JPS5990038A - Moisture sensitive material - Google Patents

Moisture sensitive material

Info

Publication number
JPS5990038A
JPS5990038A JP57200607A JP20060782A JPS5990038A JP S5990038 A JPS5990038 A JP S5990038A JP 57200607 A JP57200607 A JP 57200607A JP 20060782 A JP20060782 A JP 20060782A JP S5990038 A JPS5990038 A JP S5990038A
Authority
JP
Japan
Prior art keywords
moisture
sensitive material
humidity
alkali
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57200607A
Other languages
Japanese (ja)
Other versions
JPH0246099B2 (en
Inventor
Hidefusa Uchikawa
英興 内川
Hiroko Horii
堀井 弘子
Kunihiko Miyao
宮尾 国彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57200607A priority Critical patent/JPS5990038A/en
Publication of JPS5990038A publication Critical patent/JPS5990038A/en
Publication of JPH0246099B2 publication Critical patent/JPH0246099B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Abstract

PURPOSE:To obtain a moisture sensitive material having high sensitivity in detecting moisture, low electric resistance value and a wide measureable range of moisture by curing the metallic polysiliconate obtd. by bringing organopolysiloxane into reaction with an alkali. CONSTITUTION:A film formed by curing, for example, sodium methyl siliconate or sodium methyl phenyl siliconate obtd. by treating an initial polymer of organopolysilixane dissolved in a solvent with, for example, an alkali such as sodium hydroxide by using a curing accelerator or catalyst such as an org. aluminum compd. or org. titanium comp. under heating or by curing the same by evaporating the solvent at an ordinary temp. is used. For example, methyl phenyl silicone varnish or methyl silicone varnish is used in said organopolysiloxane. If the initial polymer of organopolysiloxane treated with an alkali is cured, the polysiliconate having the compsn. like, for example, the formula, is formed. An alkali metal ion exists as a hydrate ion in the film in an atmosphere contg. moisture and since the hydrate ion is movable in the film except in proton in an electric field, the sensitivity in detecting moisture is high, the electric resistance is low and the measurable range of moisture is wide.

Description

【発明の詳細な説明】 この発明は雰囲気の湿度により電気抵抗値が変化する感
湿材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a moisture-sensitive material whose electrical resistance value changes depending on the humidity of the atmosphere.

昨今では、前記のような機能を有する感湿材料としては
雰囲気に対して物理、化学的に安定であり皮膜強度も高
い金属酸化物系セラミックが最も多く用いろハできた。
Nowadays, metal oxide-based ceramics, which are physically and chemically stable in the atmosphere and have high film strength, have been most commonly used as moisture-sensitive materials having the above-mentioned functions.

このような従来のセラミックのものは、金属酸化物の粉
末を高温(1200〜1500℃)で焼結して製造し9
機械的強度を高めていた。しかしながらこのようにして
製造した感湿材料は焼結温度が高温であるため粉末粉子
が半溶融(シンタリング)を起こすため、有効感湿表面
積が減少してしまい、感度低下をきたし、また高温で焼
結するため省工洋ルキー的にも好ましくなかった。さら
にセラミックのものは、測定可能湿度範囲が相対混成5
0〜100チと比較的狭く高濁度領域に限らノ土でいる
ものが多かった。
Such conventional ceramics are manufactured by sintering metal oxide powder at high temperatures (1200-1500°C).
It had increased mechanical strength. However, due to the high sintering temperature of the moisture-sensitive material manufactured in this way, the powder particles undergo half-melting (sintering), which reduces the effective moisture-sensitive surface area, resulting in a decrease in sensitivity. This was not preferable in terms of labor and energy savings as it required sintering. Furthermore, the measurable humidity range of ceramic products is relative hybrid 5.
Most of the soil was confined to a relatively narrow high turbidity region of 0 to 100 cm.

この発明は、現在の感湿材料の主流であるセラミックが
もつ上記のような欠点を庁f消するもので。
This invention eliminates the above-mentioned drawbacks of ceramics, which are currently the mainstream of moisture-sensitive materials.

オルガノポリシロキザンをアルカリと反応させて得られ
る金属ポリンリコネートを硬化させることにより、湿度
の検出感度が優れ、電気抵抗値が低く、測定可能湿度範
囲が広く、製造エネルギーは少なく省エネルギー的であ
る感湿材料を得ることを目自勺とするものである、 この発明のオルガノポリシロキーリーンには1例えハメ
チルフェニルシリコーンフェスやメチルシリコーンフェ
スなどが使用さJz、感湿材料には上記オルガノボリシ
ロキザン初期乗合体を溶剤に溶解したものを1例えば水
酸化ナトリウムなどのアルカリで処理して得られる例え
ばナトリウムメチルシリコネート、ナトリウムメチルフ
ェニルシリコネートなどを、有機アルミ化合物、有機チ
タン化合物およびアミンなどの硬化促進剤や触媒を用い
て常温もしくは例えば140°C程度で加熱硬化するか
、又は常温で溶剤を揮発させて硬化させた皮膜を用いる
のである。
By curing the metal polylyconate obtained by reacting organopolysiloxane with alkali, it has excellent humidity detection sensitivity, low electrical resistance, wide measurable humidity range, and low production energy consumption, making it energy saving. The aim is to obtain a moisture-sensitive material.For example, hamethylphenyl silicone or methylsilicone is used for the organopolysilicone of this invention, and the above-mentioned organopolysilicone is used for the moisture-sensitive material. For example, sodium methyl siliconate, sodium methyl phenyl siliconate, etc. obtained by treating the initial polymerization product of novolisiloxane in a solvent with an alkali such as sodium hydroxide are combined with organic aluminum compounds, organic titanium compounds, and amines. The film is cured by heating at room temperature or, for example, about 140° C., using a curing accelerator or catalyst, or by volatilizing the solvent at room temperature.

オルガノポリシロキサン初期重合体ヲアル−1) IJ
で処理したものを硬化させると2例えば下記のような組
成のポリシリコネートが生成する、ONB、   OH
50 曙 OH5−s i−OH3 Na 発明者らは、上記のようなアルカリ金属を含有するポリ
シリコネートを感湿材料として用いると。
Organopolysiloxane initial polymer WAL-1) IJ
When the treated material is cured, a polysiliconate having the following composition is produced, for example, ONB, OH
50 Akebono OH5-s i-OH3 Na The inventors used polysiliconate containing an alkali metal as described above as a moisture-sensitive material.

以下に説明するような良好な特性を有する湿度センサが
得られることを見出したことに基づいてこの発明を提案
するものである。
The present invention is proposed based on the discovery that a humidity sensor having good characteristics as described below can be obtained.

すなわぢ、湿気を含む雰囲気中ではアルカリ金属イオン
が皮膜内部において水和イオンとして存在し、電場下で
は皮膜中でこの水利イオンがプロトン以外に可動である
ため、湿度の検出感度が優れまた電気抵抗値が低く測定
可能湿度範囲が広いのである。又、この発明の感湿材料
はオルガノポリシロキサンのもつ優れた撥水性を有する
ためこの感湿材料は湿気の吸着および脱着が速く、応答
速度が速く、耐水性に優れているのである。さらに、こ
の発明の感湿材料は、製造工程において焼成は必ずしも
行なわなくてもよく、又焼成を行っても、800℃以下
の低温焼成でよいため、省エネルキー性に即するもので
ある。
In other words, in a humid atmosphere, alkali metal ions exist as hydrated ions inside the film, and under an electric field, these hydrating ions are movable in the film in addition to protons, so humidity detection sensitivity is excellent and electric It has a low resistance value and a wide measurable humidity range. Furthermore, since the moisture-sensitive material of the present invention has the excellent water repellency of organopolysiloxane, this moisture-sensitive material has fast moisture adsorption and desorption, fast response speed, and excellent water resistance. Furthermore, the moisture-sensitive material of the present invention does not necessarily need to be fired in the manufacturing process, and even if it is fired, it can be fired at a low temperature of 800°C or less, so it is energy-saving.

以下実施例を示すことによりこの発明の詳細な説明する
が、これによりこの発明を限定するもので−ない〜 実施例1 以下に示しだ化学構造のナトリウムメチルシリコネート
ヲ若干の有機溶剤(アセトン)を含む純水で溶解し、ア
ミン系の硬化促進剤を適当量添加した。
The present invention will be explained in detail by giving Examples below, but the present invention is not limited thereby. and an appropriate amount of an amine curing accelerator was added.

構造例 CH6CH3 Na0− si−0−5i−0−Si −111 CH30 an3−B1−OH5 著 N8 第1図はこの発明の感湿材料を用いた湿度センサの斜視
図である。図において、(1)は絶縁基板。
Structural Example CH6CH3 Na0- si-0-5i-0-Si -111 CH30 an3-B1-OH5 Author N8 FIG. 1 is a perspective view of a humidity sensor using the moisture-sensitive material of the present invention. In the figure, (1) is an insulating substrate.

(21は電極、(3)は感湿部、(4)はリード線であ
る。
(21 is an electrode, (3) is a moisture sensitive part, and (4) is a lead wire.

即ち、上記液状物をディッピングにより第1図(3)の
ようにアルミナ絶縁基板上に厚さ約4DILBの皮膜と
して形成し、アルミナ絶縁基板上にはディッピングの前
にあらかじめp、 −pd合金系ベーストにて第1図(
2)に示したようなくし形電極をスクリーン印刷してあ
り、感湿部が硬化した後、最終段階でpt +)−ド線
を取υ付けた後焼付けを行ない第1図に示すようなこの
発明の感湿材料を感湿部に用いた湿度センサを作製した
。なお、上記感湿部の硬化は、乾燥機中140’Cで硬
化させた、実施例2 実施例1における若干の有機溶剤を含む純水の代わシに
アセトンのみを用い、感湿部の硬化は。
That is, the above liquid substance is formed as a film with a thickness of about 4 DILB on an alumina insulating substrate as shown in FIG. Figure 1 (
A comb-shaped electrode as shown in Fig. 2) is screen printed, and after the moisture sensitive part has hardened, the pt+)- wire is attached in the final step and then baked to form the comb-shaped electrode shown in Fig. 1. A humidity sensor using the moisture-sensitive material of the invention in a humidity-sensing part was manufactured. In addition, the above-mentioned moisture-sensing part was cured at 140'C in a dryer. teeth.

大気中に放置することにより常温で乾燥させて行なない
他は実施例1と同様にして湿度センサを作製した。
A humidity sensor was produced in the same manner as in Example 1, except that it was left in the atmosphere to dry at room temperature.

感湿特性試験 このようにして製造1−/ζこの発明の感湿材料を感湿
部に用いた湿度センサ、および従来最も一般的な湿度セ
ンサである5102  Aρ203系セラミック湿度セ
ンザについて、交流1vを印加して相対湿度〔係〕変化
による電気抵抗値〔Ω〕の変化(感湿特性)を調べた。
Humidity Sensing Characteristics Test Manufacture 1-/ζ In this manner, a humidity sensor using the moisture-sensitive material of the present invention in its humidity-sensing part, and a 5102Aρ203 series ceramic humidity sensor, which is the most common humidity sensor to date, were tested at AC 1V. The changes in electrical resistance (Ω) due to changes in relative humidity (humidity sensitivity characteristics) were investigated.

この結果を第2図に示す。The results are shown in FIG.

第2図において2曲# (Alはアミン系硬化促進剤を
添加したこの発明の感湿材料を感湿部に用いた湿度セン
サ、曲線(B)は常温で硬化させたこの発明の感湿材料
を感湿部に用いた湿度センサ9曲線(C)は従来最も一
般的であるセラミックを用いた湿度センサである810
2  Aρ203糸セラミックtT? IALfセンサ
の感湿特性を示すものである。これより、Sよ02−A
ρ203系セラミック湿度センザは低湿度側で電気抵抗
値が高く、高湿度側で電気抵抗値の変化率が小さくなっ
ており、特に50係RH以下の低湿度を検知するセンサ
として用いるには好寸しくない。
In Figure 2, there are two songs # (Al is a humidity sensor using the moisture-sensitive material of this invention added with an amine-based curing accelerator in the humidity sensing part, and curve (B) is the humidity-sensitive material of this invention cured at room temperature. Humidity sensor 9 curve (C) using 810 as the humidity sensor is the most common humidity sensor using ceramic.
2 Aρ203 thread ceramic tT? It shows the moisture sensitivity characteristics of the IALf sensor. From now on, Syo02-A
The ρ203 series ceramic humidity sensor has a high electrical resistance value on the low humidity side and a small rate of change in electrical resistance value on the high humidity side, making it particularly suitable for use as a sensor for detecting low humidity below the 50 coefficient RH. It's not right.

このものに対し、この発明の感湿拐料を用いた2種の湿
度センサは、第2図の曲線(Al、 (B)よりわかる
ように、50%RH以下の低湿度側でも電気抵抗値が小
さく、1だ低湿度側から高rjnj度側壕での全領域に
おいて電気抵抗値の変化率が太きいという良好な感湿特
性を有するものであることは明らかである。
In contrast, the two types of humidity sensors using the moisture-sensitive material of the present invention have electrical resistance values even on the low humidity side of 50% RH or less, as seen from the curve (Al, (B)) in Figure 2. It is clear that the material has good moisture sensitivity characteristics, such that the rate of change in electrical resistance value is small in the entire region from the low humidity side to the high rjnj temperature side.

耐水性試験 さらに、前記のこの発明の2種の感湿材料を用いた湿度
センサおよび従来最も一般的なセラミック湿度センサで
あるS□02−Aρ206系セラミック湿度センザにつ
いて、大気中の湿気に対する耐水性試験を行なった。耐
水性試験としては、湿度センサを7ケ月間室内放置する
ととにより大気中の電気に対する感湿部の安定性を感湿
特性の経時変化により評価した。感湿特性の測定法につ
いては。
Water Resistance Test Furthermore, water resistance against atmospheric humidity was investigated for the humidity sensor using the two types of moisture-sensitive materials of the present invention and the S□02-Aρ206 series ceramic humidity sensor, which is the most common ceramic humidity sensor to date. I conducted a test. As a water resistance test, the humidity sensor was left indoors for 7 months, and the stability of the humidity sensing part against electricity in the atmosphere was evaluated by the change in humidity sensitivity characteristics over time. For information on how to measure moisture sensitivity properties.

前述したとおりに行なった。この結果を第2図中に示す
。第2図において1曲線(D)はアミン系硬化促進剤を
添加したこの発明の感湿材料を感湿部に用いた湿度セン
サ2曲線(P2)は常温で硬化させたこの発明の感湿材
料を用いた電照センザ2曲線(F)は従来最も一般的で
あるセラミック湿度センサである5i02− Aρ20
3系セラミック湿度センザの7ケ月♀内放置後の感湿特
性を示すものである。これより、  5jo2−Aρ2
03系セラミクセラミック湿度センサ抵抗値が室内放置
前よりもさらに高くなっている。このように、一般のセ
ラミック湿度センサは。
This was done as described above. The results are shown in FIG. In FIG. 2, curve 1 (D) is a humidity sensor in which the moisture sensitive material of the present invention to which an amine-based curing accelerator has been added is used in the humidity sensor. Curve 2 (P2) is the moisture sensitive material of the present invention cured at room temperature. The illuminated sensor 2 curve (F) using 5i02-Aρ20 is the most common ceramic humidity sensor.
This figure shows the moisture sensitivity characteristics of the Type 3 ceramic humidity sensor after being left in the room for 7 months. From this, 5jo2−Aρ2
The resistance value of the 03 series ceramic humidity sensor is even higher than before it was left indoors. In this way, general ceramic humidity sensors.

安定した感湿特性を得るためには、加熱装置によって、
500℃程度に加熱し、変化した特性を初期値にまで復
帰させるのがふつうである。これに対し、この発明の感
湿材料を用いた湿度センサの感湿特性は2曲線(Dl、
 (Elよりわかるように、はとんど経時変化していな
い。
In order to obtain stable moisture sensitivity characteristics, a heating device is used to
It is common to heat the material to about 500° C. to restore the changed characteristics to their initial values. On the other hand, the humidity sensor using the moisture-sensitive material of the present invention has two curves (Dl,
(As can be seen from El, there is almost no change over time.

接触角の測定(撥水性) 前記のこの発明の2種の感湿材料を用いた温度センサお
よび従来、最も一般的なセラミック淡度センザであるS
□02−Aρ203系セラミック湿贋センザについて、
感湿部表面の水に対する接触角を接触角測定器(ゴニオ
メータ)にて測定した。その結果、アミン系硬化促進剤
による加熱硬化したこの発明のものは、接触角同6°9
常温硬化型のこの発明のものI″i98°、  s、o
2−Aρ203系セラミクセラミック湿度センサであっ
た。したがって、この発明の感湿材料を用いた湿度セン
サの感湿部表面、即ち感湿材料は、接触角が大きく撥水
性が高いことが明らかとなった。
Measurement of contact angle (water repellency) The above-mentioned temperature sensor using the two types of moisture-sensitive materials of this invention and the conventionally most common ceramic freshness sensor S
□02-Aρ203 series ceramic wet counterfeit sensor,
The contact angle of the surface of the moisture sensitive part to water was measured using a contact angle measuring device (goniometer). As a result, the product of the present invention, which was heat-cured using an amine-based curing accelerator, had a contact angle of 6°9.
Room temperature curing type of this invention I″i98°, s, o
2-Aρ203 series ceramic humidity sensor. Therefore, it has been revealed that the surface of the humidity sensor of the humidity sensor using the moisture-sensitive material of the present invention, that is, the moisture-sensitive material, has a large contact angle and high water repellency.

この結果から、この発明の感湿材料が耐水性に優れてい
るのは、感湿材料表面の撥水性が高いことによると考え
られる。さらに、実施例では示さなかったが、湿度を急
激に変化させた時の相対湿度に対する電気抵抗値の応答
速度がセラミックのものに比べて迅速であった。吸着速
度に影響を及ばず因子としては、帽イオンの水利が考え
ら!するが、脱着については、この感湿材料表面の撥水
性が高いことに起因するものと考えられる。寸だ。
From this result, it is considered that the reason why the moisture-sensitive material of the present invention has excellent water resistance is that the surface of the moisture-sensitive material has high water repellency. Furthermore, although not shown in the examples, the response speed of the electrical resistance value to the relative humidity when the humidity was rapidly changed was faster than that of ceramics. Water availability of cap ions can be considered as a factor that does not affect the adsorption rate! However, the desorption is thought to be due to the high water repellency of the surface of this moisture-sensitive material. It's a size.

このようにこの発明の感湿材料の撥水性が高い原因−、
オルガノポリシロキサンが有する公知の表面特性による
ものである。
The reason for the high water repellency of the moisture-sensitive material of this invention is as follows.
This is due to the known surface properties of organopolysiloxane.

なお、オルガノポリシロキッ゛ン初期重合体を溶剤に溶
解したものをアルカリ処理した後、皮膜状に硬化させる
方法としては、オルガノポリシロキサンの熱分解開始温
度以上の焼成、即さ350’C以上の場合はシロキサン
結合の側鎖の炭化水素が消失し、皮膜か多孔質化するだ
め感湿感度が上昇する。ただし、800℃以下でなけれ
はならない。なぜなら、シロキサン結合の1)III鎖
の炭化水素基が完全に消失し、ノリカゲルと同等のもの
となるからである。
In addition, as a method for curing the organopolysiloxane initial polymer dissolved in a solvent with an alkali into a film after treating it with an alkali, the method is as follows: firing at a temperature higher than the thermal decomposition start temperature of the organopolysiloxane, immediately at 350'C or higher. In the case of , the hydrocarbon in the side chain of the siloxane bond disappears and the film becomes porous, resulting in an increase in moisture sensitivity. However, the temperature must be below 800°C. This is because 1) the hydrocarbon group of the III chain of the siloxane bond completely disappears, making it equivalent to Norica gel.

以上説明したとうり、この発明はオルガノポリシロキサ
ンをアルカリと反応させてイ4Iらねる金属ポリシリコ
ネートを硬化させることにより、湿度の検出感度が優れ
、電気抵抗植が低く、測定用能湿度範囲が広く製造が省
エネルギー性にも即している感湿月料を得ることができ
る。したがって。
As explained above, the present invention has excellent humidity detection sensitivity, low electrical resistance resistance, and a measurable humidity range by reacting organopolysiloxane with alkali and curing metal polysiliconate. It is possible to obtain a humidity-sensitive monthly charge that is widely manufactured and is energy-saving. therefore.

この感湿拐料は例えば湿度センサや粘結センサとして各
種の用途に広く利用できる。
This moisture-sensitive material can be widely used in various applications, such as as a humidity sensor or a caking sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の感湿材料を用いた湿度センサの斜視
図、第2図はこの発明と従来の感湿材料を比較する相対
湿度−抵抗値特性図である。 図において、(1)は絶縁基板、(2)は電極、(3)
は感湿部、(4jはリード線、 (A)、 (旬、 (
D)、 (E)はこの発明の感湿材料の特性、 (0)
、 (F)は比較例の特性である。 代理人 葛野信−
FIG. 1 is a perspective view of a humidity sensor using the moisture-sensitive material of the present invention, and FIG. 2 is a relative humidity-resistance characteristic diagram comparing the present invention with a conventional moisture-sensitive material. In the figure, (1) is an insulating substrate, (2) is an electrode, and (3)
is the humidity sensing part, (4j is the lead wire, (A), (season), (
D), (E) are the characteristics of the moisture-sensitive material of this invention, (0)
, (F) are the characteristics of the comparative example. Agent Makoto Kuzuno

Claims (1)

【特許請求の範囲】[Claims] オルガノボリシロキザンをアルカリと反応させて得られ
る金属ポリシリコネートの硬化物を含む感湿材料。
A moisture-sensitive material containing a cured metal polysiliconate obtained by reacting organoborisiloxane with an alkali.
JP57200607A 1982-11-16 1982-11-16 Moisture sensitive material Granted JPS5990038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200607A JPS5990038A (en) 1982-11-16 1982-11-16 Moisture sensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200607A JPS5990038A (en) 1982-11-16 1982-11-16 Moisture sensitive material

Publications (2)

Publication Number Publication Date
JPS5990038A true JPS5990038A (en) 1984-05-24
JPH0246099B2 JPH0246099B2 (en) 1990-10-12

Family

ID=16427176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200607A Granted JPS5990038A (en) 1982-11-16 1982-11-16 Moisture sensitive material

Country Status (1)

Country Link
JP (1) JPS5990038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0187205A2 (en) * 1984-12-20 1986-07-16 Mitsubishi Denki Kabushiki Kaisha Moisture sensitive ceramic material and process for its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132050A (en) * 1981-02-09 1982-08-16 Mitsubishi Electric Corp Humidity-sensitive element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132050A (en) * 1981-02-09 1982-08-16 Mitsubishi Electric Corp Humidity-sensitive element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0187205A2 (en) * 1984-12-20 1986-07-16 Mitsubishi Denki Kabushiki Kaisha Moisture sensitive ceramic material and process for its production

Also Published As

Publication number Publication date
JPH0246099B2 (en) 1990-10-12

Similar Documents

Publication Publication Date Title
Su et al. Humidity sensing and electrical properties of a composite material of nano-sized SiO2 and poly (2-acrylamido-2-methylpropane sulfonate)
US3703696A (en) Humidity sensor
JPS6156952A (en) Moisture sensitive resistor element
JPS5990038A (en) Moisture sensitive material
JPH0244390B2 (en) KANSHITSUZAIRYO
Ahmad et al. Capacitive hygrometers based on natural organic compound
JPS6029898B2 (en) Gas and moisture sensing elements
JP2707246B2 (en) Humidity sensor
JPS6131417B2 (en)
JPS5872047A (en) Humidity sensitive element
SU437954A1 (en) Gas humidity sensor
JPS61147137A (en) Moisture sensitive material
JPS5840801A (en) Humidity sensor element
JPH0161175B2 (en)
TW593643B (en) A method for fabricating a humidity sensitive film
JPS59142448A (en) Humidity sensor
JPH05119010A (en) Moisture sensor
SU585464A1 (en) Moisture-sensitive thin film for piezoquartz gas moisture sensors
Kanitkar et al. Synthesis and electrical characterization of Ag, Au-PVP nanocomposites for humidity sensing
JPH05119009A (en) Moisture sensor
JPS61147135A (en) Production of moisture sensitive material
JPH0240183B2 (en)
JPS59102150A (en) Moisture sensitive material
JPH05196591A (en) Humidity sensor
JPS6210380B2 (en)