JPH04216630A - Wiring formation of semiconductor element - Google Patents

Wiring formation of semiconductor element

Info

Publication number
JPH04216630A
JPH04216630A JP40264990A JP40264990A JPH04216630A JP H04216630 A JPH04216630 A JP H04216630A JP 40264990 A JP40264990 A JP 40264990A JP 40264990 A JP40264990 A JP 40264990A JP H04216630 A JPH04216630 A JP H04216630A
Authority
JP
Japan
Prior art keywords
film
wiring
wiring layer
natural oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40264990A
Other languages
Japanese (ja)
Other versions
JP3040177B2 (en
Inventor
Yusuke Harada
原田 裕介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2402649A priority Critical patent/JP3040177B2/en
Publication of JPH04216630A publication Critical patent/JPH04216630A/en
Application granted granted Critical
Publication of JP3040177B2 publication Critical patent/JP3040177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a uniform W film and to realize a good quality of a strong wiring by a method wherein an Al-Si alloy wiring layer is formed and thereafter, a natural oxide film on the Al-Si alloy wiring layer is removed and a beta-W film is formed only on the surface of the wiring layer by a selective CVD method. CONSTITUTION:An insulating film 2 is formed on a semiconductor IC substrate 1 and a wiring layer 3 is formed. A natural oxide film, which is formed on the surface of the layer 3 by an ashing for the removal of a resist to be performed after an etching is performed and a cleaning, is removed. After the natural oxide film is removed, a beta-W film 6 is selectively formed only on the surface of the layer 3 by a selective CVD method. As a dissfusion coefficient is different by 5 to 10 times between the beta-W film and an alpha-W film, the reaction of a W film with the Al-Si wiring layer can be sufficiently inhibited. In a stress in the W film, the stress in the beta-W film is far smaller than that the in alpha-W film and an effect which is exerted on the Al wiring is very little.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体素子の配線形成の
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming interconnects for semiconductor devices.

【0002】0002

【従来の技術】半導体素子における配線の従来の構造は
、図2、図3の従来例1および2に示すように形成され
ている。以下にそれを説明する。
2. Description of the Related Art Conventional wiring structures in semiconductor devices are formed as shown in Conventional Examples 1 and 2 in FIGS. 2 and 3. This will be explained below.

【0003】まず図2の従来例1から説明すると、半導
体基板1上に絶縁膜2(例えばBPSG膜)をCVD法
で形成し、その上に配線層となるAl−Si合金層3を
スパッタ法で形成する。
First, starting with conventional example 1 shown in FIG. 2, an insulating film 2 (for example, a BPSG film) is formed on a semiconductor substrate 1 by a CVD method, and an Al-Si alloy layer 3, which will become a wiring layer, is formed on it by a sputtering method. to form.

【0004】その配線層をホトリソグラフィ・エッチン
グ技術にてパターニングした後、パッシベーション膜(
例えばSiN膜)4をCVD法にて形成すれば、図2の
配線構造が得られる。
After patterning the wiring layer using photolithography and etching technology, a passivation film (
For example, if a SiN film (4) is formed by CVD, the wiring structure shown in FIG. 2 can be obtained.

【0005】しかしながら、半導体素子の集積度が増加
するにつれて配線幅は細くなり、1μm以下の幅の配線
も必要とされてくるようになってきている。そうすると
前述の従来例1の方法では、エレクトロマイグレーショ
ン、ストレスマイグレーションなどの問題が生じるので
、様々な不純物を添加して配線層の強化を図っているが
、0.5μmレベルの配線幅では限界があり、上層の絶
縁膜を形成しただけでもその膜のストレスで断線を生じ
る。そこでAl以外の金属でAl配線層をカバーする方
法が考えられており、それが図3に示す従来例2である
However, as the degree of integration of semiconductor devices increases, the wiring width becomes narrower, and wiring with a width of 1 μm or less is now required. If this happens, problems such as electromigration and stress migration will occur in the method of Conventional Example 1, so various impurities are added to strengthen the wiring layer, but there is a limit to the wiring width at the 0.5 μm level. , even if an upper insulating film is formed, stress on that film can cause wire breakage. Therefore, a method of covering the Al wiring layer with a metal other than Al has been considered, and this is the conventional example 2 shown in FIG.

【0006】図3に示す従来例2は、半導体基板1上に
絶縁膜2を形成、Al−Si合金配線層3を図2の従来
例1同様形成した後、選択WCVD法(タングステンC
VD法)を用いて前記配線層3の面上にのみW膜5を形
成して、その上にパッシベーション膜4を形成したもの
である。
In the conventional example 2 shown in FIG. 3, an insulating film 2 is formed on a semiconductor substrate 1, an Al-Si alloy wiring layer 3 is formed in the same way as the conventional example 1 shown in FIG.
A W film 5 is formed only on the surface of the wiring layer 3 using the VD method, and a passivation film 4 is formed thereon.

【0007】このような方法とすることにより、配線層
3のまわりを高融点金属であるW膜5で囲む形となり、
段切れのない強い配線が得られ、かつAl−Si合金の
ヒロック発生も抑制できる。
By using such a method, the wiring layer 3 is surrounded by the W film 5 which is a high melting point metal,
Strong wiring with no breaks can be obtained, and the occurrence of hillocks in the Al-Si alloy can also be suppressed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら前述の従
来例2の方法で配線層を形成する場合、その配線層の上
にできる自然酸化膜がWの核形成の障害となる。この自
然酸化膜は、主としてエッチング後レジスト除去の際の
アッシングや酸洗浄(例えば発煙硝酸)によって形成さ
れたものである。この自然酸化膜が存在すると、WCV
D法の原料であるWF6 やSiH4 が均一に吸着せ
ず、Wの核形成密度が極端に低くなり、薄くしたいW膜
が不均一に形成されてしまう。
However, when a wiring layer is formed by the method of Conventional Example 2 described above, the natural oxide film formed on the wiring layer becomes an obstacle to the formation of W nuclei. This natural oxide film is mainly formed by ashing or acid cleaning (for example, fuming nitric acid) during resist removal after etching. If this natural oxide film exists, WCV
WF6 and SiH4, which are the raw materials for method D, are not uniformly adsorbed, and the W nucleation density becomes extremely low, resulting in the formation of a non-uniform W film that is desired to be thin.

【0009】また、前処理(例えば、希HF溶液中でエ
ッチング後速やかにCVDW膜を形成したり、真空中で
塩素系プラズマで表面をエッチングし、そのまま真空中
でCVDW膜を形成する方法など)でAlの自然酸化膜
を除去して、均一なW膜を形成しようとする方法も考え
られているが、その場合、後工程の熱処理によって、A
lとWが反応してAl中にWが入り込み、Alの配線抵
抗が上昇するという問題が生じる。さらにCVDW膜(
WCVD法によって形成したW膜)自身のストレスが、
細いAl−Si合金配線に影響を与えるという問題があ
り、技術的に満足できるものではなかった。
[0009] Also, pretreatment (for example, a method of forming a CVDW film immediately after etching in a dilute HF solution, etching the surface with chlorine-based plasma in a vacuum, and then forming a CVDW film in a vacuum, etc.) A method has also been considered in which a uniform W film is formed by removing the natural oxide film of Al.
A problem arises in that L and W react, W enters into Al, and the wiring resistance of Al increases. Furthermore, CVDW film (
The stress of the W film formed by WCVD method is
There was a problem that it affected thin Al-Si alloy wiring, and it was not technically satisfactory.

【0010】0010

【課題を解決するための手段】本発明は、前述した自然
酸化膜の影響の除去と、それを除去しても、WがAl配
線に入り込み抵抗を増大させることや、W自身のストレ
スがAl配線に悪影響を与えるなどの問題点を解決する
ために、Al−Si合金配線層を形成した後、Al配線
層上の自然酸化膜を除去し、選択WCVD法によってβ
−W膜を配線層の表面にのみ形成するようにしたもので
ある。後述するように、β−Wは通常のWであるα−W
に比べ、酸素を吸収する特性を持っており、かつAl中
に拡散しにくく、またストレスも極めて小さい。
[Means for Solving the Problems] The present invention eliminates the effect of the natural oxide film mentioned above, and even if it is removed, W enters the Al wiring and increases the resistance, and the stress of W itself In order to solve problems such as adverse effects on wiring, after forming an Al-Si alloy wiring layer, the natural oxide film on the Al wiring layer was removed, and β
-The W film is formed only on the surface of the wiring layer. As will be explained later, β-W is α-W which is normal W.
Compared to aluminum, it has the property of absorbing oxygen, is difficult to diffuse into Al, and has extremely low stress.

【0011】[0011]

【作用】本発明は前述のように、自然酸化膜を除去した
後、配線層上にβ−W膜を形成するようにしたので、A
lと反応して配線抵抗が増大するようなこともなく、ス
トレスも小さいのでAl配線に対して悪影響も与えず、
良質で強い配線が得られる。
[Operation] As described above, the present invention forms a β-W film on the wiring layer after removing the natural oxide film, so that
There is no increase in wiring resistance due to reaction with Al, and the stress is small, so it does not have any negative effect on Al wiring.
Good quality and strong wiring can be obtained.

【0012】0012

【実施例】本発明の実施例の工程を主要断面図として図
1に示し、以下に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The process of an embodiment of the present invention is shown in main cross-sectional view in FIG. 1, and will be described below.

【0013】先ず図(a)に示すように、従来同様半導
体(IC)基板1上に絶縁膜(例えばBPSG膜)2を
CVD法にて5000Å程度の厚さ形成し、その上にA
l−Si系合金層3をスパッタ法にて6000Å程度の
厚さ形成し、ホトリソグラフィ・エッチング技術にてパ
ターニングして配線層3を形成する。
First, as shown in Figure (a), an insulating film (for example, a BPSG film) 2 is formed to a thickness of about 5000 Å on a semiconductor (IC) substrate 1 by the CVD method as in the conventional method, and then an A
An l-Si alloy layer 3 is formed to a thickness of about 6000 Å by sputtering, and patterned by photolithography and etching to form a wiring layer 3.

【0014】そして、エッチング後に行なわれるレジス
ト除去のアッシングや、洗浄によってできる前記配線層
3表面の自然酸化膜を除去する。この除去法は、希釈弱
酸による方法もしくはBCl3 やCF4 などのガス
プラズマ法があり、いずれの方法でもよい。
Then, the natural oxide film on the surface of the wiring layer 3 formed by ashing for resist removal performed after etching and cleaning is removed. This removal method may be a method using a diluted weak acid or a gas plasma method such as BCl3 or CF4, and either method may be used.

【0015】前述のようにして自然酸化膜を除去した後
、図(b)のように選択WCVD法により、β−W膜6
を選択的に前記配線層3の表面上にのみ300〜500
Å程度の厚さ形成する。このβ−W膜6の形成条件は、
温度275〜320℃、SiH4 /WF6 の流量比
を1.0、反応圧力を0.2〜0.3Torrで行なう
。CVD法によるW膜は、周知のようにその形成を行な
う条件により通常のWであるα−W膜と、準安定相のβ
−W膜ができる。本実施例はそのβ−W膜を形成するよ
うにしたものである。以下にその特性を説明する。
After removing the native oxide film as described above, the β-W film 6 is formed by selective WCVD as shown in FIG.
300 to 500 selectively only on the surface of the wiring layer 3
Form a thickness of about 1.5 Å. The conditions for forming this β-W film 6 are as follows:
The reaction is carried out at a temperature of 275 to 320°C, a flow rate ratio of SiH4/WF6 of 1.0, and a reaction pressure of 0.2 to 0.3 Torr. As is well known, the W film produced by the CVD method is composed of an α-W film, which is normal W, and a β-W film, which is a metastable phase, depending on the conditions under which it is formed.
-W film is formed. In this embodiment, the β-W film is formed. Its characteristics will be explained below.

【0016】図4にα−Wとβ−WとのX線回折結果を
示す。横軸は2θで表示したX線の角度(X線回折で通
常表示される方法)であり、縦軸は強度である。図中(
  )内の数字は結晶方位面を表わす。図から解るよう
にα−Wとβ−Wとでは結晶相が異なっている。つまり
Wの膜質が異なるのである。即ちβ−W膜は針状結晶構
造を持っており、大気に触れると酸素を吸収する性質を
持っている。
FIG. 4 shows the X-ray diffraction results of α-W and β-W. The horizontal axis is the X-ray angle expressed in 2θ (the way it is usually expressed in X-ray diffraction), and the vertical axis is the intensity. In the figure (
The numbers in ) represent the crystal orientation plane. As can be seen from the figure, α-W and β-W have different crystal phases. In other words, the film quality of W is different. That is, the β-W film has an acicular crystal structure and has the property of absorbing oxygen when exposed to the atmosphere.

【0017】図5はAl/W構造によるAl中における
Wの拡散係数のアレニウスプロットを示したものである
。これはRBS法(ラザフォード・バック・スキャッタ
リング法)によってAl中のWのプロファイルから求め
たものである。横軸は温度であり絶対温度の逆数で表示
したもので(上部の表示は℃)、縦軸の拡散係数である
。図から解るように、拡散係数はβ−Wとα−Wの間で
5〜10倍違うので十分Alとの反応を抑制できる。 つまりAl中に拡散しにくい。
FIG. 5 shows an Arrhenius plot of the diffusion coefficient of W in Al due to the Al/W structure. This was determined from the profile of W in Al using the RBS method (Rutherford back scattering method). The horizontal axis is temperature, expressed as a reciprocal of the absolute temperature (the upper display is in °C), and the vertical axis is the diffusion coefficient. As can be seen from the figure, the diffusion coefficients are different between β-W and α-W by a factor of 5 to 10, so that the reaction with Al can be sufficiently suppressed. In other words, it is difficult to diffuse into Al.

【0018】また、これらのW膜のストレスは表1に示
すように、β−W膜の方がα−W膜よりはるかに小さく
Al配線に与える影響は極めて少ない。
Furthermore, as shown in Table 1, the stress on these W films is much smaller in the β-W film than in the α-W film, and has very little effect on the Al wiring.

【0019】[0019]

【表1】[Table 1]

【0020】このようなβ−W膜6を形成した後、シン
ターを400℃、30分程、H2 雰囲気で行ない、パ
ッシベーション膜(例えばSiN膜)4をCVD法にて
6000Å程度の厚さ形成し、ホトリソグラフィ・エッ
チングを行なった後、ファイナルアニールを行なって完
成させる。また、多層配線構造の半導体素子では、この
工程を繰り返すことにより、2層目以上の配線層にも適
用できることは言うまでもない。
After forming the β-W film 6, sintering is performed at 400° C. for about 30 minutes in an H2 atmosphere, and a passivation film (for example, a SiN film) 4 is formed to a thickness of about 6000 Å by CVD. After photolithography and etching, final annealing is performed to complete the process. Furthermore, in a semiconductor element having a multilayer wiring structure, it goes without saying that by repeating this process, the present invention can be applied to the second or higher wiring layers.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、A
l−Si合金配線層の自然酸化膜を除去してWCVDで
の核形成をし易くし、かつβ−W膜をその配線層表面に
形成したので、均一なW膜が形成されるとともに、後工
程での熱処理や膜形成時の熱でWとAlが反応すること
もなく、配線抵抗の増大も生じない。また、ストレスも
極めて少ないので、細い配線に適用しても悪影響はなく
、良質で強い配線を実現できる。
[Effects of the Invention] As explained above, according to the present invention, A
The natural oxide film of the l-Si alloy interconnection layer was removed to facilitate nucleation in WCVD, and the β-W film was formed on the surface of the interconnection layer, so a uniform W film was formed and the subsequent There is no reaction between W and Al due to heat treatment during the process or during film formation, and no increase in wiring resistance occurs. In addition, since the stress is extremely low, there is no negative effect even if it is applied to thin wiring, and high-quality and strong wiring can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の工程断面図である。FIG. 1 is a process sectional view of an embodiment of the present invention.

【図2】従来例1の断面図である。FIG. 2 is a sectional view of Conventional Example 1.

【図3】従来例2の断面図である。FIG. 3 is a sectional view of conventional example 2.

【図4】α−W、β−Wの回折結果図である。FIG. 4 is a diagram showing the diffraction results of α-W and β-W.

【図5】Al中におけるWの拡散係数のアレニウスプロ
ットを示す図である。
FIG. 5 is a diagram showing an Arrhenius plot of the diffusion coefficient of W in Al.

【符号の説明】[Explanation of symbols]

1    IC基板 2    絶縁膜 3    Al−Si配線層 4    パッシベーション膜 5    β−W膜 1 IC board 2 Insulating film 3 Al-Si wiring layer 4 Passivation film 5 β-W film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体素子の配線形成方法において、
(a)半導体基板上に絶縁膜を形成し、その上にAl−
Si合金系配線層を形成する工程と、(b)前記配線層
の表面に形成された自然酸化膜を除去する工程と、(c
)その後β−W膜を前記配線層の表面上にのみ選択的に
形成する工程とを含むことを特徴とする半導体素子の配
線形成方法。
[Claim 1] In a method for forming wiring of a semiconductor element,
(a) An insulating film is formed on a semiconductor substrate, and an Al-
a step of forming a Si alloy-based wiring layer, (b) a step of removing a natural oxide film formed on the surface of the wiring layer, and (c)
) Thereafter, a method for forming wiring in a semiconductor device, comprising the step of selectively forming a β-W film only on the surface of the wiring layer.
JP2402649A 1990-12-17 1990-12-17 Semiconductor element wiring forming method Expired - Fee Related JP3040177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2402649A JP3040177B2 (en) 1990-12-17 1990-12-17 Semiconductor element wiring forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2402649A JP3040177B2 (en) 1990-12-17 1990-12-17 Semiconductor element wiring forming method

Publications (2)

Publication Number Publication Date
JPH04216630A true JPH04216630A (en) 1992-08-06
JP3040177B2 JP3040177B2 (en) 2000-05-08

Family

ID=18512448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2402649A Expired - Fee Related JP3040177B2 (en) 1990-12-17 1990-12-17 Semiconductor element wiring forming method

Country Status (1)

Country Link
JP (1) JP3040177B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310919A (en) * 2013-12-27 2019-10-08 朗姆研究公司 Realize the tungsten nucleation technique of low-resistivity tungsten feature filling
US11972952B2 (en) 2018-12-14 2024-04-30 Lam Research Corporation Atomic layer deposition on 3D NAND structures
US12002679B2 (en) 2019-04-11 2024-06-04 Lam Research Corporation High step coverage tungsten deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310919A (en) * 2013-12-27 2019-10-08 朗姆研究公司 Realize the tungsten nucleation technique of low-resistivity tungsten feature filling
US11972952B2 (en) 2018-12-14 2024-04-30 Lam Research Corporation Atomic layer deposition on 3D NAND structures
US12002679B2 (en) 2019-04-11 2024-06-04 Lam Research Corporation High step coverage tungsten deposition

Also Published As

Publication number Publication date
JP3040177B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
JPH05235184A (en) Manufacturing method of multilayer wiring structural body of semiconducot rdevice
JPH07153754A (en) Manufacture of semiconductor device
JP2000077406A (en) Manufacture of semiconductor device
US5953628A (en) Method for forming wiring for a semiconductor device
JP3125745B2 (en) Method for manufacturing semiconductor device
JPH04216630A (en) Wiring formation of semiconductor element
JP3130207B2 (en) Method for manufacturing semiconductor device
JPH05206282A (en) Manufacturing method of multilayer wiring structure of semiconductor device
KR100256271B1 (en) Metal wiring method of semiconductor device
JP2776397B2 (en) Method for manufacturing semiconductor device
JP3099381B2 (en) Semiconductor device and manufacturing method thereof
JPH05304218A (en) Fabrication of semiconductor device
JPS63262856A (en) Manufacture of semiconductor device
JP3510943B2 (en) Method for manufacturing semiconductor device
JP3233997B2 (en) Semiconductor element wiring forming method
JPS5966125A (en) Manufacture of semiconductor device
JPH02170431A (en) Manufacture of semiconductor device
JPH01270333A (en) Manufacture of semiconductor device
JPH06112203A (en) Production of semiconductor device
JP2823727B2 (en) Contact formation method
KR100192168B1 (en) Multilayered wiring production on semiconductor device
JPH0493020A (en) Manufacture of semiconductor device
JPH06112202A (en) Production of semiconductor device
JPH05243225A (en) Semiconductor device and manufacture thereof
JPH05160128A (en) Manufacture of al-si alloy wiring

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000215

LAPS Cancellation because of no payment of annual fees