JPH04215462A - Heat sink and manufacture thereof - Google Patents

Heat sink and manufacture thereof

Info

Publication number
JPH04215462A
JPH04215462A JP40205990A JP40205990A JPH04215462A JP H04215462 A JPH04215462 A JP H04215462A JP 40205990 A JP40205990 A JP 40205990A JP 40205990 A JP40205990 A JP 40205990A JP H04215462 A JPH04215462 A JP H04215462A
Authority
JP
Japan
Prior art keywords
copper
base material
heat sink
plate
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP40205990A
Other languages
Japanese (ja)
Inventor
Shigeru Goto
滋 後藤
Hiroshi Fukuda
弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Musical Instrument Manufacturing Co Ltd
Original Assignee
Kawai Musical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Musical Instrument Manufacturing Co Ltd filed Critical Kawai Musical Instrument Manufacturing Co Ltd
Priority to JP40205990A priority Critical patent/JPH04215462A/en
Publication of JPH04215462A publication Critical patent/JPH04215462A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide a warp-free heat sink for an IC by filling a heat-radiating material of copper or copper alloy into through holes in a flat base plate made of Invar. CONSTITUTION:An Invar base 1 and a copper plate 2 are stacked, and the Invar is partially fitted into the copper plate by half-punching with punches 6, and part of copper thus enters holes 4 in a die 5. After the die and the punches are moved to the opposite sides, the punches are hit into the copper plate to make through holes 7 in the base 1, while the through holes are filled with copper as a heat radiator 8. Scraps punched out of holes 7 are removed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、放熱板およびその製造
方法に関し、更に詳細には例えばシリコンから成るIC
等の半導体からの発熱を放出するために用いる放熱板お
よびその製造方法に関する。
[Field of Industrial Application] The present invention relates to a heat sink and a method for manufacturing the same, and more particularly to an IC made of silicon, for example.
The present invention relates to a heat dissipation plate used for dissipating heat generated from semiconductors such as semiconductors, and a method for manufacturing the same.

【0002】0002

【従来の技術】従来からシリコンから成るIC等の半導
体の許容温度は150℃が限度であるとされ、かかる半
導体の劣化を防止するために銅板から成る放熱板上に該
半導体を載置して、半導体の発熱を該放熱板から放出す
るようにしていた。
[Prior Art] Conventionally, the allowable temperature of semiconductors such as ICs made of silicon is said to be limited to 150°C, and in order to prevent such semiconductors from deteriorating, they are placed on heat sinks made of copper plates. , the heat generated by the semiconductor was dissipated from the heat sink.

【0003】しかしながら、シリコンから成るIC半導
体の熱膨張係数は40×10− 7(at20〜 15
0℃)、熱伝導率0.2cal/(cm・sec ・℃
)であり、一方、銅の熱膨張係数は170×10− 7
(at20〜 150℃)、熱伝導率0.94cal/
(cm・sec・℃)であるため、どうしても両者間に
歪みが生じやすいので、図7で示すように銅板から成る
放熱板a上にIC半導体bをモリブデン[熱膨脹係数が
46×10− 7(at20〜 150℃)、熱伝導率
0.34cal/(cm・sec ・℃)]、またはタ
ングステン[熱膨脹係数が45×10− 7(at20
〜 150℃)、熱伝導率0.39cal/(cm・s
ec ・℃)]から成る板状の中間部材cを介して載置
して、IC半導体bからの発熱を中間部材cを通過させ
て放熱板aから発散させるようにしていた。
However, the coefficient of thermal expansion of an IC semiconductor made of silicon is 40×10-7 (at20-15
0℃), thermal conductivity 0.2cal/(cm・sec・℃
), while the coefficient of thermal expansion of copper is 170×10-7
(at20~150℃), thermal conductivity 0.94cal/
(cm・sec・℃), so distortion is likely to occur between the two, so as shown in Figure 7, IC semiconductor b is placed on a heat sink a made of a copper plate using molybdenum [with a coefficient of thermal expansion of 46 x 10-7]. at20 to 150℃), thermal conductivity 0.34cal/(cm・sec・℃)], or tungsten [thermal expansion coefficient 45×10-7(at20
~150℃), thermal conductivity 0.39cal/(cm・s
The IC semiconductor was placed through a plate-shaped intermediate member c consisting of ec .degree.

【0004】0004

【発明が解決しようとする課題】しかしながら、銅板か
ら成る放熱板aと半導体cとの間に介在させる中間部材
cの材料はモリブデンまたはタングステンから成るため
価格的に極めて高価であるという問題を有する。
However, the material of the intermediate member c interposed between the heat dissipating plate a made of a copper plate and the semiconductor c is made of molybdenum or tungsten, which poses a problem in that it is extremely expensive.

【0005】本発明は前記問題点を解消し、IC半導体
と同等の熱膨張係数と、モリブデンまたはタングステン
と同等或いはそれ以上の熱伝導率を有し、価格的に安価
な放熱板とその製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems and provides an inexpensive heat sink having a coefficient of thermal expansion equivalent to that of an IC semiconductor and a thermal conductivity equal to or higher than that of molybdenum or tungsten, and a method for manufacturing the same. The purpose is to provide

【0006】[0006]

【課題を解決するための手段】本発明の放熱板は、イン
バー合金から成る板状の基材にその厚さ方向に亘って形
成された貫通孔に銅材または銅合金材から成る放熱部材
を嵌着したことを特徴とする。
[Means for Solving the Problems] The heat dissipation plate of the present invention has a heat dissipation member made of a copper material or a copper alloy material in a through hole formed in a plate-like base material made of an invar alloy in the thickness direction thereof. It is characterized by being fitted.

【0007】また、もう一つの放熱板は、板状の厚さ方
向に亘って形成された貫通孔に銅材または銅合金材から
成る放熱部材を嵌着したインバー合金から成る基材の両
面に該基材を介して銅板または銅合金板を積層重合した
ことを特徴とする。
Another type of heat dissipation plate is a base material made of an invar alloy, with heat dissipation members made of a copper material or a copper alloy material fitted into through holes formed in the thickness direction of the plate. It is characterized in that copper plates or copper alloy plates are laminated and polymerized via the base material.

【0008】また、本発明の放熱板の製造方法は、イン
バー合金から成る板状の基材と、該基材と同厚の板状の
銅材または銅合金材を重ね合わせ、基材側から銅材また
は銅合金材側に基材と銅材または銅合金材を半打抜きし
た後、該半打抜き部分に銅材または銅合金材側から基材
側に打抜きして基材にその厚さ方向に亘る貫通孔を形成
すると共に、該貫通孔に銅材または銅合金材から成る放
熱部材を嵌着することを特徴とする。
[0008] In addition, the method for manufacturing a heat sink of the present invention includes stacking a plate-shaped base material made of an invar alloy and a plate-shaped copper material or copper alloy material having the same thickness as the base material, and After half-punching the base material and the copper material or copper alloy material on the copper material or copper alloy material side, punch out the half-punctured part from the copper material or copper alloy material side to the base material side and insert it into the base material in the thickness direction. It is characterized in that a through hole is formed extending over the area, and a heat dissipating member made of a copper material or a copper alloy material is fitted into the through hole.

【0009】また、もう一つの製造方法は、インバー合
金から成る板状の基材と、該基材と同厚の板状の銅材ま
たは銅合金材を重ね合わせ、基材側から銅材または銅合
金材側に基材と銅材を半打抜きした後、該半打抜き部分
に銅材または銅合金材側から基材側に打抜きして基材に
その厚さ方向に亘る貫通孔を形成すると共に、該貫通孔
に銅材または銅合金材から成る放熱部材を嵌着した後、
基材の両面に銅板または銅合金板を積層重合することを
特徴とする。
Another manufacturing method is to stack a plate-shaped base material made of an invar alloy and a plate-shaped copper material or copper alloy material having the same thickness as the base material, and then insert the copper material or copper alloy material from the base material side. After punching out half of the base material and copper material on the copper alloy material side, punch out the half punched portion from the copper material or copper alloy material side to the base material side to form a through hole in the base material in the thickness direction. At the same time, after fitting a heat dissipation member made of copper material or copper alloy material into the through hole,
It is characterized by laminating and polymerizing copper plates or copper alloy plates on both sides of the base material.

【0010】0010

【作用】前記構成の放熱板は半導体から発する熱を基材
の貫通孔に嵌着した銅材または銅合金材から成る放熱部
材より外方に放出する。この場合、放熱板は半導体と同
等の熱膨脹係数を備えているから半導体と放熱板との間
には歪みが生じない。
[Operation] The heat sink having the above structure radiates heat generated from the semiconductor to the outside from the heat sink member made of copper or copper alloy material fitted into the through hole of the base material. In this case, since the heat sink has a coefficient of thermal expansion equivalent to that of the semiconductor, no distortion occurs between the semiconductor and the heat sink.

【0011】[0011]

【実施例】本発明を添付図面により本発明の実施例を説
明する。 実施例1 図1および図2は本発明製造方法の1実施例を示すもの
で、図中、1は例えばFe−36.5%Niインバー合
金から成る厚さ1.5mm、幅5cm、長さ20cmの
板状の基材、2は基材1と同厚で、同一大きさの板状の
銅(例えば純銅)材を示す。先ず、図1および図2に示
すように基材1上に銅材2を重ね合わせて放熱板素材3
を形成する。次に該放熱板素材3(図2a参照)の銅材
2の表面2aに直径1mmの孔4を備えるダイス5をセ
ットし、ダイス5の孔4の位置に対応する位置の基材1
の表面1aに孔4と同径のポンチ6をセット(図2b参
照)し、ポンチ6を基材1側から銅材2側に向かって基
材1と銅材2とに半打抜きを行って、基材1の一部を銅
材2内に圧入すると共に、銅材2の一部をその表面2a
よりダイス5の孔4内に突出させた(図2c参照)後、
ダイス5を基材1より、またポンチ6を銅材2より夫々
外す。続いてダイス5を基材1の表面1aにセットする
と共に、ポンチ6を銅材2にセットさせる(図2d参照
)。次にポンチ6を銅材2側から基材1側に向かって打
抜きし、銅材2を基材1内に挿通させながら(図2e参
照)、基材1の所定位置に基材1の厚さ方向に亘って貫
通孔7を形成すると共に、該貫通孔7に銅材から成る放
熱部材8を嵌着(図2f参照)させ、貫通孔7に該当す
る基材1のスクラップ9を基材1より外方に放出する。 次にダイス5を銅材2より、またポンチ6を基材1より
夫々外した後、基材1より銅材2を離す。前記工程によ
り図3および図4に示すような基材1の表面積100c
m2(10cm×10cm) 当たり、直径1mmの放
熱部材8が2400個点在した放熱板10(基材の表面
積に対する放熱部の面積比率19%)を作成した。本発
明でいう半打抜きとは、基材1から銅材2側に向かって
ダイスとポンチで打抜きする際、基材1と銅材2に連続
する貫通孔が生じない程度、即ち基材または銅材の厚さ
の1/2程度に打抜きを行って基材1が銅材2の途中で
止まると共に、銅材が抜け落ちないことを示す。そして
作成された放熱板10の熱膨脹係数と、熱伝導率を調べ
たところ、熱膨脹係数は18×10− 7(at20〜
 150℃)、熱伝導率は0.3cal/(cm・se
c ・℃)であった。また放熱板10の面積100cm
2 当たりの価格は同寸法のモリブデンの1/2、また
同寸法のタングステンの1/3であった。尚、作成され
た放熱板10に無酸素雰囲気中で拡散焼鈍処理を施すと
、基材の貫通孔に嵌着した放熱部材は基材に更に強固に
接合する。 実施例2 基材に形成された貫通孔に嵌着する放熱部材の材料を銅
材の代わりに銅合金(例えばCu−0.15%Sn−0
.01%P)材とした以外は前記実施例1と同様な方法
により放熱板を作成し、作成された放熱板の熱膨脹係数
と、熱伝導率を調べたところ、熱膨脹係数は16×10
− 7(at20〜 150℃)、熱伝導率は0.25
cal/(cm・sec ・℃)であった。 実施例3 図5は本発明のもう一つの製造方法の1実施例を示すも
ので、図中、1は例えばFe−36.5%Niインバー
合金から成る厚さ1.5mm、幅5cmの長尺板状の基
材、2は基材1と同厚で、同一幅、長尺板状の銅(例え
ば純銅)材を示す。先ず、図5に示すようにローラ11
に巻き付けられた長尺の基材1と、ローラ12に巻き付
けられた長尺の銅材2を夫々繰り出して1対の重合ロー
ラ13間で基材と銅材を重ね合わせて長尺の放熱板素材
3を形成する。次に該放熱板素材3(図2aに該当)の
銅材2の表面2aに直径1mmの孔4を備えるダイス5
をセットし、ダイス5の孔4の位置に対応する位置の基
材1の表面1aに孔4と同径のポンチ6をセット(図2
bに該当)し、ポンチ6を基材1側から銅2側に向かっ
て基材1と銅材2とに半打抜きを行って、基材1の一部
を銅材2内に圧入すると共に銅材2の一部をその表面2
aよりダイス5の孔4内に突出させた(図2cに該当)
後、ダイス5を基材1より、またポンチ6を銅材2より
夫々外す。続いてダイス5を基材1の表面1aにセット
すると共に、ポンチ6を銅材2の表面にセットする(図
2dに該当)。次にポンチ6を銅材2側から基材1側に
向かって打抜きし、銅材2を基材1内に挿通(図2eに
該当)させながら基材1の所定位置に基材1の厚さ方向
に亘って貫通孔7を形成すると共に、該貫通孔7に銅材
から成る放熱部材8を嵌着(図2fに該当)させ、貫通
孔7に該当する基材1のスクラップ9を基材1より外方
に放出する。尚、ここまでの工程は前記実施例1におけ
る図2a〜fで示す工程と同一である。また、ここでい
う半打抜きとは前記実施例1での説明と同じである。次
にダイス5を銅材2より、またポンチ6を基材1より夫
々外した後、基材1から銅材2を離してローラ14に巻
き取って放熱部材を嵌着した長尺の基板Pを連続状に作
成する。続いて、長尺の基板Pと、ローラ15に巻き付
けられている長尺の厚さ0.25mmの銅(例えば純銅
)板16を1対の重合ローラ17間に供給して、長尺の
基板Pの両表面に夫々銅板16を積層重合した後、巻取
ローラ18に巻き取った後、所定寸法に切断するか、或
いはローラに巻き取らずに直ちに所定寸法に切断する。 前記工程により図6に示すような基材1の表面積100
cm2 (10cm×10cm)当たり、直径1.2m
mの放熱部材8が1800個点在し、かつ基材1を介し
て両面に銅板16が積層重合された放熱板19(基材の
表面積に対する放熱部の面積比率20%)を作成した。 そして、作成された3層構成の放熱板19の熱膨脹係数
と、熱伝導率を調べたところ、熱膨脹係数は38×10
− 7(at20〜 150℃)、熱伝導率は0.76
cal/(cm・sec ・℃)であった。また放熱板
19の面積100cm2 当たりの価格は同寸法のモリ
ブデンの60%、また同寸法のタングステンの1/2で
あった。尚、重合ローラ17間で基板Pと銅板16を積
層重合する前に基板Pおよび銅板16に夫々脱脂工程お
よびワィヤーブラッシング工程を施せば基板Pと銅板1
6の表面が清浄状態となり積層重合を確実に行え得る。 また作成された放熱板19に無酸素雰囲気中で拡散焼鈍
処理を施すと、基材の貫通孔に嵌着した放熱部材は基材
に更に強固に接合する。 実施例4 基材1に形成された貫通孔に嵌着する材料を銅材の代わ
りに銅合金(例えばCu−0.15%Sn−0.01%
P)材とし、また基材に積層する材料を銅板の代わりに
銅合金(例えばCu−0.15%Sn−0.01%P)
板とした以外は前記実施例3と同様な方法により放熱板
を作成し、作成された放熱板の熱膨脹係数と、熱伝導率
を調べたところ、熱膨脹係数は37×10− 7(at
20〜 150℃)、熱伝導率は0.75cal/(c
m・sec ・℃)であった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the accompanying drawings. Example 1 Figures 1 and 2 show an example of the manufacturing method of the present invention, and in the figures, 1 is made of Fe-36.5% Ni Invar alloy, for example, and has a thickness of 1.5 mm, a width of 5 cm, and a length of A 20 cm plate-shaped base material 2 indicates a plate-shaped copper (for example, pure copper) material having the same thickness and size as the base material 1. First, as shown in FIGS. 1 and 2, a heat sink material 3 is formed by overlapping a copper material 2 on a base material 1.
form. Next, a die 5 having a hole 4 with a diameter of 1 mm is set on the surface 2a of the copper material 2 of the heat sink material 3 (see FIG. 2a), and the base material 1 is placed at a position corresponding to the hole 4 of the die 5.
A punch 6 having the same diameter as the hole 4 is set on the surface 1a of the hole 4 (see Fig. 2b), and the punch 6 is used to half punch the base material 1 and the copper material 2 from the base material 1 side to the copper material 2 side. , a part of the base material 1 is press-fitted into the copper material 2, and a part of the copper material 2 is pressed into the surface 2a thereof.
After protruding into the hole 4 of the die 5 (see FIG. 2c),
The die 5 is removed from the base material 1, and the punch 6 is removed from the copper material 2. Subsequently, the die 5 is set on the surface 1a of the base material 1, and the punch 6 is set on the copper material 2 (see FIG. 2d). Next, punch the punch 6 from the copper material 2 side toward the base material 1 side, and while inserting the copper material 2 into the base material 1 (see Fig. 2e), punch the base material 1 at a predetermined position with the thickness of the base material 1. A through hole 7 is formed in the horizontal direction, a heat dissipating member 8 made of copper material is fitted into the through hole 7 (see FIG. 2f), and a scrap 9 of the base material 1 corresponding to the through hole 7 is inserted into the base material. Release outward from 1. Next, after removing the die 5 from the copper material 2 and the punch 6 from the base material 1, the copper material 2 is separated from the base material 1. Through the above steps, the surface area 100c of the base material 1 as shown in FIGS. 3 and 4 is
A heat sink 10 (area ratio of the heat sink to the surface area of the base material: 19%) was prepared in which 2,400 heat sinks 8 with a diameter of 1 mm were scattered per m2 (10 cm x 10 cm). In the present invention, half-punching refers to the extent to which no continuous through hole is created between the base material 1 and the copper material 2 when punching from the base material 1 toward the copper material 2 side using a die and a punch. It is shown that the base material 1 stops in the middle of the copper material 2 by punching to about 1/2 of the thickness of the material, and that the copper material does not fall off. When the thermal expansion coefficient and thermal conductivity of the heat sink 10 thus produced were investigated, the thermal expansion coefficient was 18 x 10-7 (at20~
150℃), thermal conductivity is 0.3cal/(cm・se
c・℃). Also, the area of the heat sink 10 is 100 cm.
The price per 2 was 1/2 that of molybdenum of the same size, and 1/3 of that of tungsten of the same size. Note that when the produced heat sink 10 is subjected to a diffusion annealing treatment in an oxygen-free atmosphere, the heat sink members fitted into the through holes of the base material are more firmly bonded to the base material. Example 2 The material of the heat dissipation member fitted into the through hole formed in the base material was a copper alloy (for example, Cu-0.15%Sn-0) instead of copper material.
.. A heat sink was prepared in the same manner as in Example 1 except that the heat sink was made of 01% P) material, and the thermal expansion coefficient and thermal conductivity of the prepared heat sink were examined.The coefficient of thermal expansion was 16 x 10.
-7 (at20~150℃), thermal conductivity is 0.25
cal/(cm·sec·°C). Embodiment 3 FIG. 5 shows an embodiment of another manufacturing method of the present invention. In the figure, 1 is made of Fe-36.5% Ni Invar alloy, for example, and has a length of 1.5 mm in thickness and 5 cm in width. The base material 2 in the form of a long plate is a long plate-like copper (for example, pure copper) material having the same thickness and width as the base material 1. First, as shown in FIG.
A long base material 1 wound around a roller 12 and a long copper material 2 wound around a roller 12 are respectively fed out, and the base material and the copper material are overlapped between a pair of overlapping rollers 13 to form a long heat sink. Form material 3. Next, a die 5 with a hole 4 having a diameter of 1 mm is formed on the surface 2a of the copper material 2 of the heat sink material 3 (corresponding to FIG. 2a).
and set a punch 6 with the same diameter as the hole 4 on the surface 1a of the base material 1 at a position corresponding to the position of the hole 4 of the die 5 (Fig.
b), half-punch the base material 1 and the copper material 2 from the base material 1 side toward the copper 2 side, and press-fit a part of the base material 1 into the copper material 2. A part of the copper material 2 on its surface 2
It was made to protrude into the hole 4 of the die 5 from a (corresponding to Fig. 2c)
Thereafter, the die 5 is removed from the base material 1, and the punch 6 is removed from the copper material 2. Subsequently, the die 5 is set on the surface 1a of the base material 1, and the punch 6 is set on the surface of the copper material 2 (corresponding to FIG. 2d). Next, punch the punch 6 from the copper material 2 side toward the base material 1 side, and insert the copper material 2 into the base material 1 (corresponding to FIG. A through hole 7 is formed in the horizontal direction, a heat dissipating member 8 made of a copper material is fitted into the through hole 7 (corresponding to FIG. 2f), and a scrap 9 of the base material 1 corresponding to the through hole 7 is placed as a base. It is released outward from material 1. The steps up to this point are the same as those shown in FIGS. 2a to 2f in the first embodiment. Furthermore, the term "half punching" used herein is the same as that described in the first embodiment. Next, after removing the die 5 from the copper material 2 and the punch 6 from the base material 1, the copper material 2 is separated from the base material 1 and wound around the roller 14 to form a long substrate P on which a heat dissipation member is fitted. are created in a continuous manner. Subsequently, the long substrate P and the long 0.25 mm thick copper (for example, pure copper) plate 16 wound around the roller 15 are supplied between the pair of overlapping rollers 17 to form the long substrate. After laminating and polymerizing the copper plates 16 on both surfaces of P, the copper plates 16 are wound up on a take-up roller 18 and then cut into a predetermined size, or immediately cut into a predetermined size without being wound on a roller. Through the above steps, the surface area of the base material 1 as shown in FIG.
Per cm2 (10cm x 10cm), diameter 1.2m
A heat sink 19 (area ratio of the heat sink to the surface area of the base material: 20%) was prepared in which 1,800 heat sink members 8 of m were scattered and copper plates 16 were laminated and polymerized on both sides with the base material 1 interposed therebetween. Then, when the thermal expansion coefficient and thermal conductivity of the created three-layered heat dissipation plate 19 were examined, the thermal expansion coefficient was 38×10
-7 (at20~150℃), thermal conductivity is 0.76
cal/(cm·sec·°C). The price per 100 cm2 of area of the heat sink 19 was 60% that of molybdenum with the same size, and 1/2 that of tungsten with the same size. Incidentally, if the substrate P and the copper plate 16 are subjected to a degreasing process and a wire brushing process, respectively, before the substrate P and the copper plate 16 are laminated and polymerized between the polymerization rollers 17, the substrate P and the copper plate 1
The surface of 6 becomes clean and lamination polymerization can be carried out reliably. Furthermore, when the produced heat sink 19 is subjected to diffusion annealing treatment in an oxygen-free atmosphere, the heat sink members fitted into the through holes of the base material are more firmly bonded to the base material. Example 4 The material to be fitted into the through hole formed in the base material 1 was a copper alloy (for example, Cu-0.15%Sn-0.01%) instead of copper material.
P) material, and the material laminated to the base material is a copper alloy (e.g. Cu-0.15%Sn-0.01%P) instead of a copper plate.
A heat sink was prepared in the same manner as in Example 3 except that it was made into a plate, and the thermal expansion coefficient and thermal conductivity of the prepared heat sink were examined.The coefficient of thermal expansion was 37 x 10-7 (at
20~150℃), thermal conductivity is 0.75cal/(c
m・sec・℃).

【0012】前記各実施例で示した放熱部材の大きさ、
形状、個数、基材の表面積に対する面積比率は、本発明
は特にこれらに限定されるものではなくIC半導体の大
きさ、形状や基材の大きさ、厚さ等に応じて適宜設定す
ればよい。例えば、放熱部材の面積比率(基材の表面積
に対して)は15〜25%程度とすればよく、また放熱
部材の1個当りの面積はこれに載置する半導体の大きさ
、形状に合わせ、0.5〜2.0mm2 程度とすれば
よい。また、基材を介して積層される銅板または銅合金
板の層数は本発明は前記実施例に限定されるものではな
く、IC半導体の大きさ、形状や基材の熱膨脹係数、熱
伝導率等により適宜設定すればよい。ちなみに、基材1
の厚さが1.5mmで放熱部材8の面積比率が15%の
場合、面積比率が25%の場合における放熱板の熱膨脹
係数と、熱伝導率を調べたところ、実施例1で面積比率
が15%では熱膨脹係数は14×10− 7(at20
〜 150℃)、熱伝導率は0.24cal/(cm・
sec ・℃)、実施例1で面積比率が25%では熱膨
脹係数は23×10− 7(at20〜150℃)、熱
伝導率は0.46cal/(cm・sec ・℃)であ
り、また実施例3で面積比率が15%では熱膨脹係数は
28×10− 7(at20〜 150℃)、熱伝導率
は0.67cal/(cm・sec ・℃)、実施例3
で面積比率が25%では熱膨脹係数は45×10− 7
(at20〜 150℃)、熱伝導率は0.8cal/
(cm・sec ・℃)であった。このように本発明で
は、基材1の厚さおよびその厚さ方向に渡って形成する
貫通孔6の寸法、形状、数、或いは、基材1に積層重合
する銅板、またはステンレス板の厚さを調整することに
より熱膨脹係数、熱伝導率を任意に設定することが出来
る。尚、本発明で放熱板を作成するにあたっては、放熱
板を実施例1で示すように単尺状態で逐一行う回分式、
または実施例3で示すように長尺状態で連続して行う連
続式のどちらで行ってもよい。
[0012] The size of the heat dissipation member shown in each of the above embodiments,
The shape, number, and area ratio to the surface area of the base material are not particularly limited to these in the present invention, and may be appropriately set according to the size and shape of the IC semiconductor, the size and thickness of the base material, etc. . For example, the area ratio of the heat dissipation member (relative to the surface area of the base material) may be about 15 to 25%, and the area of each heat dissipation member should be adjusted according to the size and shape of the semiconductor placed on it. , about 0.5 to 2.0 mm2. Furthermore, the number of layers of copper plates or copper alloy plates laminated via the base material is not limited to the above-mentioned embodiments, and may vary depending on the size and shape of the IC semiconductor, the coefficient of thermal expansion of the base material, and the thermal conductivity. etc. may be set appropriately. By the way, base material 1
When the thickness of the heat dissipation member 8 is 1.5 mm and the area ratio of the heat dissipation member 8 is 15%, the coefficient of thermal expansion and thermal conductivity of the heat dissipation plate when the area ratio is 25% are investigated. In Example 1, the area ratio is 15%. At 15%, the coefficient of thermal expansion is 14 x 10-7 (at20
~150℃), thermal conductivity is 0.24cal/(cm・
sec ・℃), in Example 1, when the area ratio is 25%, the thermal expansion coefficient is 23 × 10-7 (at 20 to 150℃), and the thermal conductivity is 0.46 cal/(cm・sec ・℃), and the In Example 3, when the area ratio is 15%, the coefficient of thermal expansion is 28 x 10-7 (at 20 to 150°C), and the thermal conductivity is 0.67 cal/(cm・sec・°C), Example 3
When the area ratio is 25%, the coefficient of thermal expansion is 45 x 10-7
(at20~150℃), thermal conductivity is 0.8 cal/
(cm・sec・℃). In this way, in the present invention, the thickness of the base material 1 and the dimensions, shape, and number of through holes 6 formed across the thickness direction, or the thickness of the copper plate or stainless steel plate laminated and polymerized on the base material 1 can be adjusted. By adjusting the coefficient of thermal expansion and thermal conductivity, it is possible to arbitrarily set the coefficient of thermal expansion and thermal conductivity. In addition, in producing the heat sink in the present invention, as shown in Example 1, the heat sink is produced in a batch manner in a single length state,
Alternatively, as shown in Example 3, it may be carried out continuously in a long state.

【0013】[0013]

【発明の効果】本発明の放熱板によるときは、基材にそ
の厚さ方向に亘って形成された貫通孔に嵌着された放熱
部材は基材と互いに新生面同志で接触しているので両者
は強固に接合して空気等に触れることないから、使用中
に脱落したり、熱伝導が低下したりすることがないため
、IC半導体と同等の熱膨脹係数と、優れた放熱性が得
られて、IC半導体と放熱板との間に歪みを生じること
なくIC半導体の発熱を速やかに放熱することが出来、
また取扱いが容易である等の効果がある。また、基材を
介して銅板または銅合金板を積層重合した複層構造の放
熱板は、銅板または銅合金板の高熱伝導率の相乗効果に
より更に熱伝導率を向上することが出来る効果がある。 また、本発明の製造方法によるときは熱膨脹係数、熱伝
導率を任意に設定することが出来るから、IC半導体と
同等の熱膨脹係数と、優れた放熱性を有し、取扱い容易
な放熱板を容易に製造することが出来る効果がある。
[Effects of the Invention] When using the heat sink of the present invention, the heat dissipating member fitted into the through hole formed in the base material in the thickness direction is in contact with the base material with their newly formed surfaces, so that both Since it is firmly bonded and does not come into contact with air, it will not fall off during use or its thermal conductivity will decrease, so it has a coefficient of thermal expansion equivalent to that of IC semiconductors and excellent heat dissipation. , heat generated by the IC semiconductor can be quickly dissipated without causing distortion between the IC semiconductor and the heat sink,
It also has the advantage of being easy to handle. In addition, a heat sink with a multilayer structure in which copper plates or copper alloy plates are laminated and polymerized via a base material has the effect of further improving thermal conductivity due to the synergistic effect of the high thermal conductivity of the copper plates or copper alloy plates. . Furthermore, when using the manufacturing method of the present invention, the coefficient of thermal expansion and thermal conductivity can be set arbitrarily, so it is easy to produce a heat sink that has a coefficient of thermal expansion equivalent to that of an IC semiconductor, has excellent heat dissipation properties, and is easy to handle. It has the effect of being able to be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の製造方法の工程線図である。FIG. 1 is a process diagram of the manufacturing method of the present invention.

【図2】本発明の基材への放熱部材の嵌着状態の説明図
である。
FIG. 2 is an explanatory diagram of a state in which a heat dissipation member is fitted to a base material of the present invention.

【図3】本発明方法で作成された放熱板の斜視図である
FIG. 3 is a perspective view of a heat sink produced by the method of the present invention.

【図4】図3のA−A線截断拡大図である。FIG. 4 is an enlarged sectional view taken along the line AA in FIG. 3;

【図5】本発明の他の製造方法の工程線図である。FIG. 5 is a process diagram of another manufacturing method of the present invention.

【図6】本発明の他の製造方法で作成された放熱板の図
3と同様の截断拡大図である。
FIG. 6 is an enlarged cross-sectional view similar to FIG. 3 of a heat sink produced by another manufacturing method of the present invention.

【図7】従来の放熱板を用いた説明図である。FIG. 7 is an explanatory diagram using a conventional heat sink.

【符号の説明】[Explanation of symbols]

1          基材 6          貫通孔 8          放熱部材 10,19  放熱板 1 Base material 6 Through hole 8 Heat dissipation member 10,19 Heat sink

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  インバー合金から成る板状の基材にそ
の厚さ方向に亘って形成された貫通孔に銅材または銅合
金材から成る放熱部材を嵌着したことを特徴とする放熱
板。
1. A heat dissipating plate characterized in that a heat dissipating member made of a copper material or a copper alloy material is fitted into a through hole formed in a plate-shaped base material made of an invar alloy in the thickness direction thereof.
【請求項2】  板状の厚さ方向に亘って形成された貫
通孔に銅材または銅合金材から成る放熱部材を嵌着した
インバー合金から成る基材の両面に該基材を介して銅板
または銅合金板を積層重合したことを特徴とする放熱板
2. A copper plate is attached to both sides of a base material made of an invar alloy, in which a heat dissipating member made of a copper material or a copper alloy material is fitted into a through hole formed in the thickness direction of the plate. Or a heat sink characterized by laminating and polymerizing copper alloy plates.
【請求項3】  インバー合金から成る板状の基材と、
該基材と同厚の板状の銅材または銅合金材を重ね合わせ
、基材側から銅材または銅合金材側に基材と銅材または
銅合金材を半打抜きした後、該半打抜き部分に銅材また
は銅合金材側から基材側に打抜きして基材にその厚さ方
向に亘る貫通孔を形成すると共に、該貫通孔に銅材また
は銅合金材から成る放熱部材を嵌着することを特徴とす
る放熱板の製造方法。
Claim 3: A plate-shaped base material made of an Invar alloy;
Layer plate-shaped copper or copper alloy materials of the same thickness as the base material, half-punch the base material and the copper material or copper alloy material from the base material side to the copper material or copper alloy material side, and then half-punch the base material and the copper material or copper alloy material. A through hole is formed in the base material by punching from the copper material or copper alloy material side to the base material side, and a heat dissipation member made of the copper material or copper alloy material is fitted into the through hole. A method for manufacturing a heat sink, characterized by:
【請求項4】  インバー合金から成る板状の基材と、
該基材と同厚の板状の銅材または銅合金材を重ね合わせ
、基材側から銅材または銅合金材側に基材と銅材または
銅合金材を半打抜きした後、該半打抜き部分に銅材また
は銅合金材側から基材側に打抜きして基材にその厚さ方
向に亘る貫通孔を形成すると共に、該貫通孔に銅材また
は銅合金材から成る放熱部材を嵌着した後、基材の両面
に銅板または銅合金板を積層重合することを特徴とする
放熱板の製造方法。
Claim 4: A plate-shaped base material made of an Invar alloy;
Layer plate-shaped copper or copper alloy materials of the same thickness as the base material, half-punch the base material and the copper material or copper alloy material from the base material side to the copper material or copper alloy material side, and then half-punch the base material and the copper material or copper alloy material. A through hole is formed in the base material by punching from the copper material or copper alloy material side to the base material side, and a heat dissipation member made of the copper material or copper alloy material is fitted into the through hole. After that, a method for producing a heat sink is characterized in that copper plates or copper alloy plates are laminated and polymerized on both sides of the base material.
JP40205990A 1990-12-13 1990-12-13 Heat sink and manufacture thereof Withdrawn JPH04215462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40205990A JPH04215462A (en) 1990-12-13 1990-12-13 Heat sink and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40205990A JPH04215462A (en) 1990-12-13 1990-12-13 Heat sink and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04215462A true JPH04215462A (en) 1992-08-06

Family

ID=18511867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40205990A Withdrawn JPH04215462A (en) 1990-12-13 1990-12-13 Heat sink and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04215462A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917638B2 (en) 2000-10-16 2005-07-12 Yamaha Corporation Heat radiator for electronic device and method of making it
FR2951020A1 (en) * 2009-10-01 2011-04-08 Nat De Metrologie Et D Essais Lab Multi-layer composite material for use on support i.e. substrate, of electronic power module i.e. insulated gate bipolar transistor power module, has two outer layers connected together by pipes that are made of heat conductive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917638B2 (en) 2000-10-16 2005-07-12 Yamaha Corporation Heat radiator for electronic device and method of making it
FR2951020A1 (en) * 2009-10-01 2011-04-08 Nat De Metrologie Et D Essais Lab Multi-layer composite material for use on support i.e. substrate, of electronic power module i.e. insulated gate bipolar transistor power module, has two outer layers connected together by pipes that are made of heat conductive material

Similar Documents

Publication Publication Date Title
JPH0837257A (en) Laminated body and manufacture thereof
US20050176175A1 (en) Method of manufacturing hybrid integrated circuit device
TWI221081B (en) Heat dissipating fins of heat sink and manufacturing method thereof
JP2003152144A (en) Composite material and method for its manufacture
JP5989465B2 (en) Insulating substrate manufacturing method
US5777259A (en) Heat exchanger assembly and method for making the same
JPH04144157A (en) Semiconductor device and manufacture thereof
JP3597640B2 (en) Heat sink manufacturing method
JPH091361A (en) Manufacture of heat-conductive composite material
JPH04215462A (en) Heat sink and manufacture thereof
JP2011052240A (en) Method for manufacturing structure provided with thermal-sprayed insulation film
JP2000323632A (en) Heat radiating substrate and manufacture thereof
JPH05109947A (en) Heat conducting material and its manufacture
JP2004281676A (en) Heat radiator and its producing method
JP6324479B1 (en) Metal board for circuit board, circuit board, power module, metal plate molded product, and method for manufacturing circuit board
JP2717832B2 (en) Composite metal material and its manufacturing method
JPH03227621A (en) Thermally conductive composing material
JP3526614B2 (en) Semiconductor device
US20020152858A1 (en) Process for fabricating heat sink with high-density fins
JPH05166982A (en) Radiator
JP2010118651A (en) Heat sink, multilayer heat sink, and method of manufacturing heat sink
WO2022172855A1 (en) Composite material, heat spreader and semiconductor package
WO2022172856A1 (en) Composite material, heat spreader, and semiconductor package
JP3037485B2 (en) Thermal conductive material and method of manufacturing the same
JPH0575008A (en) Thermally conductive material and manufacture thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312