JPH04215005A - Image processing method for scanning tunneling microscope - Google Patents

Image processing method for scanning tunneling microscope

Info

Publication number
JPH04215005A
JPH04215005A JP2401273A JP40127390A JPH04215005A JP H04215005 A JPH04215005 A JP H04215005A JP 2401273 A JP2401273 A JP 2401273A JP 40127390 A JP40127390 A JP 40127390A JP H04215005 A JPH04215005 A JP H04215005A
Authority
JP
Japan
Prior art keywords
sample
probe
image processing
points
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2401273A
Other languages
Japanese (ja)
Other versions
JP3121619B2 (en
Inventor
Yoshio Watanabe
渡 辺  由 雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP02401273A priority Critical patent/JP3121619B2/en
Publication of JPH04215005A publication Critical patent/JPH04215005A/en
Application granted granted Critical
Publication of JP3121619B2 publication Critical patent/JP3121619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a scanning tunneling microscope image processing method enabling the accurate image representation of a sample having step differences on its surface. CONSTITUTION:At the time of scanning along the surface of a sample by a probe while controlling the distance between the sample and the probe to make a tunnel current flowing between the sample and the probe always constant so as to perform image processing to visualize the sample surface state on the basis of the obtained image data, the coordinates of at least three points out of the image data of a plane part formed of the same atom layer are inputted to correct the measured data of each coordinate with the plane formed by three points as a reference face.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、観察すべき試料の表面
とその表面に相対向する探針との間に流れるトンネル電
流を測定することにより、試料表面の状態を測定する走
査型トンネル顕微鏡の画像処理方法に関するものである
[Industrial Application Field] The present invention is a scanning tunneling microscope that measures the state of a sample surface by measuring the tunneling current flowing between the surface of the sample to be observed and a probe facing the surface. The present invention relates to an image processing method.

【0002】0002

【従来の技術】走査型トンネル顕微鏡(以下、STMと
略称する。)は、試料と探針間に電圧を印加しながら探
針を試料表面に接近させ、両者の間に流れるトンネル電
流を測定することにより試料表面の状態を測定するもの
である。両者間に流れるトンネル電流の値は、両者間の
距離に対して指数関数的に大きく依存する特徴をもって
いるので、この特徴を利用して、試料面内で原子サイズ
オーダの非常に微細な電子状態を計測し、さらにこれを
視覚的に見えるように画像処理する。
[Prior Art] A scanning tunneling microscope (hereinafter abbreviated as STM) applies a voltage between the sample and the probe, brings the probe close to the sample surface, and measures the tunneling current flowing between the two. This is used to measure the condition of the sample surface. The value of the tunneling current flowing between the two has a characteristic that it greatly depends on the distance between the two in an exponential manner, so this characteristic can be used to investigate very fine electronic states on the atomic size order within the sample plane. is measured and then image processed to make it visible.

【0003】この種の技術は、1960年代にR.Yo
ung が発明した原理(Rev.Sic.Instr
um 37(1966)pp275 )に基づいており
、その名をトポグラファイナー(topografin
er)と称した。この装置の構成要素は、基本的には今
日のSTMと同様であるが、試料の表面形状の計測手段
として、電解放射による電流を用いた点において異なる
。一方、G.BinningとH.Rohereは、こ
の計測手段にトンネル電流を用いることにより、試料の
表面形状の測定を行なった。その内容は、G.Binn
ing らによるPhys.Rev.Lett.49(
1982)p57 およびU.S Patent 43
43993に記載されている。以下、このようなSTM
について、第4図に示す概略構成図を参照しながら説明
する。
This type of technology was developed in the 1960s by R. Yo
The principle invented by ung (Rev. Sic. Instr.
um 37 (1966) pp275), and its name is topografiner.
er). The components of this device are basically the same as those of today's STM, but differ in that electric current generated by electrolytic radiation is used as a means of measuring the surface shape of the sample. On the other hand, G. Binning and H. Rohere measured the surface shape of a sample by using a tunnel current as the measuring means. The contents are G. Binn
Phys. ing et al. Rev. Lett. 49(
1982) p57 and U. S Patent 43
43993. Below, such STM
will be explained with reference to the schematic configuration diagram shown in FIG.

【0004】第4図において、真空容器1内には、基台
2上に架台3が立設され、架台3の水平部の先端部下側
に試料台4が設けられ、この試料台4に試料5が支持さ
れている。水平方向に互いに直角に配置されたアクチュ
エータである圧電素子6,7と垂直方向に配されたアク
チュエータである圧電素子8とは、各一端で互いに直角
に交差するように接合され、圧電素子6,7の各他端は
、基台2上に立設された架台9,10に接合され、圧電
素子8の他端は基台2に接合されている。
In FIG. 4, a pedestal 3 is set up on a base 2 in a vacuum container 1, and a sample stage 4 is provided below the tip of the horizontal part of the pedestal 3. 5 is supported. The piezoelectric elements 6 and 7, which are actuators arranged at right angles to each other in the horizontal direction, and the piezoelectric element 8, which is an actuator arranged in the vertical direction, are joined at one end of each so as to cross each other at right angles. The other ends of the piezoelectric element 7 are joined to frames 9 and 10 erected on the base 2, and the other end of the piezoelectric element 8 is joined to the base 2.

【0005】各圧電素子6,7,8の交差部上には、試
料5に対向して探針11が支持され、各圧電素子6,7
の駆動により、探針11が試料5の表面に対し水平面内
で直交するX,Yの2方向に移動(ラスター走査)され
、圧電素子8の駆動により、探針11が試料5の表面に
対し垂直方向であるZ方向に移動される。すなわち、探
針11がX,Y,Zの3次元に移動される。
[0005] A probe 11 is supported on the intersection of each piezoelectric element 6 , 7 , 8 so as to face the sample 5 .
By driving the probe 11, the probe 11 is moved in two directions (raster scanning) perpendicular to the surface of the sample 5 in the horizontal plane (raster scanning), and by driving the piezoelectric element 8, the probe 11 is moved relative to the surface of the sample 5. It is moved in the Z direction, which is the vertical direction. That is, the probe 11 is moved in three dimensions of X, Y, and Z.

【0006】各圧電素子6,7,8は、駆動回路12か
ら電圧を印加されて駆動される。また、探針11と試料
5との間にも電圧が印加され、そこに流れるトンネル電
流が検出手段13により検出される。制御回路14は、
探針11と試料5との間に流れるトンネル電流の値が一
定となるように、検出手段13の検出結果をもとに圧電
素子8に印加する電圧を可変してその駆動を制御する。
[0006] Each piezoelectric element 6, 7, 8 is driven by applying a voltage from a drive circuit 12. Further, a voltage is also applied between the probe 11 and the sample 5, and the tunnel current flowing therein is detected by the detection means 13. The control circuit 14 is
The drive of the piezoelectric element 8 is controlled by varying the voltage applied to the piezoelectric element 8 based on the detection result of the detection means 13 so that the value of the tunnel current flowing between the probe 11 and the sample 5 is constant.

【0007】STMでは、試料5と探針11の間に流れ
るトンネル電流の値を直接画像信号とする場合と、トン
ネル電流が常に一定になるようにアクチュエータに印加
された制御信号を画像信号とする場合の2つの方法があ
る。前者は試料5と探針11の間隔がオングストローム
オーダと非常に近接しているため、探針11を2次元に
走査するときに試料5と探針11がぶつかる可能性が高
く、走査範囲はきわめて狭い場合に限られている。それ
に対して、本発明が適用される後者の場合は、試料5と
探針11の間隔が常に一定に保たれるので、探針11が
試料5にぶつかることがなく、広い範囲の画像を得よう
とするSTMに広く用いられてい  る。
In STM, the value of the tunnel current flowing between the sample 5 and the probe 11 is directly used as an image signal, and the image signal is a control signal applied to an actuator so that the tunnel current is always constant. There are two ways to do this. In the former case, the distance between the sample 5 and the probe 11 is very close, on the order of angstroms, so there is a high possibility that the sample 5 and the probe 11 will collide when scanning the probe 11 two-dimensionally, and the scanning range is extremely narrow. Limited to narrow cases. On the other hand, in the latter case to which the present invention is applied, the distance between the sample 5 and the probe 11 is always kept constant, so the probe 11 does not collide with the sample 5, and a wide range of images can be obtained. It is widely used in STM that aims to

【0008】[0008]

【発明が解決しようとする課題】試料表面とXY方向の
2次元に走査するアクチュエータの移動する平面は、必
ずしもオングストロームオーダで完全な平行状態になっ
ているのではなく、少なからず非平行な状態にセットさ
れる。このことは、例えば探針をX方向に走査するとき
に、始点と終点とでは試料と探針の距離が異なることに
なり、トンネル電流に対して非常に大きな影響を与える
。STMでは、試料表面の電子密度の変化をトンネル電
流の変化として観測しようとしているにも拘らず、始点
と終点とで試料と探針の距離が異なることは、信号成分
とは関係のない一定の傾斜を持つバイアスが加わること
になる。従って、STM画像に変換するためには、何等
かの方法でこのバックグランドを差し引く手段が必要と
なる。
[Problem to be solved by the invention] The surface of the sample and the plane in which the actuator moves in two dimensions in the X and Y directions are not necessarily in a completely parallel state on the order of angstroms, but are often in a non-parallel state. Set. This means that, for example, when scanning the probe in the X direction, the distance between the sample and the probe differs between the starting point and the ending point, which has a very large effect on the tunneling current. Although STM attempts to observe changes in electron density on the sample surface as changes in tunneling current, the difference in the distance between the sample and the tip at the start and end points is due to a constant change unrelated to the signal component. A bias with a slope will be added. Therefore, in order to convert into an STM image, a means for subtracting this background is required in some way.

【0009】このような手段としては、例えば、走査す
る始点と終点付近を直線で結び、その直線の値を源信号
から差し引く方法、またはバイアス成分を2次元画像に
拡大して、平面や多次元の曲面として扱う方法がある。
Examples of such methods include, for example, connecting the scanning start point and the vicinity of the end point with a straight line and subtracting the value of the straight line from the source signal, or expanding the bias component into a two-dimensional image to create a flat or multidimensional image. There is a way to treat it as a curved surface.

【0010】しかしながら、ここで問題となるのは、原
子オーダの分解能で単結晶表面を観測するときに、表面
の原子層がステップと呼ばれる段々畑のような表面構造
をもつ場合である。このようなステップ上の段差のある
試料を従来の手法でバックグランドを差し引くと、試料
表面とバックグランドの面とは完全な平行でないために
、ステップ端のコントラストが強調されたような不自然
な画像になってしまい、正確なイメージが得られないと
いう問題があった。
However, a problem arises when observing a single crystal surface with a resolution on the atomic order when the atomic layer on the surface has a terraced surface structure called a step. When the background is subtracted using the conventional method for a sample with a step difference like this, the sample surface and the background surface are not perfectly parallel, resulting in an unnatural effect where the contrast at the edge of the step is emphasized. There was a problem that an accurate image could not be obtained.

【0011】本発明は、このような従来の問題を解決す
るものであり、試料表面に階段状の段差のある試料を正
確に画像表現することのできるSTMにおける画像処理
方法を提供することを目的とする。
[0011] The present invention is intended to solve such conventional problems, and an object thereof is to provide an image processing method in STM that can accurately represent an image of a sample having steps on the sample surface. shall be.

【0012】0012

【課題を解決するための手段】本発明は、上記目的を達
成するために、はじめに比較的簡単な方法でバックグラ
ンドを差し引いた仮の画像を作成し、次にこの画像を見
ながらマウス等の座標入力装置を用いて、ステップ部分
を避けた同一原子層からなる平面部分の任意の3ヵ所を
選び、その3点を通る平面を基準面として計算し、測定
データからバックグランドを差し引くようにしたもので
ある。
[Means for Solving the Problems] In order to achieve the above object, the present invention first creates a temporary image from which the background is subtracted using a relatively simple method, and then uses a mouse or the like while viewing this image. Using a coordinate input device, we selected three arbitrary points on a plane part made of the same atomic layer, avoiding step parts, calculated the plane passing through those three points as a reference plane, and subtracted the background from the measurement data. It is something.

【0013】[0013]

【作用】STMは、試料と探針に電圧を印加し、試料と
探針をきわめて接近させたときに流れるトンネル電流を
凹凸のイメージに表現するものであり、測定方法は探針
に流れるトンネル電流が常に一定になるように、試料と
探針の距離をZ方向のアクチュエータで制御しながら探
針を試料表面に沿って走査する。走査方法は出発点から
X方向に一定距離だけ移動させた後、もとの位置に戻る
。次にY方向にわずかの距離だけ移動させた後、同様に
X方向に一定距離だけ移動し出発点に戻る。このような
動作を繰り返すことにより、試料表面のデータを得る。
[Operation] STM is a method to express the tunnel current that flows when a voltage is applied to the sample and the probe and the sample and the probe are brought very close to each other as an uneven image.The measurement method is to measure the tunnel current that flows through the probe. The probe is scanned along the sample surface while controlling the distance between the sample and the probe using an actuator in the Z direction so that the distance is always constant. The scanning method is to move a certain distance from the starting point in the X direction and then return to the original position. Next, after moving a small distance in the Y direction, it similarly moves a certain distance in the X direction and returns to the starting point. By repeating such operations, data on the sample surface is obtained.

【0014】一般にXY方向のアクチュエータが移動し
てなす平面と試料平面とは平行でなくわずかに傾いてお
り、探針の出発点と終点の間で両者間の距離が次第に異
なってくる。このためZ方向のアクチュエータには、本
来試料表面の電子状態に起因する信号の他に、上記の傾
きに起因した一定の傾きを持つバイアスが加わることに
なる。このバイアスは画像表現するとき、バックグラン
ドとして差し引く必要がある。
Generally, the plane formed by the movement of the actuator in the XY directions and the sample plane are not parallel but slightly inclined, and the distance between them gradually differs between the starting and ending points of the probe. Therefore, in addition to the signal originally caused by the electronic state of the sample surface, a bias having a constant slope caused by the above-mentioned slope is applied to the Z-direction actuator. This bias needs to be subtracted as a background when representing an image.

【0015】本発明においては、従来と同様の簡単な方
法で仮のSTM画像を作成し、次いでこの画像を見なが
ら同一原子層の部分を捜し、マウス等の座標入力装置で
最低3点の座標を入力し、同一原子層がなす平面を求め
る。得られた平面は同一原子層からなる平面であると同
時に試料表面に平行な面でもある。したがって、この平
面を基準面として計算し、これを全ての測定データから
差し引けば試料表面と平行に探針を走査したと同様なデ
ータを導くことができる。このような操作によりステッ
プのある試料でも忠実なSTMイメージを得ることがで
きる。
In the present invention, a temporary STM image is created using a simple method similar to the conventional method, and then a portion of the same atomic layer is searched for while looking at this image, and the coordinates of at least three points are entered using a coordinate input device such as a mouse. Input , and find the plane formed by the same atomic layer. The obtained plane is a plane composed of the same atomic layer, and at the same time is a plane parallel to the sample surface. Therefore, by calculating this plane as a reference plane and subtracting it from all measurement data, it is possible to derive data similar to when the probe was scanned parallel to the sample surface. Through such operations, faithful STM images can be obtained even for samples with steps.

【0016】[0016]

【実施例】以下、図面を参照しながら本発明の一実施例
について説明する。まず初めに、第3図にシリコン(1
11)面の正常な表面をSTMで観察した測定データの
一例を示す。これはX方向に走査したときのZ方向のア
クチュエータに加えられた電圧変化を示す。この電圧は
トンネル電流が常に一定値になるように、制御された信
号電圧である。図に示された小さな脈流は表面原子の電
子状態の変化を示し、途中で階段状に急激に上昇してい
るのは原子層が層ごとずれたいわゆるステップと呼ばれ
るもので、この例では2つのステップが見られる。全体
的に右上がりの傾斜を持つのは試料と探針が非平行のた
め、走査するに従って距離が徐々に変化することにより
付加された電圧である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First of all, Figure 3 shows silicon (1
11) An example of measurement data obtained by observing a normal surface using STM is shown. This shows the voltage change applied to the actuator in the Z direction when scanning in the X direction. This voltage is a signal voltage that is controlled so that the tunnel current always remains at a constant value. The small pulsating current shown in the figure indicates a change in the electronic state of the surface atoms, and the sudden rise in a stepwise manner in the middle is a so-called step where the atomic layers are shifted layer by layer. You can see two steps. The reason why the overall slope is upward to the right is because the sample and the probe are not parallel, so the voltage is applied as the distance gradually changes as the probe scans.

【0017】次に、このような測定データをもとに正し
いSTM画像を得るための画像処理方法について説明す
る。まず初めに第2図(A)に示すように始点と終点の
測定データを直線で結びバックグランドレベルを決定し
、次いで第2図(B)に示すように従来と同様な方法で
測定データからバックグランドレベルを差し引く。従来
は、このような操作を全ての走査線について行なった後
、得られたデータ郡の中から最低レベルと最高レベルを
求め、最低と最高の間を256に等分し、256階調を
もつ画像に変換していた。しかしながら、このような従
来の方法では同一の原子層でありながら高さが異なった
イメージの画像が得られてしまう。
Next, an image processing method for obtaining a correct STM image based on such measurement data will be explained. First, as shown in Figure 2 (A), the background level is determined by connecting the measurement data at the start point and the end point with a straight line, and then, as shown in Figure 2 (B), the background level is determined from the measurement data using the same method as before. Subtract background level. Conventionally, after performing this operation on all scanning lines, the lowest level and highest level are found from the obtained data group, and the area between the lowest and highest level is divided into 256 equal parts, which has 256 gradations. It was converted to an image. However, with such conventional methods, images of the same atomic layer but with different heights are obtained.

【0018】そこで本実施例では、上記のようにして全
ての走査線について得られた測定データからバックグラ
ンドを差し引いて第3図に示すような画像データを得た
後、この画像データを見ながら同一原子層部分からなる
3点P1,P2,P3を座標入力装置であるマウスを用
いて入力する。この時入力する点は同一原子層内ででき
るだけ離れた3点を選ぶ方がより誤差の少ない基準面を
求めることができる。
Therefore, in this embodiment, after subtracting the background from the measurement data obtained for all the scanning lines as described above to obtain image data as shown in FIG. 3, while looking at this image data, Three points P1, P2, and P3 consisting of the same atomic layer portion are input using a mouse, which is a coordinate input device. At this time, it is better to select three input points as far apart as possible within the same atomic layer to obtain a reference plane with fewer errors.

【0019】いま、理解し易いように1本の走査線につ
いて説明すると、第1図(A)において、マウスで指定
した点をx1,x2とすると、この2点を結ぶ直線はバ
ックグランドを表わす傾斜と同じことがわかる。次いで
測定データからこのバックグランドを表わす傾斜部分を
差し引くと、第1図(B)に示すように、得られたデー
タはきれいな階段状を示す。したがって、3次元座標で
は測定点は3点になり、これら3点を通る平面がバック
グランドの基準面に対応することがわかる。
Now, to make it easier to understand, we will explain one scanning line. In Fig. 1 (A), if the points specified with the mouse are x1 and x2, the straight line connecting these two points represents the background. The same thing can be seen with the slope. Next, when the slope portion representing this background is subtracted from the measured data, the obtained data exhibits a clear step-like shape, as shown in FIG. 1(B). Therefore, it can be seen that there are three measurement points in three-dimensional coordinates, and a plane passing through these three points corresponds to the background reference plane.

【0020】このようにして、バックグランドを差し引
いたデータをもとに上記したと同様な方法で濃淡画像を
作成することにより、試料の正しい表面状態を観測する
ことができる。
[0020] In this way, by creating a grayscale image in the same manner as described above based on the data from which the background has been subtracted, it is possible to observe the correct surface condition of the sample.

【0021】[0021]

【発明の効果】以上のように、本発明は、試料表面が同
一原子層のみで構成されてなく、階段状に原子層がずれ
ているいわゆるステップの存在する試料においても、仮
の画像をもとに座標入力装置であるマウス等を用いて、
同一原子層からなる平面上の3点の座標を入力し、これ
ら3点を通る基準面を求め、試料平面の傾きからくるバ
ックグランドを補正することにより、正しい画像を得る
ことができる。このようにして得られたSTM画像は、
画像を歪めることなく、STM画像の品質とデータの信
頼性を高めるので、本発明の効果はきわめて大きい。
As described above, the present invention can create a temporary image even in a sample where the sample surface is not composed of only the same atomic layers but has so-called steps where the atomic layers are shifted in a stepwise manner. Using a coordinate input device such as a mouse,
A correct image can be obtained by inputting the coordinates of three points on a plane made of the same atomic layer, finding a reference plane passing through these three points, and correcting the background caused by the inclination of the sample plane. The STM image obtained in this way is
The effects of the present invention are extremely significant because the quality of STM images and the reliability of data are improved without distorting the images.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】 (A)は本発明の一実施例における走査トンネル顕微鏡
の測定データとバックグランドの傾斜を決定する方法を
示すグラフ (B)は測定データからバックグランドを差し引いた後
のデータを示すグラフ
[Figure 1] (A) is a graph showing measurement data of a scanning tunneling microscope in one embodiment of the present invention and a method for determining the slope of the background. (B) is a graph showing data after subtracting the background from the measurement data. graph

【図2】 (A)は図1の前の工程における測定データとバックグ
ランドの傾斜を決定する方法を示すグラフ(B)は図1
の前の工程における測定データからバックグランドを差
し引いた後のデータを示すグラフ
[Figure 2] (A) is a graph showing the measurement data in the previous step in Figure 1 and the method for determining the background slope (B) is Figure 1
A graph showing the data after subtracting the background from the measurement data in the previous process.

【図3】同実施例にお
ける全ての走査線について得られた画像データを示すグ
ラフ
[Fig. 3] Graph showing image data obtained for all scanning lines in the same example.

【図4】従来の走査型トンネル顕微鏡を示す概略構成図
[Figure 4] Schematic configuration diagram showing a conventional scanning tunneling microscope

【符号の説明】[Explanation of symbols]

1  真空容器 2  基台 3  架台 4  試料台 5  試料 6,7,8  圧電素子 11  探針 12  駆動回路 13  検出手段 14  制御回路 1 Vacuum container 2 Base 3 Mount 4 Sample stage 5 Sample 6,7,8 Piezoelectric element 11 Probe 12 Drive circuit 13 Detection means 14 Control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  試料と探針間に流れるトンネル電流が
常に一定になるように試料と探針間の距離を制御しなが
ら探針を試料表面に沿って走査し、得られた画像データ
をもとに試料表面の状態を可視化する画像処理を行なう
に際し、同一原子層からなる平面部分の画像データの中
から少なくとも3点の座標を入力し、3点がつくる平面
を基準面として各座標の測定データを補正することを特
徴とする走査型トンネル顕微鏡の画像処理方法。
Claim 1: The probe is scanned along the sample surface while controlling the distance between the sample and the probe so that the tunnel current flowing between the sample and the probe is always constant, and the obtained image data is also used. When performing image processing to visualize the state of the sample surface, input the coordinates of at least three points from the image data of a flat part made of the same atomic layer, and measure each coordinate using the plane formed by the three points as a reference plane. An image processing method for a scanning tunneling microscope characterized by correcting data.
JP02401273A 1990-12-11 1990-12-11 Image processing method for scanning tunneling microscope Expired - Fee Related JP3121619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02401273A JP3121619B2 (en) 1990-12-11 1990-12-11 Image processing method for scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02401273A JP3121619B2 (en) 1990-12-11 1990-12-11 Image processing method for scanning tunneling microscope

Publications (2)

Publication Number Publication Date
JPH04215005A true JPH04215005A (en) 1992-08-05
JP3121619B2 JP3121619B2 (en) 2001-01-09

Family

ID=18511114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02401273A Expired - Fee Related JP3121619B2 (en) 1990-12-11 1990-12-11 Image processing method for scanning tunneling microscope

Country Status (1)

Country Link
JP (1) JP3121619B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164090A (en) * 2018-03-20 2019-09-26 株式会社島津製作所 Data correction method, program for making computer execute data correction method, image processing device, and scanning type probe microscope
JP2021043096A (en) * 2019-09-12 2021-03-18 株式会社日立ハイテク Pattern height information correcting system and pattern height information correcting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433471A (en) * 1987-07-27 1989-02-03 Sanyo Electric Co Cooling device for compressor
JPH01263461A (en) * 1988-04-12 1989-10-19 Mitsubishi Electric Corp Heat pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433471A (en) * 1987-07-27 1989-02-03 Sanyo Electric Co Cooling device for compressor
JPH01263461A (en) * 1988-04-12 1989-10-19 Mitsubishi Electric Corp Heat pump device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164090A (en) * 2018-03-20 2019-09-26 株式会社島津製作所 Data correction method, program for making computer execute data correction method, image processing device, and scanning type probe microscope
CN110308310A (en) * 2018-03-20 2019-10-08 株式会社岛津制作所 Data correcting method, recording medium, image processing apparatus, scanning type probe microscope
US10846547B2 (en) 2018-03-20 2020-11-24 Shimadzu Corporation Data correction method, computer program for causing computer to perform data correction method, image processor, and scanning probe microscope
JP2021043096A (en) * 2019-09-12 2021-03-18 株式会社日立ハイテク Pattern height information correcting system and pattern height information correcting method

Also Published As

Publication number Publication date
JP3121619B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
US5414260A (en) Scanning probe microscope and method of observing samples by using the same
US4902892A (en) Method of measurement by scanning tunneling microscope
US5323003A (en) Scanning probe microscope and method of observing sample by using such a microscope
JPH07318568A (en) Scanning probe microscope
JP2880182B2 (en) Surface microscope
JP3121619B2 (en) Image processing method for scanning tunneling microscope
JP2001194284A (en) Probe scanning method
Wilder et al. Atomic force microscopy for cross section inspection and metrology
CN110082566B (en) Scanning probe microscope
JP2002188988A (en) Scanning type probe microscope
JP2713717B2 (en) Scanning probe microscope
JPH06258014A (en) Scanning probe microscope and recorder and/or reproducer employing it
JP4497665B2 (en) Probe scanning control device, scanning probe microscope using the scanning control device, probe scanning control method, and measurement method using the scanning control method
JPH06147821A (en) Inclination correcting method for scanning probe microscopic image
JP3359181B2 (en) Scanning probe microscope and image measurement method using the same
JP3377918B2 (en) Scanning probe microscope
JP7281841B2 (en) scanning probe microscope
JP3058724B2 (en) Scanning probe microscope
JP4050873B2 (en) Probe scanning control method and scanning probe microscope
TW202307435A (en) Afm imaging with real time drift correction
KR20240004958A (en) AFM imaging with creep compensation
Andersen et al. Analysis and calibration of in situ scanning tunnelling microscopy images with atomic resolution influenced by surface drift phenomena
JPH09171027A (en) Scanning probe microscope
JPH0712508A (en) Scanning-type probe microscope, recording device, reproducing device, and recording/reproducing device
JP2521964B2 (en) Measuring method of electron microscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees