JPH04215022A - Infrared ray detecting element - Google Patents

Infrared ray detecting element

Info

Publication number
JPH04215022A
JPH04215022A JP40209590A JP40209590A JPH04215022A JP H04215022 A JPH04215022 A JP H04215022A JP 40209590 A JP40209590 A JP 40209590A JP 40209590 A JP40209590 A JP 40209590A JP H04215022 A JPH04215022 A JP H04215022A
Authority
JP
Japan
Prior art keywords
infrared
semiconductor substrate
absorbing film
electrode
infrared ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP40209590A
Other languages
Japanese (ja)
Inventor
Hidekazu Himesawa
秀和 姫澤
Motoo Igari
素生 井狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP40209590A priority Critical patent/JPH04215022A/en
Publication of JPH04215022A publication Critical patent/JPH04215022A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To heighten the absorptivity of infrared rays and improve infrared ray detecting sensitivity by providing an infrared ray absorbing film separately from an electrode. CONSTITUTION:Incident infrared rays, from which the wavelength band other than the infrared rays is removed by an infrared filter 70, enters an infrared ray detecting part A provided on the side face of a semiconductor substrate 10, being thermally separated from the substrate 10 by a thermally separating space 80. The infrared rays are absorbed by an infrared ray absorbing film 90 so as to change the temperature of a thin film resistor 40. With this temperature change, the resistance value of the resistor 40 is changed, and the output corresponding to this change is sent to a signal processing circuit 20 through an electrode 50. Because of this separate provision of the absorbing film 90 from the electrode 50, the absorbing film 90 can be formed of material of high absorptivity so as to heighten the absorptivity of the infrared rays and to improve infrared ray detecting sensitivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、温度による抵抗値の変
化を利用して赤外線を検出する赤外線検出素子に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detection element that detects infrared rays by utilizing changes in resistance due to temperature.

【0002】0002

【従来の技術】赤外線検出素子は、一般に微弱な赤外線
の輻射エネルギのみを検出する用途に用いられることが
多く、高感度であることが要求されることが多い。そこ
で、赤外線検出素子を赤外以外の波長帯を除去する赤外
線フィルタと組み合わせて用い、感度を上げるようにし
てある。そして、従来では赤外線検出部と赤外線フィル
タ部とを別個に作成した後、互いの光軸を合わせて組み
立てられていた。
2. Description of the Related Art Infrared detection elements are generally used to detect only weak infrared radiation energy, and are often required to have high sensitivity. Therefore, an infrared detection element is used in combination with an infrared filter that removes wavelengths other than infrared to increase sensitivity. Conventionally, the infrared detection section and the infrared filter section were created separately and then assembled by aligning their optical axes.

【0003】第6図に従来のこの種の赤外線検出素子の
構造の一例を示す。この赤外線検出素子では、ベース5
に取り付けられたステム1にサーミスタ等の赤外線検出
素子チップ2を取り付け、上面の開口に赤外線フィルタ
3が貼着されたキャップ4を赤外線検出素子2を覆うよ
うにベース5に取り付けてある。なお、赤外線検出素子
の内部は密封してある。このような構造の赤外線検出素
子の赤外線フィルタ3は、検出する赤外線の波長帯を良
好に通過させると共に、雑音となる不要な波長成分を遮
断し、空気との屈折率差による反射損失を軽減するため
、基板材料3aの両面に光学干渉多層膜3bをコーティ
ングしたものを用いてある。
FIG. 6 shows an example of the structure of a conventional infrared detection element of this type. In this infrared detection element, base 5
An infrared detecting element chip 2 such as a thermistor is attached to a stem 1 attached to the base 5, and a cap 4 having an infrared filter 3 stuck to an opening on the top surface is attached to a base 5 so as to cover the infrared detecting element 2. Note that the inside of the infrared detection element is sealed. The infrared filter 3 of the infrared detection element having such a structure satisfactorily passes the wavelength band of the infrared rays to be detected, blocks unnecessary wavelength components that become noise, and reduces reflection loss due to the difference in refractive index with air. Therefore, a substrate material 3a coated with an optical interference multilayer film 3b on both sides is used.

【0004】ところが、この種の構造の赤外線検出素子
では、赤外線フィルタ3をキャップ4の開口部の形状に
合わせた微小な形に切り出し、それを開口部に接着剤で
貼り付ける必要がある。このため、組立工数が多く、組
立が面倒で、結果として組立コストが高くなるという欠
点があった。また、各部品の形状的な制約や組立作業性
の面からの制約により、赤外線検出素子チップ2と赤外
線フィルタ3 をある程度離しておく必要があり、この
ために赤外線検出素子の上下幅が広くなり、しかも視野
角θが狭きなるという欠点もあった。
However, in the infrared detecting element having this type of structure, it is necessary to cut the infrared filter 3 into a minute shape that matches the shape of the opening of the cap 4, and to attach it to the opening with an adhesive. Therefore, there are disadvantages in that the number of assembly steps is large, the assembly is troublesome, and as a result, the assembly cost is high. Furthermore, due to constraints on the shape of each component and constraints on assembly workability, it is necessary to keep the infrared detection element chip 2 and the infrared filter 3 a certain distance apart, which increases the vertical width of the infrared detection element. Moreover, there was also the drawback that the viewing angle θ became narrow.

【0005】そこで、本発明者等は上記問題点を解決し
、簡単で能率的、かつ低コストで製造でき、しかも小形
で、視野角を十分に確保することができる赤外線検出素
子を提案している。この赤外線検出素子では、半導体基
板の片面に赤外線検出部を形成し、半導体基板と赤外線
検出部とを熱的に分離する熱分離空間を半導体基板に設
け、0.1〜5.0μmの薄膜の多結晶シリコンまたは
非晶質シリコンからなる薄膜抵抗体と、この薄膜抵抗体
の表面を覆う複数の電極とで上記赤外線検出部を構成し
てある。ここで、電極は薄膜抵抗体と信号処理回路とを
接続する配線としての機能を備えると共に、赤外線の吸
収体として薄膜抵抗体の温度変化を良好とする働きがあ
る。上記信号処理回路は、検出信号の増幅、雑音の除去
といった信号処理を行うものであり、半導体基板上に一
体に形成することができる。また、この赤外線検出素子
では、赤外線検出部の下部の半導体基板をエッチング等
により取り除いて熱分離空間を形成し、この熱分離空間
により半導体基板と赤外線検出部とを熱的に分離し、赤
外線検出感度が良好となるようにしてある。
Therefore, the present inventors solved the above problems and proposed an infrared detection element that can be manufactured easily, efficiently, and at low cost, is small, and can secure a sufficient viewing angle. There is. In this infrared detection element, an infrared detection part is formed on one side of a semiconductor substrate, a thermal isolation space is provided in the semiconductor substrate to thermally isolate the semiconductor substrate and the infrared detection part, and a thin film of 0.1 to 5.0 μm is formed on the semiconductor substrate. The infrared detecting section is composed of a thin film resistor made of polycrystalline silicon or amorphous silicon and a plurality of electrodes covering the surface of the thin film resistor. Here, the electrode has a function as a wiring connecting the thin film resistor and the signal processing circuit, and also functions as an infrared absorber to improve the temperature change of the thin film resistor. The signal processing circuit performs signal processing such as amplifying the detection signal and removing noise, and can be integrally formed on the semiconductor substrate. In addition, in this infrared detection element, the semiconductor substrate below the infrared detection section is removed by etching etc. to form a thermal isolation space, and the semiconductor substrate and the infrared detection section are thermally separated by this thermal isolation space, and the infrared detection section is It is designed to have good sensitivity.

【0006】しかしながら、この赤外線検出素子のよう
に電極に赤外線の吸収体の働きを持たせた場合、電極に
よる赤外線吸収率が悪いために、赤外線検出感度を高く
できないという問題があった。つまり、電極は金属であ
るため、赤外線に対する反射率が大きく、赤外線を20
〜30%程度しか吸収できない。しかも、上記半導体基
板上に電極が一体形成されるため、電極として半導体プ
ロセスに適した材料を使用しなければならないため、赤
外線の吸収率はさらに悪くなるためである。
However, when the electrode has the function of an infrared absorber as in this infrared detection element, there is a problem that the infrared detection sensitivity cannot be increased because the infrared absorption rate of the electrode is poor. In other words, since the electrode is made of metal, it has a high reflectance for infrared rays, and
Only ~30% can be absorbed. Furthermore, since the electrodes are integrally formed on the semiconductor substrate, a material suitable for the semiconductor process must be used for the electrodes, which further deteriorates the absorption rate of infrared rays.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記問題点の
解決を目的とするものであり、赤外線の吸収率が高い赤
外線検出素子を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned problems and provides an infrared detection element that has a high absorption rate of infrared rays.

【0008】[0008]

【課題を解決するための手段】本発明では、上記目的を
達成するために、半導体基板の片面に赤外線検出部を形
成し、この赤外線検出部を半導体基板から熱的に分離す
る熱分離空間を半導体基板に設け、入射される赤外線を
吸収する赤外線吸収膜と、この赤外線吸収膜より受ける
温度の変化によって抵抗値が可変する薄膜抵抗体と、薄
膜抵抗体に取り付けられた少なくとも一対の電極部とで
上記赤外線検出部を構成してある。
[Means for Solving the Problems] In order to achieve the above object, the present invention forms an infrared detecting section on one side of a semiconductor substrate, and provides a thermal isolation space for thermally separating the infrared detecting section from the semiconductor substrate. An infrared absorbing film provided on a semiconductor substrate to absorb incident infrared rays, a thin film resistor whose resistance value is variable according to changes in temperature received by the infrared absorbing film, and at least one pair of electrode parts attached to the thin film resistor. The above-mentioned infrared detecting section is constructed as follows.

【0009】[0009]

【作用】本発明は上述のように赤外線検出部に電極と別
個に赤外線吸収膜を設けることにより、赤外線吸収膜を
赤外線の吸収率の高い材料で形成できるようにして、電
極に赤外線吸収膜の働きを持たせた場合よりも赤外線の
吸収率を高くできるようにしたものである。
[Function] As described above, the present invention provides an infrared absorbing film in the infrared detecting section separately from the electrode, so that the infrared absorbing film can be formed of a material with a high absorption rate of infrared rays. This makes it possible to increase the absorption rate of infrared rays compared to when it has a function.

【0010】0010

【実施例】本発明の一実施例を第1図乃至第3図に示す
。本実施例の赤外線検出素子では、第1図に示すように
、半導体基板10の片面に赤外線検出部Aを形成すると
共に、半導体基板10に信号処理回路20も形成してあ
る。ここで、半導体基板10は、第2図に示すように、
シリコンウエハ11の表面に酸化シリコン(SiO2 
)あるいは窒化シリコン(Si3 N4 )などからな
る絶縁層30を形成したものであり、上記赤外線検出部
Aは絶縁層30上に形成してある。上記赤外線検出部A
は通常のIC回路作製における半導体プロセス等と同様
の薄膜形成技術や微細加工技術などを利用して形成して
あり、0.1〜5.0μmの薄膜の多結晶シリコンから
なる薄膜抵抗体40と、この薄膜抵抗体10の表面を覆
う櫛歯状の一対の電極50と、この電極50上に配置さ
れる赤外線吸収膜90とで構成されている。ここで、薄
膜抵抗体40を形成する多結晶シリコンは、従来のサー
ミスタのように不純物の多いものは好ましくなく、不純
物を添加していないものを用いてある。なお、薄膜抵抗
体40は非晶質シリコンで形成することも可能である。 また、電極50は普通の半導体プロセスと同様にして形
成されるので、半導体プロセスに適した材料(例えば、
ニッケルクロム等)を使用してある。さらに、赤外線吸
収膜90は、赤外線の吸収率が高く、且つ半導体プロセ
スに適した材料である必要があるので、本実施例では酸
化シリコン(SiO2 )で形成してある。この酸化シ
リコン(SiO2 )は、熱抵抗が大きいため、熱の逃
げが少ないという特長がある。しかも、酸化シリコンは
、半導体の絶縁膜として用いられているように電気的に
問題がなく、熱容量が小さく、応答性への影響が少ない
ので、赤外線吸収膜90は赤外線検出部Aの保護膜とし
ての役目も果たす。なお、赤外線吸収膜90を信号処理
回路20を含む赤外線検出素子全体を覆うように形成し
、赤外線検出素子全体の保護膜として用いてもよい。ま
た、赤外線吸収膜90を酸化シリコンの代わりに窒化シ
リコン(Si3 N4 )を用いて形成してもよい。と
ころで、半導体基板10と赤外線検出部Aとの間には、
赤外線検出部Aの下部の半導体基板10をエッチング等
により取り除いて熱分離空間80を形成し、この熱分離
空間80によって半導体基板10と赤外線検出部Aとを
熱的に分離して赤外線検出感度が良好になるようにして
ある。ここで、熱分離空間80の上面となる絶縁層30
部分には赤外線検出部Aの回りを囲むようにスリット3
1を形成し、絶縁層30を通して熱が半導体基板10側
に伝導することを極力防止する構造にしてある。なお、
第1図の場合には直線状の4本のスリット31を夫々赤
外線検出部Aの回りに形成してあるが、例えば第4図に
示すように一部だけを残して赤外線検出部Aの回りを囲
む連続するスリット31を形成してもよい。つまり、本
発明の赤外線検出素子は振動により誤動作することはな
く、耐衝撃性に強いので、上記第4図に示す構造とする
ことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIGS. 1 to 3. In the infrared detecting element of this embodiment, as shown in FIG. 1, an infrared detecting section A is formed on one side of a semiconductor substrate 10, and a signal processing circuit 20 is also formed on the semiconductor substrate 10. Here, the semiconductor substrate 10, as shown in FIG.
Silicon oxide (SiO2) is deposited on the surface of the silicon wafer 11.
) or silicon nitride (Si3 N4), and the infrared detecting section A is formed on the insulating layer 30. The above infrared detection section A
is formed using the same thin film formation technology and microfabrication technology as the semiconductor process in normal IC circuit production, and the thin film resistor 40 is made of polycrystalline silicon with a thickness of 0.1 to 5.0 μm. , a pair of comb-shaped electrodes 50 covering the surface of the thin film resistor 10, and an infrared absorbing film 90 disposed on the electrodes 50. Here, as for the polycrystalline silicon forming the thin film resistor 40, it is not preferable to use a polycrystalline silicon containing a lot of impurities like in a conventional thermistor, and instead, a polycrystalline silicon to which no impurities are added is used. Note that the thin film resistor 40 can also be formed of amorphous silicon. Further, since the electrode 50 is formed in the same manner as in a normal semiconductor process, it is made of a material suitable for the semiconductor process (for example,
Nickel chromium, etc.) are used. Further, the infrared absorbing film 90 needs to be made of a material that has a high absorption rate of infrared rays and is suitable for semiconductor processing, so it is formed of silicon oxide (SiO2) in this embodiment. This silicon oxide (SiO2) has a large thermal resistance, so it has the advantage of less heat escaping. Furthermore, silicon oxide has no electrical problems as it is used as an insulating film for semiconductors, has a small heat capacity, and has little effect on responsiveness, so the infrared absorbing film 90 can be used as a protective film for the infrared detecting section A. It also plays the role of Note that the infrared absorbing film 90 may be formed to cover the entire infrared detecting element including the signal processing circuit 20, and may be used as a protective film for the entire infrared detecting element. Further, the infrared absorbing film 90 may be formed using silicon nitride (Si3 N4) instead of silicon oxide. By the way, between the semiconductor substrate 10 and the infrared detection section A,
The semiconductor substrate 10 below the infrared detection section A is removed by etching or the like to form a thermal isolation space 80, and the thermal isolation space 80 thermally isolates the semiconductor substrate 10 and the infrared detection section A, thereby increasing the infrared detection sensitivity. It's meant to be good. Here, the insulating layer 30 which becomes the upper surface of the thermal isolation space 80
There is a slit 3 surrounding the infrared detection part A.
1 and is structured to prevent heat from being conducted to the semiconductor substrate 10 side through the insulating layer 30 as much as possible. In addition,
In the case of FIG. 1, four linear slits 31 are formed around the infrared detection section A, but as shown in FIG. A continuous slit 31 surrounding the slit 31 may be formed. In other words, since the infrared detection element of the present invention does not malfunction due to vibration and has strong impact resistance, it can have the structure shown in FIG. 4 above.

【0011】本実施例の赤外線検出素子の製造方法の一
例を第3図に基づいて説明する。なお、半導体基板10
上には信号処理回路20を通常の半導体プロセスにより
予め作製しておく。この状態において半導体基板10の
表面にシリコン酸化膜からなる絶縁層30を形成し、次
いで熱分離空間80を形成する部分を除いてフォトレジ
スタ膜12を形成し、エッチングによりフォトレジスト
のない部分の絶縁層30を取り除く(第3図(a))。 そして、異方性エッチングにより半導体基板10に空間
を形成し、空間の内面に絶縁層30を形成する(第3図
(b))。その後、絶縁層30上に蒸着してニッケル蒸
着膜13を形成し、熱分離空間80を形成する部分を除
いてフォトレジスタ膜12を形成し、ニッケル14をメ
ッキする(第3図(c))。次いで、上記ニッケル蒸着
膜13が無くなるまで研磨して平坦化し、絶縁膜30を
形成し、絶縁膜30上に薄膜抵抗体40を形成する(第
3図(d))。その後は、薄膜抵抗体40の上にさらに
ニッケルクロムからなる電極膜を蒸着して電極50を形
成し、さらに酸化シリコンを蒸着して赤外線吸収膜90
を形成する。そして、最後にスリット31を形成し、そ
の部分からニッケルを溶かし出して、熱分離空間80を
形成する。
An example of the method for manufacturing the infrared detecting element of this embodiment will be explained with reference to FIG. Note that the semiconductor substrate 10
A signal processing circuit 20 is previously fabricated thereon by a normal semiconductor process. In this state, an insulating layer 30 made of a silicon oxide film is formed on the surface of the semiconductor substrate 10, and then a photoresist film 12 is formed except for the part where the thermal isolation space 80 is to be formed, and the part without the photoresist is insulated by etching. Remove layer 30 (FIG. 3(a)). Then, a space is formed in the semiconductor substrate 10 by anisotropic etching, and an insulating layer 30 is formed on the inner surface of the space (FIG. 3(b)). Thereafter, a nickel evaporated film 13 is formed by vapor deposition on the insulating layer 30, a photoresist film 12 is formed except for the part where the thermal isolation space 80 is formed, and nickel 14 is plated (FIG. 3(c)). . Next, the nickel vapor deposited film 13 is polished and planarized until it disappears, an insulating film 30 is formed, and a thin film resistor 40 is formed on the insulating film 30 (FIG. 3(d)). Thereafter, an electrode film made of nickel chromium is further deposited on the thin film resistor 40 to form an electrode 50, and silicon oxide is further deposited to form an infrared absorbing film 90.
form. Finally, a slit 31 is formed, and the nickel is melted out from the slit 31 to form a thermal isolation space 80.

【0012】赤外線検出部Aの上に被着される赤外線フ
ィルタ70はシリコンで形成されている。ここで、赤外
線検出部Aの回りの絶縁層30上にはチタン(Ti)/
白金(Pt)/金(Au)からなる3層膜を形成し、こ
の3層膜上に赤外線フィルタ70を載置し、赤外線フィ
ルタ70と3層膜の最上部のAu層とに熱処置を加え、
これによりAu−Si共晶合金32を形成させて、気密
封止した状態で赤外線検出部Aを覆うように赤外線フィ
ルタ70を取り付ける。このようにすれば、赤外線検出
部Aの機械的な保護も可能である。赤外線フィルタ70
の内部を真空とすることにより、電極50から空気への
熱伝導がなくなり、さらに検出感度の向上が可能となる
The infrared filter 70 placed on the infrared detecting section A is made of silicon. Here, titanium (Ti)/
A three-layer film made of platinum (Pt)/gold (Au) is formed, an infrared filter 70 is placed on this three-layer film, and heat treatment is applied to the infrared filter 70 and the topmost Au layer of the three-layer film. In addition,
As a result, an Au-Si eutectic alloy 32 is formed, and the infrared filter 70 is attached so as to cover the infrared detecting section A in a hermetically sealed state. In this way, the infrared detection section A can also be mechanically protected. Infrared filter 70
By creating a vacuum inside the electrode 50, heat conduction from the electrode 50 to the air is eliminated, and detection sensitivity can further be improved.

【0013】本実施例の赤外線検出素子では、入射され
た赤外線は赤外線吸収膜90によって吸収され、薄膜抵
抗体40の温度を変化させ、この温度変化によって可変
する薄膜抵抗体40の抵抗値に応じた出力を電極50を
通して信号処理回路20に出力するというように動作す
る。ところで、上述の説明の場合には熱分離空間70を
赤外線検出部Aの下方に形成してあったが、第5図に示
すように異方性エッチングにより半導体基板10の下面
に熱分離空間80を形成してもよい。また、この第5図
に示すように一対の電極50で薄膜抵抗体40を上下に
挟み込む構造としてもよい。
In the infrared detecting element of this embodiment, the incident infrared rays are absorbed by the infrared absorbing film 90, and the temperature of the thin film resistor 40 is changed, and the resistance value of the thin film resistor 40 is changed depending on the temperature change. The output is outputted to the signal processing circuit 20 through the electrode 50. Incidentally, in the case of the above explanation, the thermal isolation space 70 was formed below the infrared detection part A, but as shown in FIG. may be formed. Further, as shown in FIG. 5, a structure may be adopted in which the thin film resistor 40 is sandwiched between a pair of electrodes 50 above and below.

【0014】[0014]

【発明の効果】本発明は上述のように、半導体基板の片
面に赤外線検出部を形成し、この赤外線検出部を半導体
基板から熱的に分離する熱分離空間を半導体基板に設け
、入射される赤外線を吸収する赤外線吸収膜と、この赤
外線吸収膜より受ける温度の変化によって抵抗値が可変
する薄膜抵抗体と、薄膜抵抗体に取り付けられた少なく
とも一対の電極部とで上記赤外線検出部を構成したもの
であり、赤外線検出部に電極と別個に赤外線吸収膜を設
けてあるので、赤外線吸収膜を赤外線の吸収率の高い材
料で形成でき、このため電極に赤外線吸収膜の働きを持
たせた場合よりも赤外線の吸収率を高くでき、赤外線検
出感度を向上させることができる利点がある。
Effects of the Invention As described above, the present invention forms an infrared detecting section on one side of a semiconductor substrate, and provides a thermal isolation space in the semiconductor substrate to thermally isolate the infrared detecting section from the semiconductor substrate. The infrared detecting section is composed of an infrared absorbing film that absorbs infrared rays, a thin film resistor whose resistance value is variable according to changes in temperature received by the infrared absorbing film, and at least one pair of electrode parts attached to the thin film resistor. Since the infrared detecting part is provided with an infrared absorbing film separately from the electrode, the infrared absorbing film can be made of a material with a high infrared absorbing rate. Therefore, if the electrode has the function of an infrared absorbing film. It has the advantage that it can increase the absorption rate of infrared rays and improve the infrared detection sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の赤外線検出素子の分解斜視
図である。
FIG. 1 is an exploded perspective view of an infrared detection element according to an embodiment of the present invention.

【図2】同上の断面図である。FIG. 2 is a sectional view of the same as above.

【図3】同上の要部の製造方法を示す説明図である。FIG. 3 is an explanatory diagram showing a method of manufacturing the main parts same as above.

【図4】スリットを異なる形状とした場合の要部の平面
図ある。
FIG. 4 is a plan view of the main parts when the slits have different shapes.

【図5】他の実施例の斜視図である。FIG. 5 is a perspective view of another embodiment.

【図6】従来例の断面図である。FIG. 6 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

A  赤外線検出部 10  半導体基板 40  薄膜抵抗体 50  電極 80  熱分離空間 90  赤外線吸収膜 A Infrared detection section 10 Semiconductor substrate 40 Thin film resistor 50 electrode 80 Thermal separation space 90 Infrared absorption film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板の片面に赤外線検出部を形
成し、この赤外線検出部を半導体基板から熱的に分離す
る熱分離空間を半導体基板に設け、入射される赤外線を
吸収する赤外線吸収膜と、この赤外線吸収膜より受ける
温度の変化によって抵抗値が可変する薄膜抵抗体と、薄
膜抵抗体に取り付けられた少なくとも一対の電極部とで
上記赤外線検出部を構成して成ることを特徴とする赤外
線検出素子。
1. An infrared detecting section is formed on one side of a semiconductor substrate, a thermal isolation space is provided in the semiconductor substrate to thermally isolate the infrared detecting section from the semiconductor substrate, and an infrared absorbing film that absorbs incident infrared rays is provided. , wherein the infrared detecting section is constituted by a thin film resistor whose resistance value is variable according to changes in temperature received by the infrared absorbing film, and at least one pair of electrode sections attached to the thin film resistor. detection element.
JP40209590A 1990-12-14 1990-12-14 Infrared ray detecting element Withdrawn JPH04215022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40209590A JPH04215022A (en) 1990-12-14 1990-12-14 Infrared ray detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40209590A JPH04215022A (en) 1990-12-14 1990-12-14 Infrared ray detecting element

Publications (1)

Publication Number Publication Date
JPH04215022A true JPH04215022A (en) 1992-08-05

Family

ID=18511906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40209590A Withdrawn JPH04215022A (en) 1990-12-14 1990-12-14 Infrared ray detecting element

Country Status (1)

Country Link
JP (1) JPH04215022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426412A (en) * 1992-10-27 1995-06-20 Matsushita Electric Works, Ltd. Infrared detecting device and infrared detecting element for use in the device
JP2012119389A (en) * 2010-11-29 2012-06-21 Tdk Corp Thermistor, temperature sensor and gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426412A (en) * 1992-10-27 1995-06-20 Matsushita Electric Works, Ltd. Infrared detecting device and infrared detecting element for use in the device
JP2012119389A (en) * 2010-11-29 2012-06-21 Tdk Corp Thermistor, temperature sensor and gas sensor

Similar Documents

Publication Publication Date Title
US7663106B2 (en) Infrared sensor and method for producing same
JP3514681B2 (en) Infrared detector
JP4228232B2 (en) Thermal infrared detector
JPH04158583A (en) Infrared-ray detecting element
JP2006214758A (en) Infrared detector
JPH07209089A (en) Infrared ray sensor
KR100853202B1 (en) Bolometer and method of manufacturing the same
DE4221037C2 (en) Thermal radiation sensor
JPS6212454B2 (en)
JPH04215022A (en) Infrared ray detecting element
JPH04158586A (en) Infrared-ray detecting element
JPH04158584A (en) Infrared-ray detecting element
KR101569350B1 (en) Wafer Level Packaging Device
JPH05164605A (en) Infrared-ray sensor
JPH0755523A (en) Flow rate sensor
JPH085452A (en) Infrared ray detecting element
JPH05118909A (en) Infrared ray detecting element
JP2000346704A (en) Bolometer type infrared detection element
JPH04158585A (en) Infrared-ray detecting element
JP2006208177A (en) Infrared detector
JPH07128140A (en) Infrared detector
JPH03287022A (en) Infrared detecting element, infrared detector and production of infrared detecting element
JPH03229470A (en) Semiconductor pressure sensor
JP3013716B2 (en) Infrared detector
JPS63131032A (en) Pyroelectric type infrared ray detector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312