JPH085452A - Infrared ray detecting element - Google Patents

Infrared ray detecting element

Info

Publication number
JPH085452A
JPH085452A JP30987391A JP30987391A JPH085452A JP H085452 A JPH085452 A JP H085452A JP 30987391 A JP30987391 A JP 30987391A JP 30987391 A JP30987391 A JP 30987391A JP H085452 A JPH085452 A JP H085452A
Authority
JP
Japan
Prior art keywords
infrared
infrared ray
film
substrate
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30987391A
Other languages
Japanese (ja)
Inventor
Hidekazu Himesawa
秀和 姫澤
Motoo Igari
素生 井狩
Koichi Aizawa
浩一 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP30987391A priority Critical patent/JPH085452A/en
Publication of JPH085452A publication Critical patent/JPH085452A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain an element, which can be easily manufactured and downsized and which has a wide angle of view field and the excellent responsiveness by forming an infrared ray detecting unit and an infrared ray transmitting filter on one surface of a substrate so as to be vertically overlapped, and forming a heat separation space under them. CONSTITUTION:An infrared ray detecting unit 2 is formed by overlapping a thin film resistor 2b and an infrared ray absorbing film 2c in order on a pair of electrodes 2a on an insulating film 4 of a semi-conductor substrate 1. An infrared ray transmitting film 3 is provided on the detecting unit 2 so as to be overlapped, and cuts the electromagnetic wave except for the infrared ray and transmits the only infrared ray. At the time of manufacturing an element, a lower part of a substrate 1, in which a detecting unit 2 is to be provided, is eliminated by the anisotropic etching so as to form a heat separation space 5. Thereafter, an electrode 2a is formed on the insulating film 4 over the space 5, and a resistor 2b and an absorbing film 2c are formed on the electrode 2a by deposition, and a filter is formed on the film 2c by deposition. Change of the resistance value of the resistor 2b is detected through a signal processing circuit 6 connected to the electrode 2a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線吸収による温度
変化に伴った抵抗体の電気抵抗等の変化を利用して赤外
線を検出する方式の赤外線検出素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detecting element of a type which detects infrared rays by utilizing a change in electric resistance of a resistor due to a temperature change due to absorption of infrared rays.

【0002】[0002]

【従来の技術】赤外線検出に際しては、微弱な赤外線の
検出感度を高めるために、赤外線検出部とは別に、赤外
線以外の電磁波を遮断するための赤外線透過フィルタが
併用されている。ここに、従来では、これら赤外線検出
部と赤外線透過フィルタとは別々に製作され、互いの光
軸を合わせて組立てられていたのが一般的であった。す
なわち、図7はその従来例の一例を示すもので、ステム
20にサーミスタ等の赤外線検出部を形成した赤外線検
出チップ21を取付け、また該チップ21の上方には、
赤外線のみを通過させて雑音となる不要な波長成分の通
過を遮断する赤外線透過フィルタ3eを、キャップ22
で保持させて配置したものである。
2. Description of the Related Art In detecting infrared rays, an infrared transmitting filter for blocking electromagnetic waves other than infrared rays is used together with the infrared detecting section in order to increase the sensitivity of detecting weak infrared rays. Here, conventionally, the infrared detection section and the infrared transmission filter were generally manufactured separately and assembled by aligning their optical axes. That is, FIG. 7 shows an example of the conventional example, in which an infrared detecting chip 21 having an infrared detecting portion such as a thermistor is attached to the stem 20, and above the chip 21,
The infrared transmission filter 3e, which allows only infrared rays to pass and blocks unnecessary wavelength components that become noise, is attached to the cap 22.
It is held and placed in.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来のものでは、赤外線透過フィルタ3eをキャップ22
の開口部23の形状に合わせた微細な形状に切り出し、
これをキャップ22の開口部23へ接着剤で貼付ける必
要がある等、その組立工程が多くなり、その製造コスト
が高くなる欠点があった。また、上記従来のものでは、
各部品の組立作業性等の制約から、赤外線透過フィルタ
3eと赤外線検出チップ21とをある程度離しておく必
要があるために、これらの全体構造が嵩張り、また視野
角θが狭くなるという欠点もあった。尚、これらの欠点
を解消する手段としては、赤外線検出チップ21の表面
に赤外線透過フィルタ3eを直接重ね合わせることも考
えられる。ところが、上記従来の構造において、これら
両者を単に重ね合わせただけでは、赤外線検出チップ2
1からステム20側への熱吸収以外として、赤外線検出
チップ21から赤外線透過フィルタ3eへの熱吸収も加
わるために、赤外線吸収に応じた赤外線検出チップ21
の温度変化が鈍くなって、赤外線検出の感度が低下す
る。また、赤外線検出部位全体の見かけ上の熱容量が増
加することにも原因して応答性が一層悪化するという難
点がある。それ故、本発明は、簡易に且つ小型に製造で
きて、視野角を広く確保でき、しかも赤外線検出の応答
性に優れた赤外線検出素子を提供することを、その目的
とする。
However, in the above-mentioned conventional one, the infrared transmission filter 3e is attached to the cap 22.
Cut into a fine shape that matches the shape of the opening 23 of
It is necessary to attach this to the opening 23 of the cap 22 with an adhesive, and the number of assembling steps increases, resulting in a high manufacturing cost. Further, in the above conventional one,
Due to restrictions on the assembly workability of each component and the like, the infrared transmission filter 3e and the infrared detection chip 21 need to be separated from each other to some extent. there were. As a means for solving these drawbacks, it is conceivable to directly superimpose the infrared transmission filter 3e on the surface of the infrared detection chip 21. However, in the above-mentioned conventional structure, the infrared detection chip 2 can be obtained by simply superposing them.
In addition to the heat absorption from 1 to the stem 20 side, heat absorption from the infrared detection chip 21 to the infrared transmission filter 3e is also added, so the infrared detection chip 21 corresponding to the infrared absorption.
The temperature change becomes slower, and the infrared detection sensitivity decreases. In addition, there is a problem that the responsiveness is further deteriorated due to the increase in the apparent heat capacity of the entire infrared detection site. Therefore, it is an object of the present invention to provide an infrared detecting element which can be manufactured easily and compactly, can secure a wide viewing angle, and is excellent in responsiveness of infrared detection.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に提案された本発明に係る赤外線検出素子は、基板の片
面上に赤外線検出部と赤外線透過フィルタとを上下に重
合して形成し、前記赤外線検出部の下方には、赤外線検
出部と基板との相互間の熱伝導を抑制する熱分離空間部
を形成した構成である。
The infrared detecting element according to the present invention, which has been proposed to achieve the above object, is formed by superposing an infrared detecting portion and an infrared transmitting filter on one surface of a substrate, Below the infrared detecting section, a thermal separation space section for suppressing heat conduction between the infrared detecting section and the substrate is formed.

【0005】[0005]

【作用】上記構成を特徴とする赤外線検出素子では、赤
外線検出部と基板とが熱分離空間部によって熱分離され
るために、赤外線検出部から基板への熱伝導が抑制さ
れ、また赤外線検出部の位置全体における見かけ上の熱
容量は小さくなる。従って、本発明では、赤外線検出部
上に赤外線透過フィルタが形成されて、赤外線検出部か
ら赤外線透過フィルタへの熱伝導が発生するにも拘わら
ず、それに原因する赤外線感知の応答性の低下を、赤外
線検出部と基板との熱分離によって充分に補うことがで
き、結局は、赤外線検出部での赤外線検出の感度、並び
に応答性を向上させ得ることとなる。また、赤外線透過
フィルタが赤外線検出部上に形成されていることによ
り、赤外線検出部における視野角は広く確保され、更に
は赤外線透過フィルタを支持するためのキャップ等は一
切不要となる。
In the infrared detecting element having the above structure, the infrared detecting section and the substrate are thermally separated by the heat separating space, so that the heat conduction from the infrared detecting section to the substrate is suppressed, and the infrared detecting section is also suppressed. The apparent heat capacity in the entire position of is small. Therefore, in the present invention, the infrared transmission filter is formed on the infrared detection unit, and despite the occurrence of heat conduction from the infrared detection unit to the infrared transmission filter, a decrease in the responsivity of infrared sensing due to the heat conduction occurs. This can be sufficiently compensated for by the heat separation between the infrared detecting section and the substrate, and eventually the infrared detection sensitivity and response of the infrared detecting section can be improved. Further, since the infrared transmitting filter is formed on the infrared detecting portion, a wide viewing angle is secured in the infrared detecting portion, and further, a cap or the like for supporting the infrared transmitting filter is not necessary at all.

【0006】[0006]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本発明に係る赤外線検出素子Aの斜
視図、図2は赤外線検出部における電極の構造を示す平
面図、図3は製造工程を示す断面図である。当該赤外線
検出素子Aは、シリコン製等の半導体基板1の表面に、
赤外線検出部2及び赤外線透過フィルタ3が重ねて形成
されたものである。ここに、半導体基板1の表面には、
酸化シリコン膜又は酸化シリコンと窒化シリコンの多層
膜等からなる絶縁膜4が形成されている。また、赤外線
検出部2の下方に位置する半導体基板1の裏面側の一部
には、エッチング等によって所望の切欠凹部状に形成さ
れた熱分離空間部5が設けられている。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a perspective view of an infrared detection element A according to the present invention, FIG. 2 is a plan view showing a structure of an electrode in an infrared detection section, and FIG. 3 is a sectional view showing a manufacturing process. The infrared detection element A is formed on the surface of the semiconductor substrate 1 made of silicon,
The infrared detecting section 2 and the infrared transmitting filter 3 are formed in an overlapping manner. Here, on the surface of the semiconductor substrate 1,
An insulating film 4 made of a silicon oxide film or a multilayer film of silicon oxide and silicon nitride is formed. Further, a part of the back surface side of the semiconductor substrate 1 located below the infrared detecting portion 2 is provided with a heat separation space portion 5 formed in a desired notched concave shape by etching or the like.

【0007】赤外線検出部2は、半導体基板1の絶縁膜
4上の一対の電極2a、2a上に、薄膜抵抗体2b及び
赤外線吸収膜2cを順次重ねて設けることにより構成さ
れている。このうち、薄膜抵抗体2bは、例えば膜厚が
0.1〜5.0μmの非結晶シリコン又は多結晶シリコ
ンからなるもので、赤外線吸収による温度変化に伴って
抵抗値が変化するものである。薄膜抵抗体2bとして
は、温度上昇によって抵抗値が増加するものと減少する
ものの両方があり、本発明では何れのタイプでもよい。
赤外線吸収膜2cは、赤外線吸収率が高く且つ半導体プ
ロセスに適した物質で形成され、例えば酸化シリコンが
適用でき、又金黒等も使用可能である。また、赤外線吸
収膜2cは薄膜抵抗体2bの保護膜としての役目も果た
す。電極2a、2aは、薄膜抵抗体2bの抵抗値の変化
が正確に検出できるように、図2に示すような互いに対
向する櫛型の平面形状に形成されて、薄膜抵抗体2bと
広面積で接触するように構成され、又その各端部は後述
する信号処理回路6に接続されている。電極2a、2a
も薄膜により形成可能であるが、その材料としては、A
uやAl等の通常の電極材料の他、Ti、Zr、V、N
b、Ta、Cr、Mo、W、Ni、Pt、Pd等の金属
合金、或いは多結晶シリコンとのシリサイドを用いる
と、赤外線の吸収率が高いので、検出感度を向上させる
ことが可能である。尚、電極2a、2aと薄膜抵抗体2
bとは上下逆さまの位置関係でもよい。赤外線透過フィ
ルタ3は、赤外線以外の電磁波を遮断して赤外線のみを
通過させるもので、その一例としては高屈折率の酸化マ
グネシウムと低屈折率の弗化マグネシウムの多層膜が適
用される。当該赤外線透過フィルタ3は、前記赤外線検
出部2上に重ねて設けられている。一方、半導体基板1
の他の部位には、通常の赤外線検出装置と同様の増幅回
路やその他の回路を備えた信号処理回路6が絶縁膜4よ
りも下層に形成され、当該信号処理回路6には前記電極
2a、2aの各端部が絶縁膜4を通過した状態で接続さ
れている。
The infrared detecting section 2 is constructed by sequentially stacking a thin film resistor 2b and an infrared absorbing film 2c on a pair of electrodes 2a, 2a on the insulating film 4 of the semiconductor substrate 1. Of these, the thin film resistor 2b is made of, for example, amorphous silicon or polycrystalline silicon having a film thickness of 0.1 to 5.0 μm, and its resistance value changes with temperature change due to infrared absorption. The thin film resistor 2b includes both a resistor whose resistance value increases and a resistor whose resistance value decreases as the temperature rises, and any type may be used in the present invention.
The infrared absorption film 2c is formed of a material having a high infrared absorption rate and suitable for a semiconductor process. For example, silicon oxide can be applied, and gold black or the like can also be used. The infrared absorption film 2c also serves as a protective film for the thin film resistor 2b. The electrodes 2a and 2a are formed in a comb-shaped planar shape facing each other as shown in FIG. 2 so as to have a large area with the thin film resistor 2b so that a change in the resistance value of the thin film resistor 2b can be accurately detected. It is configured so as to make contact, and each end thereof is connected to a signal processing circuit 6 described later. Electrodes 2a, 2a
Can be formed by a thin film, but the material is A
Other than usual electrode materials such as u and Al, Ti, Zr, V, N
When a metal alloy such as b, Ta, Cr, Mo, W, Ni, Pt, or Pd, or a silicide with polycrystalline silicon is used, the infrared absorption rate is high, and thus the detection sensitivity can be improved. The electrodes 2a, 2a and the thin film resistor 2
The positional relationship upside down with b may be sufficient. The infrared transmission filter 3 blocks electromagnetic waves other than infrared rays and allows only infrared rays to pass therethrough. For example, a multilayer film of magnesium oxide having a high refractive index and magnesium fluoride having a low refractive index is applied. The infrared transmission filter 3 is provided so as to overlap the infrared detection unit 2. On the other hand, the semiconductor substrate 1
In the other part, a signal processing circuit 6 including an amplifier circuit and other circuits similar to those of a normal infrared detection device is formed below the insulating film 4, and the signal processing circuit 6 includes the electrode 2a, Each end of 2a is connected while passing through the insulating film 4.

【0008】上記構成の赤外線検出素子Aの製造に際し
ては、先ず図3の(a)に示すように、半導体基板1上
に信号処理回路6を通常の半導体プロセスに則した方法
で作製した後に、半導体基板1の表面に絶縁膜4を成膜
させる。次に同図(b)に示すように、半導体基板1の
赤外線検出部2が設けられる予定位置の下方の部位を異
方性エッチング等によって除去し、熱分離空間部5を形
成する。その後は、同図(c)に示すように、、該熱分
離空間部5の上方の絶縁膜4上に電極2a、2aを成膜
させ、その上に薄膜抵抗体2b、赤外線吸収膜2cを蒸
着等によって形成し、更にその上に赤外線透過フィルタ
3を同様な蒸着手段等で形成すればよい。
In manufacturing the infrared detecting element A having the above structure, first, as shown in FIG. 3A, after the signal processing circuit 6 is manufactured on the semiconductor substrate 1 by a method according to a normal semiconductor process, An insulating film 4 is formed on the surface of the semiconductor substrate 1. Next, as shown in FIG. 2B, a portion of the semiconductor substrate 1 below the planned position where the infrared detecting portion 2 is provided is removed by anisotropic etching or the like to form the heat separation space portion 5. After that, as shown in FIG. 3C, electrodes 2a and 2a are formed on the insulating film 4 above the heat separation space 5, and a thin film resistor 2b and an infrared absorbing film 2c are formed thereon. It may be formed by vapor deposition or the like, and the infrared transmission filter 3 may be further formed thereon by the same vapor deposition means or the like.

【0009】上記構成の赤外線検出素子Aは、半導体基
板1の片面側に赤外線検出部2や赤外線透過フィルタ3
等が集積された半導体チップとして構成されたものであ
り、そのサイズを非常に小さくできるものである。次い
で、その使用に際しては、半導体基板1の上方から入射
する光線のうち赤外線のみを赤外線透過フィルタ3に透
過させて赤外線検出部2に吸収させることができ、赤外
線検出部2の薄膜抵抗体2bの抵抗値の変化を電極2
a、2aに接続された信号処理回路6を通じて検出でき
ることとなる。赤外線透過フィルタ3が赤外線検出部2
上に重ねて設けられているから、その視野角も広くな
る。而して、上記構成では、相互に重ね合わされた赤外
線検出部2から赤外線透過フィルタ3への熱伝導が発生
するものの、それよりも多大な熱発散を生じさせる赤外
線検出部2から半導体基板1への熱伝導が熱分離空間部
5によって抑制された状態にあるため、トータル的にみ
れば、赤外線検出部2から赤外線透過フィルタ3への熱
伝導量は極僅かなものとなり、赤外線吸収による赤外線
検出部2の温度変化に大きな支障を生じさせない。ま
た、熱分離空間部5によって赤外線検出部2や赤外線透
過フィルタ3の部位が半導体基板1と熱分離されている
ことにより、これら赤外線検出部2の部位全体における
見かけ上の熱容量は縮小される。従って、結局は、赤外
線検出部2が赤外線吸収に対応した迅速な温度を行うこ
ととなって、赤外線検出の応答速度を良好にでき、その
応答性能を非常に優れたものにできる。尚、半導体基板
1に信号処理回路6を設けたことにより、当該信号処理
回路6が赤外線検出部2等とともにワンチップに集積さ
れ、その取扱いに利便であり、また赤外線検出部2等の
一連の製造過程において信号処理回路6の製造が能率良
く行える。しかも、赤外線検出部2と信号処理回路6と
の配線距離を短くできるために、信号の減衰や雑音の侵
入を少なくでき、赤外線検出性能を一層向上させること
が可能である。
In the infrared detecting element A having the above-mentioned structure, the infrared detecting section 2 and the infrared transmitting filter 3 are provided on one side of the semiconductor substrate 1.
It is configured as an integrated semiconductor chip, etc., and the size thereof can be made extremely small. Then, in use thereof, of the light rays incident from above the semiconductor substrate 1, only infrared rays can be transmitted through the infrared transmission filter 3 to be absorbed by the infrared detection section 2, and the thin film resistor 2b of the infrared detection section 2 can be absorbed. Change the resistance value to electrode 2
It can be detected through the signal processing circuit 6 connected to a and 2a. The infrared transmission filter 3 is the infrared detection unit 2
Since it is provided on top of the other, the viewing angle is wide. Thus, in the above-mentioned configuration, heat conduction occurs from the infrared detecting sections 2 superposed on each other to the infrared transmitting filter 3, but from the infrared detecting section 2 causing a much larger heat dissipation to the semiconductor substrate 1. Since the heat conduction of the heat is suppressed by the heat separation space portion 5, the heat conduction amount from the infrared detection portion 2 to the infrared transmission filter 3 becomes extremely small in total, and the infrared detection by the infrared absorption is performed. It does not cause a great obstacle to the temperature change of the part 2. Further, since the heat detecting space 5 thermally separates the infrared detecting section 2 and the infrared transmitting filter 3 from the semiconductor substrate 1, the apparent heat capacity of the entire infrared detecting section 2 is reduced. Therefore, in the end, the infrared detecting section 2 carries out a quick temperature corresponding to the infrared absorption, so that the response speed of infrared detection can be improved and the response performance can be made very excellent. Since the semiconductor substrate 1 is provided with the signal processing circuit 6, the signal processing circuit 6 is integrated in one chip together with the infrared detecting section 2 and the like, which is convenient for handling and a series of the infrared detecting section 2 and the like. In the manufacturing process, the signal processing circuit 6 can be manufactured efficiently. Moreover, since the wiring distance between the infrared detecting section 2 and the signal processing circuit 6 can be shortened, signal attenuation and noise intrusion can be reduced, and the infrared detecting performance can be further improved.

【0010】図4は本発明の他の実施例に係る赤外線検
出素子Aaを示す斜視図、図5はその要部断面図である
(但し図1乃至図3で示した実施例と同一部位は同一符
号で示している)。当該赤外線検出素子Aaは、半導体
基板1表面の絶縁膜4の所定位置にスリット(孔)7を
複数箇所設けて、当該スリット7からエッチング液を注
入することにより、半導体基板1の表面側の一部を除去
して熱分離空間部5aを形成したものである。また、か
かるスリット7は、例えば図6に示すように、その平面
形状をカンチレバーの如き形状のものに形成してもよ
い。本発明では、このようにスリット7を利用して熱分
離空間部5aを形成した場合であっても、赤外線検出部
2と半導体基板1との相互間の熱伝導が抑制でき、上記
実施例と同様に赤外線検出の応答性を良好にできる。ま
た、赤外線検出素子Aaでは、上下二枚の電極2a、2
aで薄膜抵抗体2bを挟み込む構造としているが、かか
る電極構造であっても構わない。
FIG. 4 is a perspective view showing an infrared detecting element Aa according to another embodiment of the present invention, and FIG. 5 is a cross-sectional view of a main part thereof (however, the same parts as those in the embodiments shown in FIGS. The same reference numerals are used). The infrared detection element Aa is provided with a plurality of slits (holes) 7 at predetermined positions of the insulating film 4 on the surface of the semiconductor substrate 1 and injects an etching solution from the slits 7, thereby making it possible to remove one side of the surface of the semiconductor substrate 1. The portion is removed to form the heat separation space portion 5a. Further, the slit 7 may be formed such that its planar shape is like a cantilever, as shown in FIG. 6, for example. In the present invention, even when the thermal separation space 5a is formed by using the slit 7 as described above, the heat conduction between the infrared detection unit 2 and the semiconductor substrate 1 can be suppressed, and Similarly, the response of infrared detection can be improved. In the infrared detection element Aa, the upper and lower electrodes 2a, 2
Although the thin film resistor 2b is sandwiched by a, the electrode structure may be used.

【0011】[0011]

【発明の効果】以上のように、本発明に係る赤外線検出
素子によれば、赤外線透過フィルタを基板表面に設けた
赤外線検出部上に形成しているために、これら各部を従
来のように多数の部品を用いて煩雑な構造に組み立てる
必要がなく、簡易な製造手段で全体を小型に製作でき又
赤外線検出の視野角も広く確保できる効果が得られる一
方で、熱分離空間部の形成により赤外線検出部から基板
への熱伝導を抑制し、又赤外線検出部における見かけ上
の熱容量を小さくでき、赤外線検出の応答性能をも向上
させ得るという格別な効果が得られる。
As described above, according to the infrared detecting element according to the present invention, since the infrared transmitting filter is formed on the infrared detecting portion provided on the surface of the substrate, a large number of these portions are provided as in the conventional case. There is no need to assemble in a complicated structure using the parts of the above, the whole can be made small by simple manufacturing means, and a wide viewing angle of infrared detection can be secured, while the formation of the heat separation space part makes infrared It is possible to suppress heat conduction from the detection section to the substrate, reduce the apparent heat capacity of the infrared detection section, and improve the response performance of infrared detection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る赤外線検出素子の一実施例を示す
斜視図。
FIG. 1 is a perspective view showing an embodiment of an infrared detection element according to the present invention.

【図2】本発明に係る赤外線検出素子の電極の構成の一
例を示す平面図。
FIG. 2 is a plan view showing an example of the configuration of electrodes of the infrared detection element according to the present invention.

【図3】本発明に係る赤外線検出素子の製造工程の一例
を示す断面図。
FIG. 3 is a cross-sectional view showing an example of a manufacturing process of the infrared detection element according to the present invention.

【図4】本発明に係る赤外線検出素子の他の実施例を示
す斜視図。
FIG. 4 is a perspective view showing another embodiment of the infrared detection element according to the present invention.

【図5】本発明に係る赤外線検出素子の他の実施例の要
部断面図。
FIG. 5 is a cross-sectional view of a main part of another embodiment of the infrared detection element according to the present invention.

【図6】熱分離空間部を形成するためのスリットの他の
形態の例を示す要部平面図。
FIG. 6 is a plan view of a main portion showing another example of a slit for forming a heat separation space.

【図7】従来の赤外線検出装置の一例を示す要部断面
図。
FIG. 7 is a cross-sectional view of essential parts showing an example of a conventional infrared detection device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 赤外線検出部 2a 電極 2b 薄膜抵抗体 2c 赤外線吸収膜 3 赤外線透過フィルタ 4 絶縁膜 5,5a 熱分離空間部 6 信号処理部 7 スリット A,Aa 赤外線検出素子 1 Semiconductor Substrate 2 Infrared Detector 2a Electrode 2b Thin Film Resistor 2c Infrared Absorbing Film 3 Infrared Transmission Filter 4 Insulating Film 5, 5a Thermal Separation Space 6 Signal Processor 7 Slit A, Aa Infrared Detector

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年3月3日[Submission date] March 3, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来のものでは、赤外線透過フィルタ3eをキャップ22
の開口部23の形状に合わせた微細な形状に切り出し、
これをキャップ22の開口部23へ接着剤で貼付ける必
要がある等、その組立工程が多くなり、その製造コスト
が高くなる欠点があった。また、上記従来のものでは、
各部品の組立作業性等の制約から、赤外線透過フィルタ
3eと赤外線検出チップ21とをある程度離しておく必
要があるために、これらの全体構造が嵩張り、また視野
角θが狭くなるという欠点もあった。尚、これらの欠点
を解消する手段としては、赤外線検出チップ21の表面
に赤外線透過フィルタ3eを直接重ね合わせることも考
えられる。ところが、上記従来の構造において、これら
両者を単に重ね合わせただけでは、赤外線検出チップ2
1からステム20側への熱伝導以外として、赤外線検出
チップ21から赤外線透過フィルタ3eへの熱伝導も加
わるために、赤外線吸収に応じた赤外線検出チップ21
の温度変化が鈍くなって、赤外線検出の感度が低下す
る。また、赤外線検出部位全体の見かけ上の熱容量が増
加することにも原因して応答性が一層悪化するという難
点がある。それ故、本発明は、簡易に且つ小型に製造で
きて、視野角を広く確保でき、しかも赤外線検出の応答
性に優れた赤外線検出素子を提供することを、その目的
とする。
However, in the above-mentioned conventional one, the infrared transmission filter 3e is attached to the cap 22.
Cut into a fine shape that matches the shape of the opening 23 of
It is necessary to attach this to the opening 23 of the cap 22 with an adhesive, and the number of assembling steps increases, resulting in a high manufacturing cost. Further, in the above conventional one,
Due to restrictions on the assembly workability of each component and the like, the infrared transmission filter 3e and the infrared detection chip 21 need to be separated from each other to some extent. there were. As a means for solving these drawbacks, it is conceivable to directly superimpose the infrared transmission filter 3e on the surface of the infrared detection chip 21. However, in the above-mentioned conventional structure, the infrared detection chip 2 can be obtained by simply superposing them.
As other heat conduction from 1 to stem 20 side, in order from the infrared detecting chip 21 applied the thermal conduction to the infrared transmission filter 3e, the infrared detection chip 21 according to the infrared absorption
The temperature change becomes slower, and the infrared detection sensitivity decreases. In addition, there is a problem that the responsiveness is further deteriorated due to the increase in the apparent heat capacity of the entire infrared detection site. Therefore, it is an object of the present invention to provide an infrared detecting element which can be manufactured easily and compactly, can secure a wide viewing angle, and is excellent in responsiveness of infrared detection.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】上記構成の赤外線検出素子Aは、半導体基
板1の片面側に赤外線検出部2や赤外線透過フィルタ3
等が集積された半導体チップとして構成されたものであ
り、そのサイズを非常に小さくできるものである。次い
で、その使用に際しては、半導体基板1の上方から入射
する光線のうち赤外線のみを赤外線透過フィルタ3に透
過させて赤外線検出部2に吸収させることができ、赤外
線検出部2の薄膜抵抗体2bの抵抗値の変化を電極2
a、2aに接続された信号処理回路6を通じて検出でき
ることとなる。赤外線透過フィルタ3が赤外線検出部2
上に重ねて設けられているから、その視野角も広くな
る。而して、上記構成では、相互に重ね合わされた赤外
線検出部2から赤外線透過フィルタ3への熱伝導が発生
するものの、それよりも多大な熱発散を生じさせる赤外
線検出部2から半導体基板1への熱伝導が熱分離空間部
5によって抑制された状態にあるため、トータル的にみ
れば、赤外線検出部2から赤外線透過フィルタ3への熱
伝導量は極僅かなものとなり、赤外線吸収による赤外線
検出部2の温度変化に大きな支障を生じさせない。ま
た、熱分離空間部5によって赤外線検出部2や赤外線透
過フィルタ3の部位が半導体基板1と熱分離されている
ことにより、これら赤外線検出部2の部位全体における
見かけ上の熱容量は縮小される。従って、結局は、赤外
線検出部2が赤外線吸収に対応した迅速な温度上昇を行
うこととなって、赤外線検出の応答速度を良好にでき、
その応答性能を非常に優れたものにできる。尚、半導体
基板1に信号処理回路6を設けたことにより、当該信号
処理回路6が赤外線検出部2等とともにワンチップに集
積され、その取扱いに利便であり、また赤外線検出部2
等の一連の製造過程において信号処理回路6の製造が能
率良く行える。しかも、赤外線検出部2と信号処理回路
6との配線距離を短くできるために、信号の減衰や雑音
の侵入を少なくでき、赤外線検出性能を一層向上させる
ことが可能である。
In the infrared detecting element A having the above-mentioned structure, the infrared detecting section 2 and the infrared transmitting filter 3 are provided on one side of the semiconductor substrate 1.
It is configured as an integrated semiconductor chip, etc., and the size thereof can be made extremely small. Then, in use thereof, of the light rays incident from above the semiconductor substrate 1, only infrared rays can be transmitted through the infrared transmission filter 3 to be absorbed by the infrared detection section 2, and the thin film resistor 2b of the infrared detection section 2 can be absorbed. Change the resistance value to electrode 2
It can be detected through the signal processing circuit 6 connected to a and 2a. The infrared transmission filter 3 is the infrared detection unit 2
Since it is provided on top of the other, the viewing angle is wide. Thus, in the above-mentioned configuration, heat conduction occurs from the infrared detecting sections 2 superposed on each other to the infrared transmitting filter 3, but from the infrared detecting section 2 causing a much larger heat dissipation to the semiconductor substrate 1. Since the heat conduction of the above is suppressed by the heat separation space portion 5, the heat conduction amount from the infrared detection portion 2 to the infrared transmission filter 3 becomes extremely small in total, and the infrared detection by the infrared absorption is performed. It does not cause a great obstacle to the temperature change of the part 2. In addition, since the thermal detection space 5 thermally separates the infrared detection section 2 and the infrared transmission filter 3 from the semiconductor substrate 1, the apparent thermal capacity of the entire infrared detection section 2 is reduced. Therefore, in the end, the infrared detecting section 2 quickly raises the temperature corresponding to the infrared absorption, and the infrared detecting response speed can be improved,
The response performance can be made extremely excellent. By providing the signal processing circuit 6 on the semiconductor substrate 1, the signal processing circuit 6 is integrated together with the infrared detecting section 2 and the like in one chip, which is convenient for handling, and the infrared detecting section 2 is also provided.
The signal processing circuit 6 can be efficiently manufactured in a series of manufacturing processes such as. Moreover, since the wiring distance between the infrared detecting section 2 and the signal processing circuit 6 can be shortened, signal attenuation and noise intrusion can be reduced, and the infrared detecting performance can be further improved.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図7】 [Figure 7]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板の片面上に赤外線検出部と赤外線透過
フィルタとを上下に重合して形成し、前記赤外線検出部
の下方には、赤外線検出部と基板との相互間の熱伝導を
抑制する熱分離空間部を形成していることを特徴とする
赤外線検出素子。
1. An infrared detecting section and an infrared transmitting filter are formed on one surface of a substrate by stacking the infrared detecting section and the infrared transmitting filter vertically, and heat conduction between the infrared detecting section and the substrate is suppressed below the infrared detecting section. An infrared detecting element, characterized in that a heat separation space part is formed.
JP30987391A 1991-10-28 1991-10-28 Infrared ray detecting element Withdrawn JPH085452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30987391A JPH085452A (en) 1991-10-28 1991-10-28 Infrared ray detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30987391A JPH085452A (en) 1991-10-28 1991-10-28 Infrared ray detecting element

Publications (1)

Publication Number Publication Date
JPH085452A true JPH085452A (en) 1996-01-12

Family

ID=17998331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30987391A Withdrawn JPH085452A (en) 1991-10-28 1991-10-28 Infrared ray detecting element

Country Status (1)

Country Link
JP (1) JPH085452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184151A (en) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd Infrared sensor
JP2007294764A (en) * 2006-04-26 2007-11-08 Murata Mfg Co Ltd Electronic component and its manufacturing method
JP2013525795A (en) * 2010-04-28 2013-06-20 エル−3 コミュニケーションズ コーポレーション Optically transitioned thermal detector structure
JP2022551043A (en) * 2020-09-02 2022-12-07 テーデーカー エレクトロニクス アーゲー Sensor element and method for manufacturing sensor element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184151A (en) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd Infrared sensor
JP4622511B2 (en) * 2004-12-28 2011-02-02 日産自動車株式会社 Infrared sensor
JP2007294764A (en) * 2006-04-26 2007-11-08 Murata Mfg Co Ltd Electronic component and its manufacturing method
JP2013525795A (en) * 2010-04-28 2013-06-20 エル−3 コミュニケーションズ コーポレーション Optically transitioned thermal detector structure
US9000373B2 (en) 2010-04-28 2015-04-07 L-3 Communications Corporation Optically transitioning thermal detector structures
JP2022551043A (en) * 2020-09-02 2022-12-07 テーデーカー エレクトロニクス アーゲー Sensor element and method for manufacturing sensor element

Similar Documents

Publication Publication Date Title
JP3514681B2 (en) Infrared detector
US5798684A (en) Thin-film temperature sensor
KR101182406B1 (en) The Infrared detection sensor and manufacturing method thereof
JP4697611B2 (en) Thermal infrared solid-state imaging device and manufacturing method thereof
JPH04158583A (en) Infrared-ray detecting element
JPH07209089A (en) Infrared ray sensor
KR100853202B1 (en) Bolometer and method of manufacturing the same
JPS6212454B2 (en)
JPH11258038A (en) Infrared ray sensor
JPH085452A (en) Infrared ray detecting element
JP2001153720A (en) Heat type infrared detector
KR100971962B1 (en) Non-contact ir temperature sensor module and method for manufacturing the same
JPH05164605A (en) Infrared-ray sensor
US6191420B1 (en) Infrared sensor
JPH05118909A (en) Infrared ray detecting element
WO2010090188A1 (en) Radiation sensor and method for manufacturing same
JP3274881B2 (en) Infrared sensor and method of manufacturing the same
JP2000111396A (en) Infrared detecting element and its manufacture
JPH04158586A (en) Infrared-ray detecting element
JPH05118910A (en) Infrared ray detecting element
JPH04158584A (en) Infrared-ray detecting element
JPH04215022A (en) Infrared ray detecting element
JPH08159866A (en) Infrared-ray sensor
JPH03287022A (en) Infrared detecting element, infrared detector and production of infrared detecting element
JP2002071451A (en) Thermal infrared detecting element and infrared image pickup device using it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107