JPH0421570A - Sialon sintered compact and production thereof - Google Patents
Sialon sintered compact and production thereofInfo
- Publication number
- JPH0421570A JPH0421570A JP2122697A JP12269790A JPH0421570A JP H0421570 A JPH0421570 A JP H0421570A JP 2122697 A JP2122697 A JP 2122697A JP 12269790 A JP12269790 A JP 12269790A JP H0421570 A JPH0421570 A JP H0421570A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sialon
- powder
- type silicon
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 63
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000000843 powder Substances 0.000 claims abstract description 52
- 239000013078 crystal Substances 0.000 claims abstract description 50
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 11
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 11
- 230000007704 transition Effects 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims description 21
- 239000002994 raw material Substances 0.000 claims description 19
- 239000007858 starting material Substances 0.000 claims description 17
- 239000011812 mixed powder Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910003564 SiAlON Inorganic materials 0.000 claims 2
- 238000005245 sintering Methods 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 20
- 239000000919 ceramic Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、機械的強度や破壊靭性に優れたサイアロン焼
結体およびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a sialon sintered body having excellent mechanical strength and fracture toughness, and a method for producing the same.
(従来の技術)
5i−AI−0−Nを主構成元素とするサイアロンは、
熱膨張係数が小さく、耐熱性、耐酸化特性、耐食性に優
れており、Si3N4焼結体系材料やSiC焼結体系材
料とともに、エンジン部材などを始め、各種の高強度耐
熱部品や高温耐食部品に応用することか試みられている
。(Prior art) Sialon whose main constituent element is 5i-AI-0-N is
It has a small coefficient of thermal expansion and has excellent heat resistance, oxidation resistance, and corrosion resistance, and is applied to various high-strength heat-resistant parts and high-temperature corrosion-resistant parts, including engine parts, along with Si3N4 sintered materials and SiC sintered materials. An attempt is being made to do so.
このようなサイアロンには、α型Si3N+と同一構造
を有するα型サイアロンと、β型Si3N4と同一構造
を有するβ型サイアロンとか知られており、上記β(β
′とも呼ぶ)型サイアロンは次のようにして作製されて
いる。Such sialons include α-type sialon, which has the same structure as α-type Si3N+, and β-type sialon, which has the same structure as β-type Si3N4.
) type Sialon is manufactured as follows.
すなわちサイアロン焼結体は、Si3N4焼結体なとに
比べて焼結性か高いために、β型サイアロンではSi3
N 4−AIN −AI203 、Si3 N 4−A
IN −3jO;+ 、Si3N s −AIN −A
I203−8iO,+などの所定量の混合粉末を出発原
料として用い、プレス成形法などによって成形体を作製
し、この成形体に不活性ガス雰囲気中で常圧焼結や雰囲
気加圧焼結を施すことにより製造されている。In other words, the sialon sintered body has higher sinterability than the Si3N4 sintered body, so the β-type sialon has a higher sinterability than Si3N4 sintered body.
N4-AIN-AI203, Si3N4-A
IN-3jO;+, Si3Ns-AIN-A
Using a predetermined amount of mixed powder such as I203-8iO,+ as a starting material, a molded body is produced by a press molding method, etc., and this molded body is subjected to normal pressure sintering or atmospheric pressure sintering in an inert gas atmosphere. It is manufactured by applying
このように、β型サイアロン焼結体は比較的焼結性か高
いために、常圧焼結法や雰囲気加圧焼結法によって容易
に緻密質な焼結体を得ることかでき、かつ耐酸化特性や
耐食性に優れ、1400℃を超えるような高温下におい
ても機械的強度の低下かほとんどないなど、優れた特性
を有しているか、常圧焼結法や雰囲気加圧焼結法による
焼結体の機械的強度の絶対値自体は、Si3N4焼結体
やSiC焼結体に比べると劣り、また破壊靭性値も充分
に満足できる値には達していないのが現状である。As described above, β-type sialon sintered bodies have relatively high sinterability, so dense sintered bodies can be easily obtained by normal pressure sintering method or atmosphere pressure sintering method, and they are also acid resistant. It has excellent properties such as excellent corrosion resistance and corrosion resistance, and there is almost no decrease in mechanical strength even at high temperatures exceeding 1400°C. At present, the absolute value of the mechanical strength of the compact itself is inferior to that of Si3N4 sintered compacts and SiC sintered compacts, and the fracture toughness value has not yet reached a fully satisfactory value.
そこで、このようなβ型サイアロン焼結体の機械的強度
や破壊靭性値などの改善の試みとして、セラミックスウ
ィスカーなどを添加して繊維状物質による補強を行った
り、他のセラミックス焼結体と同様に希土類酸化物など
の添加物を加え、液相焼結による緻密化などの試みがな
されている。Therefore, as an attempt to improve the mechanical strength and fracture toughness of such β-type sialon sintered bodies, we have added ceramic whiskers and other materials to reinforce them with fibrous materials, and the like Attempts have been made to add additives such as rare earth oxides to densification through liquid phase sintering.
(発明か解決しようとする課題)
しかしながら、上述した強度改善方法のうち、たとえば
セラミックスウィスカーの添加は、ウィスカーの種類に
よってβ型サイアロン粉末とのなじみ性が悪いために焼
結性か低下し、得られる焼結体の密度か低下してしまい
、強度や耐熱衝撃性などの充分な改善効果か得られてい
ない。また、希土類酸化物などの添加は、耐酸化性や高
温における強度なとの高温特性の低下を招くという問題
があった。(Problem to be solved by the invention) However, among the above-mentioned strength improvement methods, for example, adding ceramic whiskers has poor compatibility with β-sialon powder depending on the type of whiskers, resulting in a decrease in sinterability and a problem in obtaining good results. The density of the resulting sintered body decreases, and sufficient improvement effects such as strength and thermal shock resistance cannot be obtained. Furthermore, the addition of rare earth oxides and the like has the problem of deteriorating high-temperature properties such as oxidation resistance and strength at high temperatures.
一方、ホットプレス法によれば、ある程度緻密質で機械
的強度に優れたものか得られているか、このホットプレ
ス法は得られる形状が限定され、比較的高い焼結性を充
分に活かすことができず、また製造コストか高いなどの
問題かあった。On the other hand, the hot press method produces products that are somewhat dense and have excellent mechanical strength, but the hot press method is limited in the shapes that can be obtained and cannot take full advantage of its relatively high sinterability. There were also problems such as high manufacturing costs.
本発明はこのような課題に対処するためになされたもの
で、より高い靭性を有するサイアロン焼結体およびその
製造方法を提供することを目的とする。The present invention was made to address such problems, and an object of the present invention is to provide a sialon sintered body having higher toughness and a method for manufacturing the same.
[発明の構成]
(課題を解決するための手段)
本発明のサイアロン焼結体は、サイアロン焼結体全体と
しての平均粒径か3μm以上100μm以下であり、か
つアスペクト比か1:3〜1:20の範囲である針状の
結晶粒を含有することを特徴としている。[Structure of the Invention] (Means for Solving the Problems) The sialon sintered body of the present invention has an average grain size of 3 μm or more and 100 μm or less as a whole of the sialon sintered body, and an aspect ratio of 1:3 to 1. It is characterized by containing acicular crystal grains in the range of :20.
また、本発明のサイアロン焼結体の製造方法は、窒化ケ
イ素成分の出発原料としてα型窒化ケイ素粉末を用い、
このα型窒化ケイ素粉末を含有し、サイアロン組成を満
足するよう原料粉末を調製し、この原料粉末をα−β転
移温度下で所定時間保持して、前記α型窒化ケイ素の一
部をβ型窒化ケイ素に相転移させるとともに、このβ型
窒化ケイ素を針状に結晶成長させ、その後、前記出発原
料をサイアロン合成温度下で焼結させ、前記α型窒化ケ
イ素粉末の粒子形状に由来する粒状結晶粒と前記β型窒
化ケイ素の形状に由来する針状結晶粒とを混在させるこ
とを特徴としている。Further, the method for producing a sialon sintered body of the present invention uses α-type silicon nitride powder as a starting material for the silicon nitride component,
A raw material powder containing this α-type silicon nitride powder is prepared so as to satisfy the sialon composition, and this raw material powder is held at the α-β transition temperature for a predetermined period of time to convert a part of the α-type silicon nitride into the β-type. While undergoing a phase transition to silicon nitride, this β-type silicon nitride is grown into needle-shaped crystals, and then the starting material is sintered at a sialon synthesis temperature to form granular crystals originating from the particle shape of the α-type silicon nitride powder. It is characterized in that grains and acicular crystal grains derived from the shape of the β-type silicon nitride are mixed together.
また、本発明の第二の製造方法は、窒化ケイ素成分の出
発原料としてα型窒化ケイ素粉末と針状晶のβ型窒化ケ
イ素粉末とを混合したαβ混合粉末を用い、このαβ混
合粉末を含有し、サイアロン組成を満足するよう原料粉
末を調製し、アルミニウム、酸素および窒素の4元素か
含まれるよう原料粉末を調製し、この原料粉末をサイア
ロン合成温度下で焼結させ、前記α型窒化ケイ素粉末の
粒子形状に由来する粒状結晶粒と前記β型窒化ケイ素の
形状に由来する針状結晶粒とを混在させることを特徴と
している。Further, the second manufacturing method of the present invention uses an αβ mixed powder obtained by mixing an α-type silicon nitride powder and a β-type silicon nitride powder with acicular crystals as a starting material for the silicon nitride component, and contains this αβ mixed powder. Then, a raw material powder is prepared to satisfy the Sialon composition, and the raw material powder is prepared to contain four elements of aluminum, oxygen, and nitrogen, and this raw material powder is sintered at the Sialon synthesis temperature to form the α-type silicon nitride. It is characterized in that granular crystal grains originating from the particle shape of the powder and acicular crystal grains originating from the shape of the β-type silicon nitride are mixed together.
本発明のサイアロン焼結体において、焼結体中に含まれ
る針状の結晶粒は、その細長い形状によってクラックの
進展を妨げるもので、この針状結晶を含めた焼結体全体
としての平均粒径は3μ1以上100μm以下である。In the sialon sintered body of the present invention, the acicular crystal grains contained in the sintered body hinder the development of cracks due to their elongated shape, and the average grain size of the sintered body as a whole including these acicular crystals The diameter is 3μ1 or more and 100μm or less.
ここで、平均粒径とは、サイアロン焼結体のランダムに
選択した断面における切り口線上の各粒子の幅の平均値
を取ったものである。Here, the average grain size is the average value of the width of each grain on the cut line in a randomly selected cross section of the sialon sintered body.
この平均粒径か3μ印未満では結晶粒か微細過ぎて、進
展してきたクラックを直線方向から曲げて逃がすことが
できず、100μmを超えると逆に結晶粒が大きすぎる
ため破壊の起点となり易く、強度低下を招くからである
。If the average grain size is less than the 3 μm mark, the crystal grains are too fine and it will not be possible to bend the growing crack away from the straight direction, and if it exceeds 100 μm, the crystal grains will be too large and will easily become the starting point of fracture. This is because it causes a decrease in strength.
また、このようなサイアロン焼結体中に含まれる針状の
結晶粒はアスペクト比か1=3〜l:20の範囲である
。Further, the aspect ratio of the acicular crystal grains contained in such a sialon sintered body is in the range of 1=3 to 1:20.
アスペクト比か1:3未満であると細長い形状が充分活
かされず、クラック進展の妨げ効果を発揮しない。一方
、アスペクト比か 1・20を超えると逆に結晶粒か細
長すぎるため、クラックか結晶粒を切断して直進し、編
方向に逃がすことかできなくなる。If the aspect ratio is less than 1:3, the elongated shape will not be fully utilized and the effect of inhibiting crack growth will not be exhibited. On the other hand, if the aspect ratio exceeds 1.20, the crystal grains will be too long and thin, so it will be impossible to crack or cut the crystal grains and move straight ahead in the knitting direction.
このような針状の結晶粒を含有するサイアロン焼結体は
、本発明の製造方法によって得ることかできる。A sialon sintered body containing such acicular crystal grains can be obtained by the manufacturing method of the present invention.
その第一の製造方法は、α型窒化ケイ素粉末を窒化ケイ
素成分側の出発原料として酸化アルミニウムなどその他
の所定成分を混合してサイアロン合成の原料粉末とし、
この原料粉末をα−β転移温度下で所定時間保持してα
型窒化ケイ素の一部をβ型窒化ケイ素に相転移させ、同
時にこのβ型窒化ケイ素を針状に結晶成長させる方法で
あり、α−β転移温度すなわち1600〜1800℃の
下で、成長処理の時間を0.2〜10時間の範囲で変化
させることにより、得られるサイアロン焼結体の平均粒
径およびアスペクト比をコントロールする。The first manufacturing method is to use α-type silicon nitride powder as a starting material for the silicon nitride component side, and mix other predetermined components such as aluminum oxide as a raw material powder for sialon synthesis.
This raw material powder is held at the α-β transition temperature for a predetermined time to
This is a method in which a part of type silicon nitride undergoes a phase transition to β-type silicon nitride, and at the same time, this β-type silicon nitride is grown into needle-shaped crystals. By changing the time in the range of 0.2 to 10 hours, the average grain size and aspect ratio of the obtained sialon sintered bodies are controlled.
ここで用いるα型窒化ケイ素粉末は平均粉末粒子径か0
.2〜1.5μD程度であることが好ましい。The α-type silicon nitride powder used here has an average powder particle size of 0
.. It is preferably about 2 to 1.5 μD.
この粉末粒子径は、粉末としての粒子径であり、マイク
ロトラック方式測定装置を用いて測定したものである。This powder particle size is the particle size as a powder, and was measured using a microtrack measuring device.
すなわち、原料粉末における平均粒子径と、上述したサ
イアロン焼結体における平均粒径とは意味か異なるもの
である。That is, the average particle size in the raw material powder and the average particle size in the Sialon sintered body described above are different in meaning.
本発明の第二のセラミックス焼結体の製造方法において
は、α型窒化ケイ素粉末と、針状晶のβ型窒化ケイ素粉
末とを混合したαβ混合粉末を窒化ケイ素成分としての
出発原料としている。In the second method for producing a ceramic sintered body of the present invention, an αβ mixed powder obtained by mixing an α-type silicon nitride powder and a β-type silicon nitride powder having acicular crystals is used as a starting material as a silicon nitride component.
この出発原料のうち、α型窒化ケイ素は針状てなくアス
ペクト比がほぼ 1:1に近い粒状の結晶であり、この
α型窒化ケイ素と針状のβ型窒化ケイ素との混合粉末を
酸化アルミニウムなど他の成分と共に焼結させることに
より、粒状結晶と針状結晶とが混在したβ′型サイアロ
ンとなる。Among these starting materials, α-type silicon nitride is not acicular and is a granular crystal with an aspect ratio of approximately 1:1, and a mixed powder of α-type silicon nitride and acicular β-type silicon nitride is mixed with aluminum oxide. By sintering it with other components such as, β'-type sialon containing a mixture of granular crystals and needle-like crystals is obtained.
この方法においては、α−β転移温度で特別に保持せず
、サイアロン合成温度まで直接加熱して焼結させるため
、出発原料中のα型成分は、その粒状の形状をほとんど
変えずにβ型窒化ケイ素を経てβ′サイアロン中の粒状
結晶として残り、もう一方のβ型成分はあらかしめ針状
結晶を用いているためこの針状のままβ′サイアロン中
の針状結晶として残る。In this method, the α-type component in the starting material is sintered by direct heating to the sialon synthesis temperature without being specially held at the α-β transition temperature, so that the α-type component in the starting material is converted into the β-type component without changing its granular shape. After passing through silicon nitride, it remains as granular crystals in the β' sialon, and since the other β-type component uses twisted needle crystals, it remains in this needle shape as a needle crystal in the β' sialon.
ここで出発原料として使用するα型窒化ケイ素粉末は平
均粒子径0.2〜15μ■程度が好ましく、針状のβ型
窒化ケイ素粉末は平均粒子径0.5〜3.5μm程度か
好ましい。The α-type silicon nitride powder used here as a starting material preferably has an average particle size of about 0.2 to 15 μm, and the acicular β-type silicon nitride powder preferably has an average particle size of about 0.5 to 3.5 μm.
この平均粒子径は上述した第一の製造方法における出発
原料の平均粒子径と同じ方法で求めたものである。This average particle diameter was determined by the same method as the average particle diameter of the starting material in the first production method described above.
出発原料のα型:β型の比率は99.1=595程度が
好ましく、β型窒化ケイ素粉末の針状の形状はアスペク
ト比がl:3〜1.20の範囲であることが好ましい。The α-type:β-type ratio of the starting material is preferably about 99.1=595, and the acicular shape of the β-type silicon nitride powder preferably has an aspect ratio of 1:3 to 1.20.
アスペクト比が 1〜3未満であると細長い形状が充分
活かされず、クラック進展の妨げ効果を発揮しない。一
方、アスペクト比が1=20を超えると逆に結晶粒が細
長すぎるため、クラックか結晶粒を切断して直進し、脇
方向に逃がすことができなくなる。If the aspect ratio is less than 1 to 3, the elongated shape will not be fully utilized and the effect of inhibiting crack growth will not be exhibited. On the other hand, when the aspect ratio exceeds 1=20, the crystal grains are too long and slender, so the crystal grains are cut through cracks and travel straight, and cannot be released laterally.
このような出発原料を用いて、この混合粉末をプレス成
形法やスリップキャスティング法などの公知の成形法に
よって所要の形状に成形する。Using such starting materials, this mixed powder is molded into a desired shape by a known molding method such as a press molding method or a slip casting method.
次いで、不活性ガス雰囲気中で、1700〜1800℃
程度の温度で焼成する。Then, in an inert gas atmosphere, at 1700-1800°C
Bake at a temperature of about
この際、出発原料のうち一方のα型窒化ケイ素粉末は焼
結とサイアロン合成が同時進行して、粒子形状にそれほ
どの変化を起こさずβ型に転移し、他方の針状晶のβ型
窒化ケイ素は針状形状をそのまま残して焼結し、結果と
して針状晶の絡みあった構造のβ′型サイアロンとなる
。At this time, sintering and sialon synthesis of one of the starting raw materials, α-type silicon nitride powder, proceed simultaneously and transform into β-type without much change in particle shape, and β-type nitride of the other acicular crystals. Silicon is sintered while leaving its needle-like shape intact, resulting in a β'-type sialon with a structure in which needle-like crystals are intertwined.
なお、焼成は常圧焼結法や雰囲気加圧焼結法によっても
緻密質で、機械的強度に優れ、高破壊靭性値を有するセ
ラミックス焼結体が得られるが、これらの焼結法に限定
されるものではなく、ホットプレス成形法や熱間静水圧
焼結法(HI P)などを適用してもよい。Note that ceramic sintered bodies that are dense, have excellent mechanical strength, and have high fracture toughness values can also be obtained by the normal pressure sintering method or the atmospheric pressure sintering method, but these sintering methods are limited. Instead, a hot press molding method, a hot isostatic sintering method (HIP), or the like may be applied.
二のようにして得られる本発明のセラミックス焼結体は
、球状品と針状晶とが混在したβ′型サイアロンとなる
。The ceramic sintered body of the present invention obtained in step 2 becomes a β'-type sialon in which spherical products and needle-like crystals are mixed.
(作 用)
本発明によれば、サイアロン焼結体は、焼結体全体とし
ての平均粒径が3μm以上100μm以下であり、かつ
アスペクト比が 1=3〜1.20の範囲である針状の
結晶粒を含有している。(Function) According to the present invention, the Sialon sintered body has an acicular shape in which the average grain size of the sintered body as a whole is 3 μm or more and 100 μm or less, and the aspect ratio is in the range of 1 = 3 to 1.20. contains crystal grains.
ここで、針状の結晶粒は絡み合いの構造を形成し、焼結
体中を進展するクラックを進展方向から結晶粒の曲りく
ねった粒界に沿って別方向に曲げて逃がし、クラックの
進展を妨げる。Here, the acicular crystal grains form an entangled structure, and the cracks propagating in the sintered body are bent from the direction of propagation to a different direction along the twisting grain boundaries of the crystal grains, thereby preventing the propagation of the cracks. hinder.
すなわち、従来のサイアロンは結晶粒が2μm程度と微
細であるため、−旦発生したクラックは焼結体中を止ま
らすに直進して焼結体を破壊していたのに対し、本発明
のサイアロン焼結体では、針状の結晶粒の存在によって
焼結体内の結晶粒の形状が不規則となり、絡み合い構造
を形成して機械的強度を向上させるとともに、結晶粒の
長さによってクラックの進展通路か塞かれ、脇方向に逃
げざるをえなくなるのである。In other words, since conventional Sialon has fine crystal grains of about 2 μm, cracks that once occurred would propagate straight through the sintered body and destroy the sintered body. In a sintered body, the presence of needle-shaped crystal grains makes the shape of the crystal grains in the sintered body irregular, forming an intertwined structure to improve mechanical strength, and depending on the length of the crystal grains, a crack propagation path is created. Either way, they are blocked and have no choice but to flee to the side.
したかって、クラックの進展を途中で止めることかでき
、靭性の向上を図ることかできる。Therefore, the development of cracks can be stopped midway, and toughness can be improved.
(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.
実施例1〜4
ます、平均粒子径か0.4μmの窒化ケイ素粉末と、平
均粒子径0.9μmの酸化アルミニウム粉末IO重量%
とを、分散媒としてエタノールを用いポルミルにて24
時間混合を行い原料粉末を調製した。Examples 1 to 4 Silicon nitride powder with an average particle size of 0.4 μm and aluminum oxide powder IO with an average particle size of 0.9 μm by weight
and 24 hours using polmir using ethanol as a dispersion medium.
A raw material powder was prepared by mixing for a period of time.
次いで、この原料粉末100重量部に対してバインダを
所定量添加し、約1000kg/cJの成形圧で長さ5
0IIIIIl×幅50mmΔ厚さ5a++nの棒状成
形体を作製した。Next, a predetermined amount of binder was added to 100 parts by weight of this raw material powder, and a length of 5 was added under a molding pressure of about 1000 kg/cJ.
A rod-shaped molded body having a width of 0III1×width of 50 mmΔ and a thickness of 5a++n was produced.
次に、この成形体を窒素雰囲気中で700℃に加熱して
脱脂した後、窒素ガス雰囲気中において、1700℃の
もと 1時間〜10時間の条件で保持時間を変化させた
後、サイアロン合成温度で焼結させ、第1表に示すよう
に焼結体全体としての平均粒径、および焼結体中の針状
結晶の平均アスペクト比か異なる種々のサイアロン焼結
体を作製した。Next, this molded body was heated to 700°C in a nitrogen atmosphere to degrease it, and then held at 1700°C in a nitrogen gas atmosphere for varying times from 1 hour to 10 hours, followed by sialon synthesis. Various Sialon sintered bodies were produced by sintering at different temperatures, as shown in Table 1, which differed in the average grain size of the sintered body as a whole and the average aspect ratio of the needle-like crystals in the sintered body.
なお、ここで焼結体全体としての平均粒径は、作製した
焼結体の2箇所をランダムに切断し、倍率1000倍の
顕微鏡観察によって求めた。Note that the average grain size of the sintered body as a whole was determined by randomly cutting two parts of the produced sintered body and observing it with a microscope at a magnification of 1000 times.
また、平均アスペクト比は、写真上でランダムに選定し
た粒子50個の短径と長径の比の平均を出すことによっ
て求めた。Further, the average aspect ratio was determined by calculating the average ratio of the short axis to the long axis of 50 particles randomly selected on the photograph.
このようにして得たサイアロン焼結体を鏡面加工した後
、破壊靭性値を測定した。これらの結果を第1表に示す
。After mirror-finishing the sialon sintered body thus obtained, the fracture toughness value was measured. These results are shown in Table 1.
比較例1〜2
実施例1で使用した原料粉末を用い、実施例1と同一保
持温度のもと、0.1時間および15時間焼成を行って
それぞれ異なる平均粒径およびアスペクト比を有するサ
イアロン焼結体を作製した。Comparative Examples 1 to 2 Using the raw material powder used in Example 1, firing was performed for 0.1 hour and 15 hours at the same holding temperature as in Example 1, and Sialon firing was performed with different average particle diameters and aspect ratios. A concretion was produced.
そして、実施例1と同一条件で破壊靭性値を測定した。Then, the fracture toughness value was measured under the same conditions as in Example 1.
その結果を実施例の結果と併せて第1表に示す。The results are shown in Table 1 together with the results of Examples.
弔
表
破壊靭性値はマイクロインデンテーション法により測定
したものであり、単位はMPaJiである。The surface fracture toughness value was measured by the microindentation method, and the unit is MPaJi.
また、平均粒径の単位はμmである。Further, the unit of the average particle diameter is μm.
第1表の結果から明らかなように、実施例のサイアロン
焼結体は、クラック進展の防止に最も効果的な平均粒径
を備え、かつ所定のアスペクト比を有する針状の結晶粒
を含有することにより、靭性を大きく向上させることか
できた。As is clear from the results in Table 1, the sialon sintered bodies of the examples contain acicular crystal grains that have the most effective average grain size for preventing crack propagation and have a predetermined aspect ratio. By doing so, we were able to significantly improve toughness.
実施例5〜8
続いて、窒化ケイ素成分としてα型窒化ケイ素とβ型窒
化ケイ素との混合粉末を用いたサイアロン焼結体の製造
方法の実施例について述べる。Examples 5 to 8 Next, examples of a method for producing a sialon sintered body using a mixed powder of α-type silicon nitride and β-type silicon nitride as the silicon nitride component will be described.
まず、α型窒化ケイ素粉末と、アスペクト比がI:20
以下である針状晶β型窒化ケイ素とを第2表に示すよう
な割合で混合し、出発原料を調製した。First, α-type silicon nitride powder and an aspect ratio of I:20 are used.
A starting material was prepared by mixing the following acicular β-type silicon nitride in the proportions shown in Table 2.
さらに、次式で表されるβ型サイアロンの一般式:Si
At ON (Z−0〜4,2)s−z
z z s−z
においでZ−1となるようにAt2 o3と^INと
を添加し、原料粉末を調製した。Furthermore, the general formula of β-sialon expressed by the following formula: Si
At ON (Z-0~4,2)s-z
A raw material powder was prepared by adding At2o3 and ^IN so that the odor was Z-1.
このような原料粉末を用いて、実施例1と同一条件でサ
イアロン焼結体をそれぞれ作製した。Sialon sintered bodies were produced using such raw material powders under the same conditions as in Example 1.
これらのサイアロン焼結体について、実施例]と同様に
して破壊靭性値を測定し、さらに抗折強度についても調
べた。その結果を第2表に示す。Regarding these sialon sintered bodies, the fracture toughness values were measured in the same manner as in Example], and the bending strength was also examined. The results are shown in Table 2.
比較例3〜6
α型窒化ケイ素粉末と針状晶β型窒化ケイ素とを第2表
に示すような割合で混合し、出発原料を調製した。Comparative Examples 3 to 6 Starting materials were prepared by mixing α-type silicon nitride powder and acicular β-type silicon nitride in the proportions shown in Table 2.
また、ここで用いた針状晶β型窒化ケイ素のアスペクト
比はそれぞれ第2表に示したとおりである。Further, the aspect ratios of the acicular β-type silicon nitride used here are as shown in Table 2.
これらのサイアロン焼結体について、実施例1と同様に
して破壊靭性値を測定し、さらに抗折強度についても調
べた。その結果を第2表に示す。Regarding these sialon sintered bodies, the fracture toughness values were measured in the same manner as in Example 1, and the bending strength was also examined. The results are shown in Table 2.
(以下余白)
第
つ
表
第2表の結果から明らかなように、比較例のようにβ型
窒化ケイ素粉末の混合量か少ない場合や混合したβ型窒
化ケイ素のアスペクト比が適切な値でない場合、サイア
ロン焼結体の強度並びに靭性は向上されない。(Left below) As is clear from the results in Table 2, when the amount of β-type silicon nitride powder mixed is small, as in the comparative example, or when the aspect ratio of the mixed β-type silicon nitride is not an appropriate value. However, the strength and toughness of the Sialon sintered body are not improved.
これに対して実施例の方法で作製したサイアロン焼結体
は焼結体内の粒子の絡み合いによって強度、靭性がとも
に向上していた。In contrast, the sialon sintered body produced by the method of the example had improved both strength and toughness due to the entanglement of particles within the sintered body.
[発明の効果]
以上説明したように、本発明によれば、所定サイズの針
状晶粒子がサイアロン焼結体内に存在して絡み合い構造
を形成し、クラックの走りを逃がしているため、クラッ
クの大きな進展を防止することができる。[Effects of the Invention] As explained above, according to the present invention, acicular crystal particles of a predetermined size are present in the sialon sintered body and form an entangled structure, allowing cracks to escape. Major developments can be prevented.
したかって、機械的強度および破壊靭性値に優れたもの
となり、より高品質のサイアロン焼結体を得ることかで
きる。Therefore, it is possible to obtain a sialon sintered body of higher quality with excellent mechanical strength and fracture toughness values.
出願人 株式会社 東芝Applicant: Toshiba Corporation
Claims (3)
以上100μm以下であり、 かつアスペクト比が1:3〜1:20の範囲である針状
の結晶粒を含有する ことを特徴とするサイアロン焼結体。(1) The average grain size of the sialon sintered body as a whole is 3 μm
A Sialon sintered body characterized by containing acicular crystal grains having a diameter of 100 μm or less and an aspect ratio of 1:3 to 1:20.
粉末を用い、 このα型窒化ケイ素粉末を含有し、サイアロン組成を満
足するよう原料粉末を調製し、 この原料粉末をα−β転移温度下で所定時間保持して、
前記α型窒化ケイ素の一部をβ型窒化ケイ素に相転移さ
せるとともに、このβ型窒化ケイ素を針状に結晶成長さ
せ、 その後、前記原料粉末をサイアロン合成温度下で焼結さ
せ、 前記α型窒化ケイ素粉末の粒子形状に由来する粒状結晶
粒と前記β型窒化ケイ素の形状に由来する針状結晶粒と
を混在させる ことを特徴とするサイアロン焼結体の製造方法。(2) Using α-type silicon nitride powder as a starting material for the silicon nitride component, preparing a raw material powder that contains this α-type silicon nitride powder and satisfying the SiAlON composition, and heating this raw material powder at the α-β transition temperature. Hold it for a specified period of time,
Part of the α-type silicon nitride undergoes a phase transition to β-type silicon nitride, and the β-type silicon nitride is grown into needle-shaped crystals, and then the raw material powder is sintered at a sialon synthesis temperature, and the α-type silicon nitride is sintered at a sialon synthesis temperature. A method for producing a Sialon sintered body, comprising mixing granular crystal grains derived from the particle shape of silicon nitride powder and acicular crystal grains derived from the shape of the β-type silicon nitride.
粉末と針状晶のβ型窒化ケイ素粉末とを混合したαβ混
合粉末を用い、 このαβ混合粉末を含有し、サイアロン組成を満足する
よう原料粉末を調製し、 この原料粉末をサイアロン合成温度下で焼結させ、 前記α型窒化ケイ素粉末の粒子形状に由来する粒状結晶
粒と前記β型窒化ケイ素の形状に由来する針状結晶粒と
を混在させる ことを特徴とするサイアロン焼結体の製造方法。(3) As a starting material for the silicon nitride component, an αβ mixed powder made by mixing α-type silicon nitride powder and β-type silicon nitride powder with acicular crystals is used, and the raw material is made to contain this αβ mixed powder and satisfy the SiAlON composition. A powder is prepared, and this raw material powder is sintered at a sialon synthesis temperature to form granular crystal grains originating from the particle shape of the α-type silicon nitride powder and acicular crystal grains originating from the shape of the β-type silicon nitride powder. A method for producing a sialon sintered body, characterized by mixing the sialon sintered bodies.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2122697A JPH0421570A (en) | 1990-05-11 | 1990-05-11 | Sialon sintered compact and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2122697A JPH0421570A (en) | 1990-05-11 | 1990-05-11 | Sialon sintered compact and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0421570A true JPH0421570A (en) | 1992-01-24 |
Family
ID=14842375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2122697A Pending JPH0421570A (en) | 1990-05-11 | 1990-05-11 | Sialon sintered compact and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0421570A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004527434A (en) * | 2000-11-28 | 2004-09-09 | ケンナメタル インコーポレイテッド | SiAlON containing ytterbium and method for producing the same |
US7858997B2 (en) | 2002-11-29 | 2010-12-28 | Toyoda Gosei Co., Ltd. | Light emitting apparatus and light emitting method |
-
1990
- 1990-05-11 JP JP2122697A patent/JPH0421570A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004527434A (en) * | 2000-11-28 | 2004-09-09 | ケンナメタル インコーポレイテッド | SiAlON containing ytterbium and method for producing the same |
US7858997B2 (en) | 2002-11-29 | 2010-12-28 | Toyoda Gosei Co., Ltd. | Light emitting apparatus and light emitting method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW421638B (en) | Sintered silicon nitride-based body and process for producing the same | |
JPH11314969A (en) | High heat conductivity trisilicon tetranitride sintered compact and its production | |
JP2518630B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH02160669A (en) | Silicon nitride-silicon carbide multiple sintered compact and production thereof | |
JPH0421570A (en) | Sialon sintered compact and production thereof | |
JPS5919903B2 (en) | Hot press manufacturing method of SiC sintered body | |
JPS6236991B2 (en) | ||
JP3454993B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH02302368A (en) | Silicon carbide sintered compact having high toughness and its production thereof | |
JP2519076B2 (en) | Method for manufacturing silicon carbide whisker-reinforced ceramics | |
JPS6345173A (en) | High toughness ceramic sintered body and manufacture | |
JPS5957965A (en) | Manufacture of fiber reinforced silicon nitride sintered bo-dy | |
JP3124865B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2980342B2 (en) | Ceramic sintered body | |
JP3124863B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPS63185862A (en) | Manufacture of ceramic composite body | |
JP3124864B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPS5954678A (en) | Manufacture of fiber reinforced silicon nitride sintered body | |
JPH06116045A (en) | Silicon nitride sintered compact and its production | |
JP2581128B2 (en) | Alumina-sialon composite sintered body | |
JPS63260869A (en) | Silicon carbide whisker reinforced composite material | |
JP2812546B2 (en) | Ceramics molded body and method of manufacturing ceramics molded body | |
JPH02233560A (en) | High-strength calcined sialon-based compact | |
JP2708136B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPS5954679A (en) | Manufacture of fiber reinforced silicon nitride sintered body |