218760A JP 40339690 A JP40339690 A JP 40339690A JP 40339690 A JP40339690 A JP 40339690A JP H04218760 A JPH04218760 A JP H04218760A
Authority
JP
Japan
Prior art keywords
gas
oxide semiconductor
noble metal
gas sensor
gas sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40339690A
Other languages
Japanese (ja)
Inventor
Hidetoshi Umemoto
梅本 秀利
Shinichi Ochiwa
小知和 眞一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP40339690A priority Critical patent/JPH04218760A/en
Publication of JPH04218760A publication Critical patent/JPH04218760A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To furnish a manufacturing method of a gas sensor which can monitor a carbonic acid gas continuously. CONSTITUTION:After a gas sensitive body constituted of an oxide semiconductor is formed on a substrate, it is impregnated with a noble metal salt solution and subjected to heat treatment, so that a noble metal is borne by the oxide semiconductor. Thereby the temperature whereat oxygen adsorbed on the oxide semiconductor reacts with a carbonic acid gas efficiently is shifted onto the high temperature side, adsorption of water in air is prevented and monitoring is conducted continuously.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はn型金属酸化物半導体
をガス感応体として一酸化炭素ガスを検知するガスセン
サの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gas sensor for detecting carbon monoxide gas using an n-type metal oxide semiconductor as a gas sensitive material.

【0002】0002

【従来の技術】酸化スズ,酸化亜鉛等のn型金属酸化物
半導体は大気中で200〜500℃の温度に加熱される
と、酸化物の粒子表面に大気中の酸素を活性化吸着し、
表面が高抵抗化する。活性化吸着した酸素に可燃性ガス
が接触すると、吸着酸素が可燃性ガスと反応して、吸着
酸素が除去され電気抵抗値が減少する。このような性質
を利用して例えば酸化スズ系半導体をガス感応体とした
ガスセンサはLPガス,都市ガスなどのガス漏れ警報器
に広く用いられている。
[Prior Art] When n-type metal oxide semiconductors such as tin oxide and zinc oxide are heated to a temperature of 200 to 500°C in the atmosphere, they activate and adsorb oxygen in the atmosphere on the surface of the oxide particles.
The surface becomes highly resistive. When activated and adsorbed oxygen comes into contact with flammable gas, the adsorbed oxygen reacts with the combustible gas, the adsorbed oxygen is removed, and the electrical resistance value decreases. Utilizing these properties, gas sensors using, for example, tin oxide semiconductors as gas sensing bodies are widely used in gas leak alarms for LP gas, city gas, and the like.

【0003】酸化スズ系半導体のセンサへの他の応用と
しては、センサ技術Vol7, NO.13, ’87
  12月号p44に記載されているように一酸化炭素
ガス検知用センサがある。このセンサは酸化スズ半導体
にパラジウムPdを添加して焼結して調製され、100
℃以下のセンサ温度で駆動される。前記温度において一
酸化炭素ガスの検知感度が高いからである。
Another application of tin oxide based semiconductors to sensors is Sensor Technology Vol. 7, No. 13, '87
As described on page 44 of the December issue, there is a sensor for detecting carbon monoxide gas. This sensor is prepared by adding palladium (Pd) to a tin oxide semiconductor and sintering it.
Driven at sensor temperature below ℃. This is because the detection sensitivity of carbon monoxide gas is high at the above temperature.

【0004】0004

【発明が解決しようとする課題】しかしながらこのよう
な一酸化炭素ガスセンサは感度は高いものの空気中の水
分を吸着するために、使用につれて応答速度がおそくな
り、周期的にセンサ温度を250℃以上に昇温してクリ
ーニングする必要があり、そのために連続的な一酸化炭
素の検知が不可能であるうえ、タイマや二種類のヒータ
電源を備えてコスト高になるなどの問題があった。給湯
器,ファンヒータ等の不完全燃焼をモニタするには間欠
的な測定では不充分であり、連続的に一酸化炭素を検知
する必要があった。
[Problems to be Solved by the Invention] However, although such a carbon monoxide gas sensor has high sensitivity, since it adsorbs moisture in the air, the response speed becomes slow as it is used, and the sensor temperature is periodically raised to 250°C or higher. It is necessary to raise the temperature and clean it, which makes it impossible to continuously detect carbon monoxide, and it also has problems such as a timer and two types of heater power supplies, which increases the cost. Intermittent measurements are insufficient to monitor incomplete combustion in water heaters, fan heaters, etc., and it is necessary to continuously detect carbon monoxide.

【0005】この発明は上述の点に鑑みてなされ、その
目的は水分を吸着しないような高い温度で一酸化炭素ガ
スを高感度に検知するようにして一酸化炭素を連続的に
モニタすることが可能なガスセンサの製造方法を提供す
ることにある。
[0005] The present invention was made in view of the above points, and its purpose is to continuously monitor carbon monoxide gas by detecting carbon monoxide gas with high sensitivity at a high temperature that does not adsorb moisture. An object of the present invention is to provide a method of manufacturing a gas sensor that is possible.

【0006】[0006]

【課題を解決するための手段】上述の目的はこの発明に
よれば第一の工程と第二の工程とを有し、第一の工程は
基板上に酸化物半導体からなるガス感応体を形成し、第
二の工程は前記ガス感応体に貴金属塩溶液を含浸させ、
次いで乾燥,熱処理してガス感応体に貴金属を担持させ
るものであるとすることにより達成される。
[Means for Solving the Problems] According to the present invention, the above-mentioned object has a first step and a second step, and the first step is to form a gas sensitive body made of an oxide semiconductor on a substrate. The second step is to impregnate the gas sensitive body with a noble metal salt solution,
This is achieved by drying and heat treating the gas sensitive material to support the noble metal.

【0007】[0007]

【作用】担持された貴金属は酸化物半導体表面に吸着し
た酸素と一酸化炭素ガスとの反応を所定温度において促
進させるが、本発明の製造方法による貴金属触媒は、こ
の反応温度を高温側に移動させる。
[Function] The supported noble metal accelerates the reaction between oxygen adsorbed on the surface of the oxide semiconductor and carbon monoxide gas at a certain temperature, but the noble metal catalyst produced by the production method of the present invention shifts this reaction temperature to a higher temperature side. let

【0008】[0008]

【実施例】次にこの発明の実施例を図面に基いて説明す
る。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings.

【0009】図1はこの発明の実施例に係るガスセンサ
を示す断面図でアルミナ製の基板1の上に白金電極5A
,5B、ヒータ4、貴金属を担持した酸化スズガス感応
体2が形成されている。
FIG. 1 is a sectional view showing a gas sensor according to an embodiment of the present invention, in which a platinum electrode 5A is placed on a substrate 1 made of alumina.
, 5B, a heater 4, and a tin oxide gas sensitive body 2 supporting a noble metal.

【0010】このようなガスセンサは以下のようにして
調製される。粒径3μmの酸化スズ粉末に、カルビトー
ル,エチルセルロースおよびコロイダルシリカを添加し
、らいかい機にて混練・分散して酸化スズペーストを作
製した。次いでこのペーストを用いて図1に示すような
96%アルミナ製の基板1上にスクリーン印刷法により
ガス感応体2を印刷した。次いで温度120℃で2h乾
燥後温度700℃で15分間大気中で熱処理し基板上に
ガス感応体2を焼結させた。
[0010] Such a gas sensor is prepared as follows. Carbitol, ethyl cellulose, and colloidal silica were added to tin oxide powder with a particle size of 3 μm, and the mixture was kneaded and dispersed using a sieve machine to prepare a tin oxide paste. Next, using this paste, a gas sensitive member 2 was printed on a substrate 1 made of 96% alumina as shown in FIG. 1 by screen printing. Next, after drying at a temperature of 120° C. for 2 hours, heat treatment was performed in the air at a temperature of 700° C. for 15 minutes to sinter the gas sensitive body 2 on the substrate.

【0011】次に、塩化パラジウム二水塩を塩酸酸性水
溶液中に溶解し、この液中にガス感応体2の形成された
基板1を浸漬した。浸漬後乾燥し大気中で温度700℃
で30分間熱処理して、塩化パラジウムを分解した。な
お酸化スズ中のパラジウムの含有量は0.5重量%とな
るように液濃度を調整した。
Next, palladium chloride dihydrate was dissolved in an acidic aqueous solution of hydrochloric acid, and the substrate 1 on which the gas sensitive member 2 was formed was immersed in this solution. After soaking, dry in the air at a temperature of 700℃.
The palladium chloride was decomposed by heat treatment for 30 minutes. The liquid concentration was adjusted so that the content of palladium in tin oxide was 0.5% by weight.

【0012】比較のため従来法によるセンサを以下のよ
うにして作製した。上述と同様の酸化スズ粉末を所定濃
度の塩化パラジウム溶液と混合し、蒸発乾固した後70
0℃温度で30分間熱処理して、酸化スズ粉末上にパラ
ジウムを析出させた。ここで塩化パラジウムの濃度,添
加量は酸化スズ粉末に対してパラジウムとして0.5重
量%となるように調製した。次に、このパラジウム付き
酸化スズ粉末に、上述と同様にしてカルビトール,エチ
ルセルロース,コロイダルシリカを添加しペーストを作
製した。このペーストを用いて上述と同様にしてアルミ
ナ基板1上にガス感応体2を印刷し、温度120℃で2
h乾燥し、700℃で15分間大気中で熱処理して基板
1上にガス感応体2を焼結させた。
For comparison, a conventional sensor was fabricated as follows. The same tin oxide powder as above was mixed with a palladium chloride solution of a predetermined concentration and evaporated to dryness.
Palladium was precipitated on the tin oxide powder by heat treatment at 0° C. for 30 minutes. Here, the concentration and amount of palladium chloride added were adjusted to be 0.5% by weight of palladium based on the tin oxide powder. Next, carbitol, ethyl cellulose, and colloidal silica were added to this palladium-attached tin oxide powder to prepare a paste in the same manner as described above. Using this paste, a gas sensitive material 2 was printed on the alumina substrate 1 in the same manner as described above, and the gas sensitive material 2 was printed at a temperature of 120°C.
h, and was dried and heat-treated in the air at 700° C. for 15 minutes to sinter the gas sensitive body 2 on the substrate 1.

【0013】本発明の製造方法に係るセンサ、および従
来法によるセンサにつき一酸化炭素ガスに対するガス感
度を測定した。測定にあたっては図1の基板1の裏面に
形成したヒータ4に電流を流し、センサ温度を300℃
に保持した。またガス感応体2には白金電極5A,5B
を介して直流電圧1Vを印加し、ガス感応体2に流れる
電流をガス感応体と直列につないだ負荷抵抗の端子電圧
から求めた。このようにして求めたガス感応体の抵抗は
一酸化炭素ガス中のものをRg,空気中のものをRoと
して(Ro/Rg)をガス感度とした。
Gas sensitivity to carbon monoxide gas was measured for the sensor according to the manufacturing method of the present invention and the sensor according to the conventional method. For measurement, a current is applied to the heater 4 formed on the back side of the substrate 1 in Fig. 1, and the sensor temperature is set to 300°C.
was held at In addition, the gas sensitive body 2 has platinum electrodes 5A and 5B.
A DC voltage of 1 V was applied through the gas sensitive element 2, and the current flowing through the gas sensitive element 2 was determined from the terminal voltage of a load resistor connected in series with the gas sensitive element. The resistance of the gas sensitive body thus determined was defined as Rg in carbon monoxide gas and Ro in air, and (Ro/Rg) was defined as gas sensitivity.

【0014】表1に本発明の製造法に係るガスセンサと
従来法によるガスセンサとにつきそのガス感度と90%
応答時間を対比して示す。測定ガスは一酸化炭素ガス2
00ppm 濃度であった。測定は20個のガスセンサ
で行い、その平均値を求めた。
Table 1 shows the gas sensitivity and 90% of the gas sensor according to the manufacturing method of the present invention and the gas sensor according to the conventional method.
Response times are shown in comparison. The measurement gas is carbon monoxide gas 2
The concentration was 00 ppm. Measurements were performed using 20 gas sensors, and the average value was calculated.

【0015】[0015]

【表1】[Table 1]

【0016】本発明の製造方法に係るガスセンサは従来
法によるガスセンサに比し約3倍のガス感度がある。9
0%応答時間は両者とも約10sであり、充分実用に供
し得る。
The gas sensor according to the manufacturing method of the present invention has about three times the gas sensitivity as compared to the gas sensor according to the conventional method. 9
The 0% response time for both is about 10 seconds, which is sufficient for practical use.

【0017】[0017]

【発明の効果】この発明によれば第一の工程と第二の工
程とを有し、第一の工程は基板上に酸化物半導体からな
るガス感応体を形成し、第二の工程は前記ガス感応体に
貴金属塩溶液を含浸させ、次いで乾燥,熱処理してガス
感応体に貴金属を担持させるものであるので、空気中の
水分を吸着することのない従来よりも高いセンサ温度に
おいて一酸化炭素ガスに対するガス感度の高いガスセン
サが得られ、その結果温度サイクルを印加する必要がな
く、高いセンサ温度で連続的に一酸化炭素ガスをモニタ
することが可能なガスセンサが得られる。
According to the present invention, there are a first step and a second step, the first step is to form a gas sensitive body made of an oxide semiconductor on a substrate, and the second step is to The gas sensitive material is impregnated with a noble metal salt solution, then dried and heat-treated to support the precious metal on the gas sensitive material. Therefore, carbon monoxide is absorbed at a higher sensor temperature than conventional sensors without adsorbing moisture in the air. A gas sensor with high sensitivity to gas is obtained, and as a result, a gas sensor that can continuously monitor carbon monoxide gas at a high sensor temperature without the need to apply a temperature cycle is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例に係るガスセンサを示す断面
FIG. 1 is a sectional view showing a gas sensor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    基板 2    ガス感応体 4    ヒータ 5A  白金電極 5B  白金電極 1    Substrate 2 Gas sensitive body 4 Heater 5A Platinum electrode 5B Platinum electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第一の工程と第二の工程とを有し、第一の
工程は基板上に酸化物半導体からなるガス感応体を形成
し、第二の工程は前記ガス感応体に貴金属塩溶液を含浸
させ、次いで乾燥,熱処理してガス感応体に貴金属を担
持させるものであることを特徴とするガスセンサの製造
方法。
Claim 1: A first step and a second step, wherein the first step is to form a gas sensitive body made of an oxide semiconductor on a substrate, and the second step is to form a noble metal on the gas sensitive body. 1. A method for producing a gas sensor, which comprises impregnating a salt solution, followed by drying and heat treatment to support a noble metal on a gas sensitive member.
【請求項2】請求項1記載の製造方法において、酸化物
半導体は酸化スズであることを特徴とするガスセンサの
製造方法。
2. The method of manufacturing a gas sensor according to claim 1, wherein the oxide semiconductor is tin oxide.
【請求項3】請求項1記載の製造方法において、ガス感
応体の形成は焼結によることを特徴とするガスセンサの
製造方法。
3. The method of manufacturing a gas sensor according to claim 1, wherein the gas sensitive body is formed by sintering.
【請求項4】請求項1記載の製造方法において、貴金属
塩は塩化パラジウムであることを特徴とするガスセンサ
の製造方法。
4. The method of manufacturing a gas sensor according to claim 1, wherein the noble metal salt is palladium chloride.
JP40339690A 1990-12-19 1990-12-19 Manufacture of gas sensor Pending JPH04218760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40339690A JPH04218760A (en) 1990-12-19 1990-12-19 Manufacture of gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40339690A JPH04218760A (en) 1990-12-19 1990-12-19 Manufacture of gas sensor

Publications (1)

Publication Number Publication Date
JPH04218760A true JPH04218760A (en) 1992-08-10

Family

ID=18513134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40339690A Pending JPH04218760A (en) 1990-12-19 1990-12-19 Manufacture of gas sensor

Country Status (1)

Country Link
JP (1) JPH04218760A (en)

Similar Documents

Publication Publication Date Title
US4911892A (en) Apparatus for simultaneous detection of target gases
US6660231B2 (en) Sensors for oxidizing gases
Morimitsu et al. Effects of surface modification with platinum and ruthenium on temperature and humidity dependence of SnO2-based CO gas sensors
Zhou et al. A sensitive film structure improvement of reduced graphene oxide based resistive gas sensors
CN111024777B (en) Tin oxide modified sensor, preparation method thereof and application thereof in gas-sensitive detection of nitric oxide
JPH0249466B2 (en)
JPH04218760A (en) Manufacture of gas sensor
Hattori et al. Ozone sensor made by dip coating method
Itoh et al. Effect of high-humidity aging on performance of tungsten oxide-type aromatic compound sensors
Kanefusa et al. The detection of H2 gas by metal phthalocyanine-based gas sensors
EP0261275B1 (en) A hydrogen gas detecting element and method of producing same
JP4041228B2 (en) CFC gas sensor and manufacturing method thereof
JPH0433387B2 (en)
JP3393504B2 (en) Contact combustion type carbon monoxide sensor
RU2403563C1 (en) Differential sensor for gas analyser
JPH0875691A (en) Gas sensor
JP3191544B2 (en) Thick film type gas sensor
KR100236334B1 (en) Ammonia gas sensor and method for fabricating the same and method for detecting ammonia gas
JP2513274B2 (en) Gas sensor
JPS6029898B2 (en) Gas and moisture sensing elements
RU91763U1 (en) DIFFERENTIAL GAS SENSOR
JPH07140101A (en) Incomplete combustion gas sensor
JP2001074681A (en) Semiconductor gas sensor
JPS59192950A (en) Detecting element for carbon monoxide
KR0167852B1 (en) Nox sensitive semiconductor element and its manufacturing method and the sensor