JPH0421583A - Oxidation-resistant treatment of carbon fiber-reinforced carbon material - Google Patents

Oxidation-resistant treatment of carbon fiber-reinforced carbon material

Info

Publication number
JPH0421583A
JPH0421583A JP2125945A JP12594590A JPH0421583A JP H0421583 A JPH0421583 A JP H0421583A JP 2125945 A JP2125945 A JP 2125945A JP 12594590 A JP12594590 A JP 12594590A JP H0421583 A JPH0421583 A JP H0421583A
Authority
JP
Japan
Prior art keywords
carbon fiber
sic
carbon
reinforced
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2125945A
Other languages
Japanese (ja)
Inventor
Toshiya Sedaka
俊哉 瀬高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2125945A priority Critical patent/JPH0421583A/en
Publication of JPH0421583A publication Critical patent/JPH0421583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a reinforced carbon substrate having excellent oxidation resistance even in a high-temperature oxidizing atmosphere, by forming a SiC coating film layer on the surface of a carbon fiber-reinforced carbon substrate, cleaning the surface, sensitizing, activating and coating the surface with Fe, Co, or Ni. CONSTITUTION:Carbon fibers are blended with a matrix resin, molded, cured, burnt, carbonized to give a carbon fiber-reinforced carbon substrate and a SiO gas is brought into contact with the surface of the carbon fiber-reinforced carbon substrate to form a SiC coating film layer by conversion method. Then the surface of the coated layer is cleaned, sensitized, activated and coated with Fe, Co or Ni or an alloy consisting essentially of theses metals by electroless plating to subject the carbon fiber-reinforced carbon substrate to oxidation resistant treatment. In the cleaning, ultrasonic cleaning is effectively used. The sensitizing and the activating are carried out in order to provide the SiC coating film layer with electrical conductivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温酸化雰囲気下において優れた酸化抵抗性
を付与することができる炭素繊維強化炭素材(以下rC
/C材」という。)の耐酸化処理方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to a carbon fiber reinforced carbon material (rC
/C material.” ) regarding an oxidation-resistant treatment method.

〔従来の技術] C/C材は、卓越した比強度、比弾性率を有するうえに
優れた耐熱性、耐食性を備えるため、航空宇宙用をはし
め多分野の構造材料として脚光を浴びている。
[Prior Art] C/C materials have excellent specific strength and specific modulus, as well as excellent heat resistance and corrosion resistance, so they are in the spotlight as structural materials in many fields including aerospace applications.

該C/C材は、通常、炭素繊維の織布、フェルト、トウ
などを強化材とし、これに炭化残留率の高いマトリック
ス樹脂液を含浸または塗布して積層成形したのち、硬化
および焼成炭化処理することにより製造されるが、この
材料は炭素材固有の易酸化性という材質的な欠点をその
まま引き継いでおり、これが汎用性を阻害する最大のネ
ックになっている。このため、C/C材の表面に耐酸化
性の被覆を施して改質化する試みが従来からなされてお
り、例えばZ roz 、A/!z 03 、S i 
Cなどのセラミックス系物質により被覆処理する方法が
提案されている。しかし、SiC以外の被覆層では使用
時における熱サイクルで被覆界面に層間剥翻や亀裂を生
し、酸化の進行を充分に阻止する機能が発揮されない。
The C/C material is usually reinforced with carbon fiber woven cloth, felt, tow, etc., impregnated or coated with a matrix resin liquid with a high carbonization residual rate, laminated and molded, and then hardened and sintered to carbonize. However, this material inherits the material disadvantage of carbon material, which is its inherent oxidizability, and this is the biggest bottleneck that hinders its versatility. For this reason, attempts have been made to modify the surface of C/C materials by coating them with oxidation-resistant coatings, such as Z roz , A/! z 03 , S i
A method of coating with a ceramic material such as C has been proposed. However, with coating layers other than SiC, interlayer peeling and cracking occur at the coating interface due to thermal cycles during use, and the function of sufficiently inhibiting the progress of oxidation is not exhibited.

SiCの被覆層においても、被膜形成の方法によって眉
間剥離が多く発生する場合がある。すなわち、C/C基
材の表面にSiCの被覆を施す方法としては、基材の炭
素を反応源に利用してSiCに転化させるコンバージョ
ン法と、気相反応により析出したSiCを直接沈着させ
るCVD (化学的気相蒸着)法とがある。このうち前
者の方法は基材面に例えばS i CjLのようなハロ
ゲン化珪素化合物の水素還元により31層を形成したり
、基材にポリカルボンランなどの有機珪素化合物を溶液
状態で強制含浸したり、もしくは基材面にS10□とS
l、C等を反応させて生成したSiOガスを接触させ、
これらの珪素成分と基材の炭素組織と加熱反応させてS
iCに転化させる機構によるもので、基材表面が連続組
織としてSiC層を形成するため被覆界面がなく、眉間
剥離が生し難い被膜特性を示す。一方、後者のCVD法
は5icfnなどの珪素化合物と炭化水素類(例えばC
3H8) との加熱反応、あるいはトリクロロメチルシ
ラン(CHzSiCIi)のような炭化水素を含もハロ
ゲン化有機化合物の還元熱分解などにより気相析出した
SiCを基材表面に析出沈着させるもので、この場合に
は被覆界面が明確に分れているため熱衝撃を与えると相
互の熱膨張差によって層間剥離現象が多発し易い。
Even in the SiC coating layer, peeling between the eyebrows may occur frequently depending on the method of film formation. That is, methods for coating the surface of a C/C base material with SiC include a conversion method in which carbon in the base material is used as a reaction source to convert it into SiC, and a CVD method in which SiC precipitated by a gas phase reaction is directly deposited. (chemical vapor deposition) method. The former method involves forming 31 layers on the substrate surface by hydrogen reduction of a silicon halide compound such as S i CjL, or forcibly impregnating the substrate with an organosilicon compound such as polycarbonane in a solution state. or S10□ and S on the base material surface.
Contact with SiO gas generated by reacting L, C, etc.,
By heating and reacting these silicon components with the carbon structure of the base material, S
This is due to the mechanism of conversion to iC, and since the SiC layer is formed as a continuous structure on the surface of the base material, there is no coating interface, and exhibits coating characteristics that prevent peeling between the eyebrows. On the other hand, the latter CVD method uses silicon compounds such as 5icfn and hydrocarbons (e.g. C
3H8) or by reductive thermal decomposition of hydrocarbon-containing halogenated organic compounds such as trichloromethylsilane (CHzSiCIi), SiC is deposited on the surface of the substrate. Because the coating interface is clearly separated, when a thermal shock is applied, delamination tends to occur frequently due to the difference in thermal expansion between the layers.

したがって、C/C材にSiC被覆による耐酸化被膜を
形成する方法としてはコンバージョン法、とりわけ緻密
質なSiC層に転化するSiOガスを接触させる方法を
適用することが望ましい。
Therefore, as a method for forming an oxidation-resistant film by SiC coating on a C/C material, it is desirable to apply a conversion method, particularly a method of contacting with SiO gas that converts into a dense SiC layer.

[発明が解決しようとする課題] SiOガスの接触機構によるコンバージョン法において
は、SiOガスとC/C基材組織面の炭素成分との間に
次式のような反応が生じる。
[Problems to be Solved by the Invention] In the conversion method using a contact mechanism of SiO gas, a reaction as shown in the following formula occurs between the SiO gas and the carbon component of the C/C base material texture surface.

S i o+c−+s i C+CO したがって、被覆工程の反応段階でC/C基材組織面を
構成する炭素成分はCOとなってガス離脱しなからSi
Cへの転化が進み、このガス離脱が原因でSiC粒子間
に微小な空隙(ピンホール)が形成される事態が発生す
る。また、コンバージョン法によるSiC被膜であって
も、層厚その他の条件によっては反応時に微小なりラッ
クを生しることがあり、前記の微小空隙と併せて耐酸化
性を減退される問題点がある。
S io+c-+s i C+CO Therefore, in the reaction stage of the coating process, the carbon component constituting the C/C base material texture surface becomes CO and does not degas, so it becomes Si
Conversion to C progresses, and this gas desorption causes a situation in which minute voids (pinholes) are formed between SiC particles. Furthermore, even with a SiC film produced by the conversion method, depending on the layer thickness and other conditions, microscopic racks may be produced during the reaction, which, together with the aforementioned microporosity, reduces the oxidation resistance. .

本発明者は、上記の問題点を解消する方法について研究
を重ねた結果、C/C基材面にSiO接触によるコンバ
ージョン法で形成したSiC被膜面に、さらに無電解め
っきにより鉄族に属する金属またはそれら金属を含む合
金を被覆すると緻密で密着性に優れる実質的にガス不透
過性の被膜が形成されることを確認した。
As a result of repeated research on methods to solve the above problems, the inventors of the present invention discovered that a metal belonging to the iron group was further applied by electroless plating to the SiC coating surface formed on the C/C substrate surface by a conversion method using SiO contact. It was also confirmed that when coated with an alloy containing these metals, a dense, highly adhesive, and substantially gas-impermeable film was formed.

本発明は上記の知見に基づいて開発されたもので、その
目的は高温酸化雰囲気においても優れた酸化抵抗性を付
与することができるC/C材の耐酸化処理方法を提供す
るところにある。
The present invention was developed based on the above findings, and its purpose is to provide an oxidation-resistant treatment method for C/C material that can impart excellent oxidation resistance even in a high-temperature oxidizing atmosphere.

〔課題を解決するための手段] 上記の目的を達成するための本発明によるC/C材の耐
酸化処理方法は、炭素繊維をマトリックス樹脂とともに
複合成形し硬化および焼成炭化処理して得られた炭素繊
維強化炭素基材の表面にSiOガスを接触させてコンバ
ージョン法によすSiC被覆層を形成し、前記被覆層面
を洗浄化、感受性化および活性化処理したのち無電解め
っき法によりFe、CoまたはN1もしくはこれら金属
を主要成分とする合金を被覆することを構成上の特徴と
する。
[Means for Solving the Problems] In order to achieve the above object, the method for oxidation-resistant treatment of C/C material according to the present invention is a method for oxidation-resistant treatment of C/C material, which is obtained by composite molding carbon fibers with matrix resin, hardening and firing carbonization treatment. A SiC coating layer is formed by a conversion method by contacting the surface of a carbon fiber-reinforced carbon substrate with SiO gas, and the surface of the coating layer is cleaned, sensitized, and activated, and then Fe, Co is coated by an electroless plating method. Alternatively, the structure is characterized by being coated with N1 or an alloy containing these metals as main components.

強化材となる炭素繊維には、ポリアクリルニトリル系、
レーヨン系、ピッチ系など各種原料から製造された平織
、綾織などの織布、フェルトあるいはトウが使用され、
マトリックス樹脂としてはフェノール系、フラン系その
他炭化性の良好な液状熱硬化性樹脂が用いられる。炭素
繊維は、浸漬、含浸、塗布などの手段を用いてマトリッ
クス樹脂で十分に濡らしたのち半硬化してプリプレグを
形成し、ついで積層加圧成形する。成形体は加熱して樹
脂成分を完全に硬化し、引き続き常法に従って焼成炭化
処理または更に黒鉛化してC/C基材を得る。
Carbon fibers that serve as reinforcement materials include polyacrylonitrile,
Woven fabrics such as plain weave and twill weave, felt or tow made from various raw materials such as rayon and pitch are used.
As the matrix resin, phenol-based, furan-based, or other liquid thermosetting resins with good carbonizability are used. The carbon fibers are sufficiently wetted with a matrix resin by dipping, impregnation, coating, etc., and then semi-cured to form a prepreg, which is then laminated and pressure-molded. The molded body is heated to completely harden the resin component, and then subjected to firing carbonization treatment or further graphitization according to a conventional method to obtain a C/C base material.

得られたC/C基材は、必要に応してマトリノクス樹脂
を含浸、硬化、炭化する処理を反復して組織の緻密化を
図ることもある。
The obtained C/C base material may be repeatedly impregnated with a matrinox resin, hardened, and carbonized to make the structure denser, if necessary.

このようにして得られたC 、/ C基材には、コンバ
ージョン法によりSiC被膜層を形成する。該工程は、
SiO□粉末をSiもしくはC粉末と混合して密閉加熱
系に収納し、系内にC/C基材をセットして加熱反応さ
せることによっておこなわれる。この際の条件は、5i
Oz:SiまたはCのモル比を2=1とし、加熱温度を
1850〜2000°Cの範囲に設定することが好まし
い。
A SiC coating layer is formed on the C,/C substrate thus obtained by a conversion method. The process is
This is carried out by mixing SiO□ powder with Si or C powder, storing the mixture in a closed heating system, setting a C/C base material in the system, and causing a heating reaction. The conditions at this time are 5i
It is preferable that the molar ratio of Oz:Si or C is 2=1 and the heating temperature is set in the range of 1850 to 2000°C.

上記の被覆工程において、SiO□はSiまたはC成分
で加熱還元されてSiOガスを生成し、このSiOガス
がC/C基材を構成する炭素組織と反応して表層部をS
iCに転化させる。
In the above-mentioned coating process, SiO
Convert to iC.

ついで、SiC被膜層が形成されたC/C基材の表面を
無電解めっきの前処理として、洗浄化、感受性化および
活性化の各処理が施される。洗浄化の処理は、例えば固
着していないSiC粒子を表面から除去するためにおこ
なうもので、超音波洗浄が効果的に用いられる。感受性
処理(センシタイジング)および活性化処理(アクチヘ
ーノヨン)はSiC被覆層面に電導性を付与するために
おこなわれる工程で、例えば前者の処理でC/C基材を
塩化第1錫(SnC1z)の塩酸l合液に浸漬し、次に
後者の処理で例えば塩化パラジウム(PdCIz)の塩
酸溶液に浸漬することによりパラジウムイオンを前記2
価の錫イオンで1元してSiC被覆面に金属パラジウム
を析出させる等の方法が通用される。
Next, the surface of the C/C substrate on which the SiC coating layer is formed is subjected to cleaning, sensitization, and activation treatments as pretreatment for electroless plating. The cleaning process is performed, for example, to remove unfixed SiC particles from the surface, and ultrasonic cleaning is effectively used. Sensitizing treatment and activation treatment are steps carried out to impart electrical conductivity to the surface of the SiC coating layer. For example, in the former treatment, the C/C substrate is treated with stannous chloride (SnC1z). The palladium ions are immersed in a hydrochloric acid mixture and then in the latter treatment, for example, in a hydrochloric acid solution of palladium chloride (PdCIz).
A method of depositing metallic palladium on the SiC-coated surface by unifying with valent tin ions is commonly used.

このようにして洗浄化、感受性化および活性化の各処理
を施したSiC被覆C/C基材は、引き続き無電解めっ
き処理にかけられる。
The SiC-coated C/C substrate that has been subjected to the cleaning, sensitization, and activation treatments in this manner is subsequently subjected to an electroless plating treatment.

めっき対象となる金属は、比較的融点が高く且つ無電解
/8液を得やすいFe、Co、N1の単体、もしくはこ
れら金属を主要成分とする合金類から選択される。この
種の合金としては、Ni−Co、Co−N1−PXCo
−Fe−P、、Co−N1Bなどを挙げることができる
The metal to be plated is selected from simple substances such as Fe, Co, and N1, which have a relatively high melting point and are easy to obtain electroless/8 liquid, or alloys containing these metals as main components. This type of alloy includes Ni-Co, Co-N1-PXCo
-Fe-P, Co-N1B, etc. can be mentioned.

g電解めっきの条件には特に制約はな(、一般に知られ
ている範囲のプロセスを適用することができる。
(g) There are no particular restrictions on the electrolytic plating conditions (generally known processes can be applied.

[作 用] 本発明によれば、まずSiO接触機構によるコンバージ
ョン法でC/C基材の表面層を緻密なSIC層に転化す
る。該工程においては、加熱時にC/C基材の組織面か
らのCOガス離脱に伴うSiC粒子間の微小な空隙(ピ
ンホール)やクランク等の形成現象が生しるが、これら
の欠陥部位は無電解めっきにより析出した金属または合
金の微細粒子により完全に充填され、同時に全表面が緻
密なめっき層で被覆される。この際、形成される金属ま
たは合金のめっき層は、SiC被膜面に介在する前記空
隙やクラックの凹凸に沿って密着状態に被覆するから、
アンカー作用により極めて強固なめっき膜層を形成する
[Function] According to the present invention, first, the surface layer of the C/C base material is converted into a dense SIC layer by a conversion method using a SiO contact mechanism. In this process, formation phenomena such as minute voids (pinholes) and cranks between SiC particles occur due to the separation of CO gas from the structural surface of the C/C base material during heating, but these defective sites are It is completely filled with fine metal or alloy particles deposited by electroless plating, and at the same time the entire surface is covered with a dense plating layer. At this time, the formed metal or alloy plating layer adheres to the unevenness of the voids and cracks interposed on the SiC coating surface, so that
Forms an extremely strong plating layer due to its anchoring action.

この状態を巨視的に示すと図のような模式図となり、C
/C基材lの表面層を形成するSiC被膜2に介在した
ピンホールその他の凹凸に沿い、無電解めっき膜3が完
全に充填および被覆した形態を呈する。
When this state is shown macroscopically, it becomes a schematic diagram as shown in the figure, and C
The electroless plated film 3 completely fills and covers the pinholes and other irregularities in the SiC film 2 forming the surface layer of the /C base material 1.

このような2段被覆工程の作用を介してC/C基材の全
表面にガス不透過性の高耐酸化性被膜が形成される。
Through the action of such a two-stage coating process, a gas-impermeable, highly oxidation-resistant coating is formed on the entire surface of the C/C substrate.

(実施例] 以下、本発明を実施例に基づいて説明する。(Example] Hereinafter, the present invention will be explained based on examples.

実施例I (1)C/C基材の作製 ポリアクリロニトリル系高弾性タイプの平織炭素繊維布
をフェノール樹脂初期縮合物からなるマトリックス樹脂
液に浸漬して含浸処理した。これを14枚積層してモー
ルドに入れ、加熱温度110°C1適用圧力20kg/
cm2の条件で複合成形した。
Example I (1) Preparation of C/C base material A polyacrylonitrile-based high-elasticity plain-woven carbon fiber cloth was impregnated by immersing it in a matrix resin liquid consisting of a phenolic resin initial condensate. Laminate 14 sheets of this and put it in a mold, heating temperature 110°C, applied pressure 20kg/
Composite molding was performed under the condition of cm2.

成形物を250°Cの温度に加熱して完全に硬化したの
ち、窒素雰囲気に保持された焼成炉に移し、5°C/h
rの昇温速度で1000°Cまで上昇し5時間保持して
焼成炭化した。
After heating the molded product to a temperature of 250°C to completely cure it, it was transferred to a firing furnace maintained in a nitrogen atmosphere and heated at 5°C/h.
The temperature was raised to 1000°C at a rate of 100°C and held for 5 hours for firing and carbonization.

得られたC/C材にフェノール樹脂液を真空加圧下に含
浸し、上記と同様に1000°C焼成する処理を3回反
復して緻密組織のC/C基材を作製した。
The obtained C/C material was impregnated with a phenolic resin liquid under vacuum pressure and fired at 1000°C in the same manner as above three times to produce a C/C base material with a dense structure.

(2)  S i Cの被覆 5iOzN末とSi粉末をモル比2:lの配合比率とな
るように混合し、混合粉末を黒鉛製ルツボに入れ上部に
C/C基材をセ・ノドして黒鉛蓋を被せた。
(2) SiC coating 5iOzN powder and Si powder were mixed at a molar ratio of 2:1, and the mixed powder was placed in a graphite crucible and a C/C base material was placed on top. It was covered with a graphite lid.

ついで、ルツボの内外をArガス雰囲気に保持しながら
1850’Cの温度で2時間反応させてC/C材の表層
部をコンバージョン法によりSiCに転化し、平均さ1
50μ−のSiC被膜層を形成した。
Next, while maintaining the inside and outside of the crucible in an Ar gas atmosphere, a reaction was carried out at a temperature of 1850'C for 2 hours to convert the surface layer of the C/C material into SiC by the conversion method, with an average density of 1
A 50μ-thick SiC coating layer was formed.

(3)Ni無電解めっき S i C1l膜層を形成したC/C基材を超音波洗浄
したのち水洗し、これを室温で塩化第1錫の10g/l
塩酸酸性溶液に浸漬して感受性化処理を施し、引き続き
塩化パラジウムの0.3g/42塩酸酸性溶液に浸漬し
て活性化処理をおこなった。
(3) The C/C substrate on which the Ni electroless plating S i C1l film layer was formed was ultrasonically cleaned, then washed with water, and then treated with 10 g/l of stannous chloride at room temperature.
A sensitization treatment was performed by immersing it in an acidic solution of hydrochloric acid, and then an activation treatment was performed by immersing it in an acidic solution of 0.3 g of palladium chloride/42 hydrochloric acid.

硫酸ニッケル30g/l、酢酸ナトリウム10g /!
の水溶液に、lI!当たり0.5gの活性炭を加えて攪
拌、静置、濾過したのち、次亜燐酸ナトリウムを108
/Nの割合で添加溶解してめっき液を調整した。めっき
槽に該めっき液を満たし、これに前記活性化処理が完了
したC/C基材を浸漬して1時間Ni無電解めっきをお
こなった。
Nickel sulfate 30g/l, sodium acetate 10g/!
In an aqueous solution of lI! After adding 0.5 g of activated carbon per bottle, stirring, standing still, and filtering, sodium hypophosphite was added to 108 g of activated carbon.
/N to prepare a plating solution. A plating tank was filled with the plating solution, and the C/C base material that had undergone the activation treatment was immersed in the tank to perform Ni electroless plating for 1 hour.

めっき浴の条件は、p H: 4.0〜4.2、温度:
90’Cに設定した。処理後の平均めっき厚さは8μm
であった。
The conditions of the plating bath are pH: 4.0-4.2, temperature:
It was set at 90'C. Average plating thickness after treatment is 8μm
Met.

(4)耐酸化性の評価 上記の2段被覆工程によりSiC被膜層とN1めっき膜
を形成したC/C材を電気炉に入れ、大気中で1000
°Cおよび1500°Cの温度に30分間保って冷却さ
せた場合の酸化による重量減少率を測定した。その結果
、C/C材の重量減少率は1000’C処理時で0.5
%、1500°C処理時で2.1%であった。
(4) Evaluation of oxidation resistance The C/C material on which the SiC coating layer and N1 plating film were formed by the above two-step coating process was placed in an electric furnace, and
The weight loss rate due to oxidation was measured when the sample was cooled at a temperature of 1500°C and 1500°C for 30 minutes. As a result, the weight reduction rate of C/C material was 0.5 when treated at 1000'C.
%, and 2.1% when treated at 1500°C.

この値は、比較のために同様に試験した上記SiC被覆
層のみのC/C材の重量減少率が1000’C処理時4
.0%、1500°C処理時11.8%であるのと比べ
大幅に減少しており、耐酸化性能が著しく向上している
ことが判明する。
This value indicates that the weight loss rate of the C/C material with only the SiC coating layer tested in the same manner for comparison was 4 when treated at 1000'C.
.. This is a significant decrease compared to 11.8% when treated at 0% and 1500°C, and it is clear that the oxidation resistance performance is significantly improved.

なお、この処理によりNiめっき膜は酸化を受けたが、
表層面に留まり内部への拡散は認められなかった。
Although the Ni plating film was oxidized by this treatment,
It remained on the surface layer and no diffusion into the interior was observed.

実施例2 実施例1と同一の条件によりSiC被覆を施したC/C
材を同様に洗浄化、怒受性化および活性化処理したのち
、次のようにしてCo無電解めっきをおこなった。
Example 2 C/C coated with SiC under the same conditions as Example 1
After the material was similarly cleaned, made susceptible to irradiation, and activated, Co electroless plating was performed in the following manner.

めっき液の組成は、硫酸コハルH2g/j2、マロン酸
ナトリウムlog#、ツメチルアミンボランIg 、#
とじ、実施例1と同様に活性炭(0,5g/l)により
不純物を除去して使用に供した。
The composition of the plating solution is Kohar sulfate H2g/j2, sodium malonate log#, trimethylamine borane Ig, #
It was sealed and impurities were removed using activated carbon (0.5 g/l) in the same manner as in Example 1, and then used.

めっき浴の条件は、pH:5.1〜6.0、温度:90
゛Cとした。処理後の平均めっき厚さは、17μmであ
った。
The conditions of the plating bath are pH: 5.1 to 6.0, temperature: 90
It was set as ゛C. The average plating thickness after treatment was 17 μm.

このようムこして2段被覆処理したC/C材につき、実
施例1と同一条件で酸化による重量減少率を測定したと
コロ、1000°C処理時テ0.3%、1500°C処
理時で2.0%と良好な酸化抵抗性を示した。
The weight loss rate due to oxidation of the C/C material subjected to the two-stage coating treatment was measured under the same conditions as in Example 1. It showed good oxidation resistance of 2.0%.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によればC/C材の表面にSiO
接触機構によるコンバージョン法でSiC被膜層を形成
し、さらにその上面に高融点の金属または合金を嶌電解
めっきする2段被覆工程を施すことによって、高度の耐
酸化性能を付与することができる。
As described above, according to the present invention, SiO is formed on the surface of the C/C material.
A high degree of oxidation resistance can be imparted by forming a SiC film layer by a conversion method using a contact mechanism, and then performing a two-step coating process of electrolytically plating a high melting point metal or alloy on the top surface.

したがって、高温酸化雰囲気下の苛酷な条件に晒される
構造部材用途に通用して安定性能の確保、耐用寿命の延
長化などの効果がもたらされる。
Therefore, it can be used for structural members exposed to severe conditions under high-temperature oxidizing atmospheres, resulting in effects such as ensuring stable performance and extending service life.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による耐酸化被覆の断面状態を示した模式図
である。 1・・・C/C基材   2・・・SiC被膜3・・・
無電解めっき膜 出願人  東海カーボン株式会社 代理人 弁理士 高 畑 正 也
The figure is a schematic diagram showing a cross-sectional state of the oxidation-resistant coating according to the present invention. 1... C/C base material 2... SiC coating 3...
Electroless plating film applicant Tokai Carbon Co., Ltd. agent Patent attorney Masaya Takahata

Claims (1)

【特許請求の範囲】[Claims] 1.炭素繊維をマトリックス樹脂とともに複合成形し硬
化および焼成炭化処理して得られた炭素繊維強化炭素基
材の表面にSiOガスを接触させてコンバージョン法に
よりSiC被膜層を形成し、前記被覆層面を洗浄化、感
受性化および活性化処理したのち無電解めっき法により
Fe,CoまたはNiもしくはこれら金属を主要成分と
する合金を被覆することを特徴とする炭素繊維強化炭素
材の耐酸化処理方法。
1. A SiC coating layer is formed by a conversion method by bringing SiO gas into contact with the surface of a carbon fiber-reinforced carbon base material obtained by composite molding carbon fibers with a matrix resin, curing and firing carbonization treatment, and cleaning the surface of the coating layer. 1. A method for oxidation-resistant treatment of a carbon fiber-reinforced carbon material, which comprises sensitizing and activating the material and then coating it with Fe, Co, Ni, or an alloy containing these metals as main components by electroless plating.
JP2125945A 1990-05-15 1990-05-15 Oxidation-resistant treatment of carbon fiber-reinforced carbon material Pending JPH0421583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125945A JPH0421583A (en) 1990-05-15 1990-05-15 Oxidation-resistant treatment of carbon fiber-reinforced carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125945A JPH0421583A (en) 1990-05-15 1990-05-15 Oxidation-resistant treatment of carbon fiber-reinforced carbon material

Publications (1)

Publication Number Publication Date
JPH0421583A true JPH0421583A (en) 1992-01-24

Family

ID=14922863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125945A Pending JPH0421583A (en) 1990-05-15 1990-05-15 Oxidation-resistant treatment of carbon fiber-reinforced carbon material

Country Status (1)

Country Link
JP (1) JPH0421583A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145180A (en) * 1980-04-10 1981-11-11 Hitachi Chemical Co Ltd Manufacture of silicon carbide clad carbon material
JPS63256586A (en) * 1987-04-14 1988-10-24 東海カ−ボン株式会社 Manufacture of oxidation-resistant carbon composite material
JPH01252578A (en) * 1988-04-01 1989-10-09 Tokai Carbon Co Ltd Production of oxidation resistant c/c composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145180A (en) * 1980-04-10 1981-11-11 Hitachi Chemical Co Ltd Manufacture of silicon carbide clad carbon material
JPS63256586A (en) * 1987-04-14 1988-10-24 東海カ−ボン株式会社 Manufacture of oxidation-resistant carbon composite material
JPH01252578A (en) * 1988-04-01 1989-10-09 Tokai Carbon Co Ltd Production of oxidation resistant c/c composite material

Similar Documents

Publication Publication Date Title
JPH0543364A (en) Oxidation-resistant corbon fiber-reinforced carbon composite material and its production
CN115716760B (en) C/SiC-HfC ceramic matrix composite material and preparation method thereof
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JPH0421583A (en) Oxidation-resistant treatment of carbon fiber-reinforced carbon material
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JPH06345572A (en) Oxidation resistant coating layer of c/c composite material
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH0794354B2 (en) Oxidation resistant C / C material and manufacturing method thereof
JPH0442878A (en) Method for antioxidizing treatment of carbon-fiber reinforced carbon material
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH0412078A (en) Method for carrying out oxidation resisting treatment of carbon fiber reinforced carbon material
JP3038493B2 (en) Method for producing oxidation resistant C / C material
JPH0952777A (en) Production of oxidation resistant c/c composite material
JP3198157B2 (en) Method for producing oxidation resistant C / C composite
JPH07126089A (en) Production of oxidation-resistance c/c composite material
JPH06247782A (en) Production of oxidation resistant c/c composite material
JPH05148018A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3818606B2 (en) Carbon fiber reinforced carbon composite
JPH0524921A (en) Production of oxidation resistance c/c composite
JP2024032606A (en) Method of producing silicon carbide based composite