JPS6029898B2 - Gas and moisture sensing elements - Google Patents

Gas and moisture sensing elements

Info

Publication number
JPS6029898B2
JPS6029898B2 JP53129824A JP12982478A JPS6029898B2 JP S6029898 B2 JPS6029898 B2 JP S6029898B2 JP 53129824 A JP53129824 A JP 53129824A JP 12982478 A JP12982478 A JP 12982478A JP S6029898 B2 JPS6029898 B2 JP S6029898B2
Authority
JP
Japan
Prior art keywords
gas
resistance value
zirconium
inorganic polymer
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53129824A
Other languages
Japanese (ja)
Other versions
JPS5557144A (en
Inventor
充弘 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP53129824A priority Critical patent/JPS6029898B2/en
Publication of JPS5557144A publication Critical patent/JPS5557144A/en
Publication of JPS6029898B2 publication Critical patent/JPS6029898B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は構成の簡単な感ガスおよび感湿素子に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas-sensitive and humidity-sensitive element having a simple structure.

従来、感ガス素子としては、Sn02,Zn0,Fe3
04,Nioなどの金属酸化物半導体素子からなるもの
が知られている。
Conventionally, as gas-sensitive elements, Sn02, Zn0, Fe3
04, Nio and other metal oxide semiconductor elements are known.

これはガスを吸着したときに素子の抵抗値の減少変化に
よってガスの存在を検知するものであるが、動作中に素
子を300〜400qoに加熱しておかなければならな
いため消費電力が大きく、また常に素子を加熱しておく
ため素子の経時的劣化が大きいなどの欠点が見られた。
この発明は上記したように素子の加熱を必要とせず、常
温においてガスの存在の有無を検知できるとともに、湿
度にも感知する感ガスおよび感湿素子を提供しようとす
るもので、その要旨とするところは、ジルコニウムを主
体とする無機ポリマーと、前記無機ポリマーを担持する
セラミックスまたは樹脂からなる固体粉末との混合物か
らなり、この混合物の表面に検出電極が形成されている
ことを特徴とするものである。
This detects the presence of gas by detecting a decrease in the resistance value of the element when gas is adsorbed, but the element must be heated to 300 to 400 qo during operation, which consumes a lot of power. Disadvantages were seen, such as significant deterioration of the element over time because the element was constantly heated.
As described above, this invention aims to provide a gas- and humidity-sensitive element that can detect the presence or absence of gas at room temperature without requiring heating of the element, and can also sense humidity. However, it is characterized in that it is made of a mixture of an inorganic polymer mainly composed of zirconium and a solid powder made of ceramic or resin that supports the inorganic polymer, and a detection electrode is formed on the surface of this mixture. be.

ここでジルコニウムを主体とする無機ポリマーとはガス
または水分の存在によりその抵抗値を減少する特性を有
するもので、原料としてはオキシ塩化ジルコニウム、酢
酸ジルコニウム、およびこれらの塩の水和変性物などが
あり、水分の蒸発によりガラス状の無機ポリマーとして
存在し、高温たとえば約150qo以上では無定形のZ
の2に変化するものである。
Inorganic polymers mainly composed of zirconium have the property of decreasing their resistance in the presence of gas or moisture, and raw materials include zirconium oxychloride, zirconium acetate, and hydrated modified products of these salts. It exists as a glass-like inorganic polymer due to evaporation of water, and at high temperatures, for example, about 150 qo or higher, it becomes amorphous.
2.

しかし、150q○付近まではジルコニウムを主体とす
る無機ポリマーとして存在する。また、無機ポリマーを
担持する固体粉末はジルコニウムを主体とする無機ポリ
マ・−を有形固体状に保持する役割を果たすもので、種
類としては酸化チタン、酸化スズ、酸化珪素、酸化ジル
コニウム、粘土、タルクなどのセラミックス固体粉末や
、ェポキシ樹脂などの有機系固体粉末などがある。
However, up to around 150q○, it exists as an inorganic polymer mainly composed of zirconium. In addition, the solid powder supporting the inorganic polymer plays the role of holding the inorganic polymer, which is mainly composed of zirconium, in a tangible solid state, and the types include titanium oxide, tin oxide, silicon oxide, zirconium oxide, clay, and talc. These include ceramic solid powders such as epoxy resins, and organic solid powders such as epoxy resins.

要はジルコニウムを主体とする無機ポリマーがZr02
に変化する150qoまで素子の外形を崩さないように
、また無機ポリマーの特性に悪影響を与えないものであ
ればよい。ジルコニウムを主体とする無機ポリマーとこ
の無機ポリマーを担持する固体粉末との混合比は特に限
定されるものではなく、所要の抵抗値を得るために任意
の混合割合とすればよく、また固体粉末と混合して無機
ポリマーのガス検出館または湿度検出能が損われず、ま
たその形態が崩れず、機械的強度が保持できる範囲で混
合されればよい。
In short, Zr02 is an inorganic polymer mainly composed of zirconium.
Any material may be used as long as it does not destroy the external shape of the device up to 150 qo, which changes to 150 qo, and does not adversely affect the properties of the inorganic polymer. The mixing ratio of the inorganic polymer mainly composed of zirconium and the solid powder supporting this inorganic polymer is not particularly limited, and may be any mixing ratio to obtain the required resistance value. It is sufficient to mix the inorganic polymers within a range that does not impair the gas detection capacity or humidity detection ability of the inorganic polymer, does not deform its shape, and maintains its mechanical strength.

この発明にかかる感ガスおよび感湿素子のガス検出機構
についてはまだ解明できていないが、固体粉末表面での
ガス、水分の吸脱着や、無機ポリマー表面でのガス、水
分の吸脱着にもとづく電導度の変化が高分子状ジルコニ
ウム鎖を通して検出できるものと考えられ、従来のよう
に、Sn02,Zn0,Fe304などの金属酸化物半
導体素子、Fe203,Aそ203などの金属酸化物の
ガス、水分の吸脱着による抵抗値の変化にもとづく検出
機構と異なる新らしい機能を持ったものである。感ガス
および感湿素子の構成例としては、ジルコニウムを主体
とする無機ポリマーの原料と固体粉末を混合してペース
ト状とし、これを熱処理して固化させたバルク状のもの
、あるいは基板上に上記したペースト状のものを塗布し
て熱処理した薄膜状のものがある。これらいずれの構成
例もガス、水分検出を行う電極を有することはもちろん
である。
Although the gas detection mechanism of the gas- and humidity-sensitive element according to the present invention has not yet been elucidated, it is possible to detect conductivity based on the adsorption and desorption of gas and moisture on the surface of a solid powder and the adsorption and desorption of gas and moisture on the surface of an inorganic polymer. It is thought that the change in temperature can be detected through the polymeric zirconium chain, and conventional methods have been used to detect metal oxide semiconductor elements such as Sn02, Zn0, Fe304, metal oxide gases such as Fe203, A203, and moisture. It has a new function that is different from the detection mechanism that is based on changes in resistance due to adsorption and desorption. Examples of configurations of gas- and moisture-sensitive elements include bulk materials made by mixing raw materials of inorganic polymers mainly composed of zirconium and solid powder, and solidifying the paste by heat treatment, or by placing the above on a substrate. There are thin film-like products made by applying a paste-like material and heat-treating it. Of course, all of these configuration examples have electrodes for detecting gas and moisture.

以下この発明を実施例に従って詳述する。This invention will be described in detail below according to examples.

実施例 1 酸化チタン粉末1.4夕に18%オキシ塩化ジルコニウ
ム溶液を加え、よく混合してペースト状にした。
Example 1 An 18% zirconium oxychloride solution was added to 1.4 mL of titanium oxide powder and mixed well to form a paste.

白金線を1脚間隔で対向させ、対向させた白金線上に長
さ3側にわたってこのペーストを付着させて乾燥させた
Platinum wires were placed opposite each other at intervals of one leg, and this paste was applied over three lengths on the facing platinum wires and dried.

乾燥させたのち120℃、2び分間の条件で熱処理を行
い、酸化チタンの担体粉末とオキシ塩化ジルコニウムか
らなる無機ポリマーとの混合物からなる感ガス素子を作
成した。得られた素子について室温(25qo)におけ
る抵抗値(R.)を測定し、次いで第1表に示すガス雰
囲気中に素子を設置し、そのときにおける抵抗値(R2
)を測定してガス雰囲気中に設置した前後の抵抗値変化
(R2/R,)を第1表に示した。
After drying, a heat treatment was performed at 120° C. for 2 minutes to produce a gas-sensitive element made of a mixture of a titanium oxide carrier powder and an inorganic polymer made of zirconium oxychloride. The resistance value (R.) of the obtained element at room temperature (25qo) was measured, and then the element was placed in the gas atmosphere shown in Table 1, and the resistance value (R2) at that time was measured.
) was measured and the change in resistance value (R2/R,) before and after installation in a gas atmosphere is shown in Table 1.

また、得られた感ガス素子を湿度90%の雰囲気中に設
置した前後の抵抗値変化((R2/R,):R,−設置
前の抵抗値、R2−設置後の抵抗値)を測定し、感湿素
子としての機能も調べてその結果を第1表にした。第1
表 実施例 2 実施例1で用いた酸化チタン粉末の代わりに、酸化スズ
粉末2.5夕、二酸化珪素粉末1.4夕、酸化ジルコニ
ウム粉末1.4夕、粘土粉末1.4夕、タルク粉末1.
4夕を各々用意し、これら粉末を実施例1と同様にオキ
シ塩化ジルコニウムと混合して感ガス素子を作成した。
In addition, we measured the resistance change ((R2/R,): R, - resistance value before installation, R2 - resistance value after installation) before and after installing the obtained gas-sensitive element in an atmosphere with a humidity of 90%. The function as a moisture sensitive element was also investigated and the results are shown in Table 1. 1st
Table Example 2 Instead of the titanium oxide powder used in Example 1, tin oxide powder 2.5 times, silicon dioxide powder 1.4 times, zirconium oxide powder 1.4 times, clay powder 1.4 times, talc powder 1.
Four powders were prepared respectively, and these powders were mixed with zirconium oxychloride in the same manner as in Example 1 to prepare a gas-sensitive element.

この感ガス素子を室温(25oo)でメタノール濃度1
7奴風のガス雰囲気中に設置した前後の抵抗値を測定し
、その抵抗値変化(R2/R,:R,ーガス雰囲気中に
設置前の抵抗値、R2−ガス雰囲気中に設置したときの
抵抗値)を第2表に示した。また、この素子を湿度90
%の雰囲気中に設置した前後の抵抗値変化(R2/R,
:R,一設置前の抵抗値、R2一設置後の抵抗値)を測
定し、感湿特性を調べてその結果も第2表に合わせて示
した。第2表実施例 3 酸化スズ粉末2.5のこ塩化パラジウム10のpを加え
て均一に混合し、850qoで熱処理した。
This gas-sensitive element was heated to a methanol concentration of 1 at room temperature (25 oo).
Measure the resistance before and after installing in a gas atmosphere, and calculate the change in resistance (R2/R, :R, - resistance value before installation in a gas atmosphere, R2 - resistance value when installed in a gas atmosphere). Table 2 shows the resistance values). In addition, this element can be used at a humidity of 90
% resistance change before and after installation (R2/R,
: R, resistance value before installation, R2 - resistance value after installation) were measured, and the moisture sensitivity characteristics were investigated, and the results are also shown in Table 2. Table 2 Example 3 2.5 parts of tin oxide powder and 10 parts of palladium chloride were added, mixed uniformly, and heat treated at 850 qo.

次いでこの粉末を用い、実施例1と同様にオキシ塩化ジ
ルコニウムを加えてよく混合し、実施例1と同様に藤ガ
ス素子を作成した。この感ガス素子について実施例2と
同様に感度ガス特性および感湿特性を測定し、その結果
を第3表に示した。
Next, using this powder, zirconium oxychloride was added and mixed well in the same manner as in Example 1, and a Fuji gas element was produced in the same manner as in Example 1. The gas sensitive characteristics and moisture sensitive characteristics of this gas sensitive element were measured in the same manner as in Example 2, and the results are shown in Table 3.

第3表この実施例では実施例2で説明した酸化スズを固
体粉末とした例に従来触媒能を有するパラジウムを加え
たもので、ガス検出能の特性向上に効果のあることがわ
かる。
Table 3 In this example, palladium, which has a conventional catalytic ability, is added to the solid powdered tin oxide described in Example 2, and it can be seen that this is effective in improving the characteristics of gas detection ability.

特性向上のためパラジウムのほかに他の触媒能を有する
ものを加えてもよいことはもちろんである。実施例 4 酸化チタン粉末1.4のこ加える塩化ジルコニウム溶液
の濃度を5%、10%、20%にそれぞれ変化させ、こ
れを混合してペースト状態のものを作成した。
Of course, in addition to palladium, other substances having catalytic ability may be added to improve the properties. Example 4 Titanium oxide powder 1.4% The concentration of the zirconium chloride solution added was varied to 5%, 10%, and 20%, respectively, and these were mixed to create a paste.

これを実施例1と同様に処理して素子を製造した。この
素子について、室温(25qo)における抵抗値(R,
)を測定し、次いでメチルアルコール170柳に設置し
たときの抵抗値(R2を測定して、ガス雰囲気中に設置
した前後の抵抗値の変化(R2/R,)を求めたところ
、それぞれ0.3,0.1,0.006であった。
This was treated in the same manner as in Example 1 to produce a device. Regarding this element, the resistance value (R,
), and then measured the resistance value (R2) when installed in methyl alcohol 170 willow, and calculated the change in resistance value (R2/R,) before and after installing it in a gas atmosphere, and found that each was 0. It was 3,0.1,0.006.

次にこの素子を湿度70%,80%,90%の雰囲気中
に設置し、抵抗変化(R2/R,:R,一設置前の抵抗
値、R2−設置後の抵抗値)を測定して感湿特性を調べ
、その結果を第4表に示した。
Next, this element was installed in an atmosphere with humidity of 70%, 80%, and 90%, and the resistance change (R2/R, :R, resistance value before installation, R2 - resistance value after installation) was measured. The moisture sensitivity characteristics were investigated and the results are shown in Table 4.

第4表 実施例 5 実施例1で得られた素子を用い、この素子をメチルアル
コール17■伽のガス雰囲気中に3分間設置し、その後
大気中に戻した。
Table 4 Example 5 Using the device obtained in Example 1, this device was placed in a gas atmosphere of 17 kg of methyl alcohol for 3 minutes, and then returned to the atmosphere.

このときの抵抗値(R2)の変化を測定し、設置前の抵
抗値(R,)と比較してその抵抗値変化(R2/R,)
を求めたところ、第1図の一点鎖線に示すような挙動を
示した。次に、この素子を湿度90%の雰囲気中に3分
間設置し、その後大気中に戻した。
Measure the change in resistance value (R2) at this time, compare it with the resistance value (R,) before installation, and compare it with the resistance value change (R2/R,).
As a result, the behavior shown in the dashed line in FIG. 1 was obtained. Next, this element was placed in an atmosphere with a humidity of 90% for 3 minutes, and then returned to the atmosphere.

このときの抵抗値(R2)の変化を測定し、設置前の抵
抗値(R,)と比較してその抵抗値変化(R2/R,)
を求めたところ、第1図の実線で示すような挙動を示し
た。以上説明した各実施例から明らかなようにこの発明
によれば、セラミックスや樹脂の固体粉末にジルコニウ
ムを主体とする無機ポリマーを担持させたものであり、
固体粉末表面でのガス、水分の吸脱着時における固体粉
末自体の電導度の変化のほか、ジルコニウムを主体とす
る無機ポリマー表面でのガス、水分の吸脱着時における
高分子状ジルコニウム鎖を通じて生じる電導度の変化、
特にこの発明においてはジルコニウムを主体とする無機
ポリマーそのものの感ガス、感湿特性にもとづく電導度
の変化を主に利用したものである。したがってこの発明
によれば、素子を加熱することなく常温のガス雰囲気中
に設置してもガス検出能を有するという特徴を有し、従
来のようにニクロムヒータで加熱する構造にする必要が
ないため安価になるという利点がある。特にアルコール
、アセトンなどに対する感度が高く、極性を有する有機
溶剤の感ガス素子として有用である。またこの発明によ
れば感溢素子としての利用も可能である。
Measure the change in resistance value (R2) at this time, compare it with the resistance value (R,) before installation, and compare it with the resistance value change (R2/R,).
As a result, the behavior shown by the solid line in FIG. 1 was obtained. As is clear from the examples described above, according to the present invention, an inorganic polymer mainly composed of zirconium is supported on solid powder of ceramics or resin,
In addition to changes in the conductivity of the solid powder itself when gas and moisture are adsorbed and desorbed on the surface of the solid powder, conduction that occurs through polymeric zirconium chains when gas and moisture are adsorbed and desorbed on the surface of an inorganic polymer mainly composed of zirconium. change in degree,
In particular, this invention mainly utilizes the change in electrical conductivity based on the gas-sensitive and moisture-sensitive characteristics of the inorganic polymer mainly composed of zirconium. Therefore, according to the present invention, the device has the characteristic of having gas detection ability even if it is installed in a gas atmosphere at room temperature without heating the device, and there is no need for a structure that requires heating with a nichrome heater as in the conventional case. It has the advantage of being inexpensive. It has particularly high sensitivity to alcohol, acetone, etc., and is useful as a gas-sensitive element for polar organic solvents. Further, according to the present invention, it can also be used as a sensitive element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明で得られた素子の感ガス特性および感
湿特性を示した図である。 第1図
FIG. 1 is a diagram showing the gas-sensitive characteristics and moisture-sensitive characteristics of the device obtained by the present invention. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 ジルコニウムを主体とする無機ポリマーと、前記無
機ポリマーを担持するセラミツクスまたは樹脂からなる
固体粉末との混合物からなり、この混合物の表面に検出
電極が形成されていることを特徴とする感ガスおよび感
湿素子。
1. A gas-sensitive and sensitive gas comprising a mixture of an inorganic polymer mainly composed of zirconium and a solid powder made of ceramic or resin supporting the inorganic polymer, and a detection electrode is formed on the surface of this mixture. Wet element.
JP53129824A 1978-10-20 1978-10-20 Gas and moisture sensing elements Expired JPS6029898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53129824A JPS6029898B2 (en) 1978-10-20 1978-10-20 Gas and moisture sensing elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53129824A JPS6029898B2 (en) 1978-10-20 1978-10-20 Gas and moisture sensing elements

Publications (2)

Publication Number Publication Date
JPS5557144A JPS5557144A (en) 1980-04-26
JPS6029898B2 true JPS6029898B2 (en) 1985-07-13

Family

ID=15019118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53129824A Expired JPS6029898B2 (en) 1978-10-20 1978-10-20 Gas and moisture sensing elements

Country Status (1)

Country Link
JP (1) JPS6029898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169196U (en) * 1986-04-17 1987-10-27

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107331A (en) * 1980-01-29 1981-08-26 Mitsumi Electric Co Ltd Mounting device for video head
JPS576477A (en) * 1980-06-13 1982-01-13 Mitsubishi Electric Corp Recording confirmation system of magnetic tape device
JPS60158345A (en) * 1984-01-28 1985-08-19 Asahi Chem Ind Co Ltd Concentration measuring apparatus of chlorine organic solvent gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169196U (en) * 1986-04-17 1987-10-27

Also Published As

Publication number Publication date
JPS5557144A (en) 1980-04-26

Similar Documents

Publication Publication Date Title
WO1983001339A1 (en) Humidity sensor
Lee et al. Thick-film hydrocarbon gas sensors
JPH0517650Y2 (en)
Nitta et al. Multifunctional ceramic sensors: Humidity-gas sensor and temperature-humidity sensor
JPS6029898B2 (en) Gas and moisture sensing elements
Yakubu et al. Humidity sensing study of polyaniline/copper oxide nanocomposites
JP4555842B2 (en) Gas sensor and method for forming the same
Nenov et al. Ceramic sensor device materials
Hattori et al. Ozone sensor made by dip coating method
JP2006275997A (en) Dew condensation sensor and method for manufacturing the same
JPS5990038A (en) Moisture sensitive material
JPH03220448A (en) Humidity sensor
JP2707246B2 (en) Humidity sensor
US4450429A (en) Humidity sensitive resistance device
JPS62247239A (en) Moisture sensor
JPH0436340B2 (en)
JPH0473543B2 (en)
JPS6133566Y2 (en)
JPH0157732B2 (en)
JPS63292052A (en) Alarm for excessive drying
JPS59142446A (en) Humidity detecting element
Colla Pyrolyzed organic polymer nitrogen dioxide sensor
JPH02172201A (en) Humidity sensor
JPS63293458A (en) Method for aging humidity sensor
JPH04218760A (en) Manufacture of gas sensor