JPH04214899A - Insoluble electrode - Google Patents

Insoluble electrode

Info

Publication number
JPH04214899A
JPH04214899A JP6760891A JP6760891A JPH04214899A JP H04214899 A JPH04214899 A JP H04214899A JP 6760891 A JP6760891 A JP 6760891A JP 6760891 A JP6760891 A JP 6760891A JP H04214899 A JPH04214899 A JP H04214899A
Authority
JP
Japan
Prior art keywords
iro2
coating
film
reactive
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6760891A
Other languages
Japanese (ja)
Inventor
Masanori Kobayashi
正則 小林
Yukihiro Nakamura
幸弘 中村
Masahiko Shihonmatsu
四本松 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6760891A priority Critical patent/JPH04214899A/en
Publication of JPH04214899A publication Critical patent/JPH04214899A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To offer insoluble electrode highly durable against >200A/dm<2> high current density. CONSTITUTION:This insoluble electrode is prepared by forming valve metal layer on the surface of the main body of electrode faced to members to be plates, and forming IrO2 reactive sputtering film, IrO2 reactive vapor deposited film or IrO2 reactive ion plating film on the surface of the valve metal layer and additionally forming IrO2 coated baked film on to this layer or forming IrO2 coating baked on to this surface of valve metal layer and additionally forming IrO2 reactive sputtering film, IrO2 reactive vapor deposited film or IrO2 reactive ion plating film on valve metal layer, respectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は不溶性電極に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to insoluble electrodes.

【0002】0002

【従来の技術】一般に金属材の電気メッキに際し、電気
メッキ浴中にて不溶性電極を使用し、陰極たる被メッキ
金属材の表面にZn,Sn,Niなどの金属を電気メッ
キすることが行われている。また金属の電気精錬に際し
、精錬浴中にて不溶性電極を使用し、Mn、Zn等の金
属を電気精錬することが行われている。これらの不溶性
電極として、最も一般的に使用されているものとして、
Pb系合金があげられる。この電極は、電気メッキ浴、
電気精錬浴、特に硫酸溶液中では、通電処理時その表面
にPbO2が生成する。 そのPbO2は、不溶性電極
の機能を発揮しているが、生成したPbO2とPbとの
付着力が弱く電解溶液中に混入しメッキ不良、あるいは
不純物混入精錬金属を生じてしまう。
[Prior Art] Generally, when electroplating metal materials, an insoluble electrode is used in an electroplating bath, and metals such as Zn, Sn, and Ni are electroplated on the surface of the metal material to be plated, which serves as a cathode. ing. Furthermore, when electrorefining metals, an insoluble electrode is used in a refining bath to electrorefine metals such as Mn and Zn. The most commonly used of these insoluble electrodes are
Examples include Pb-based alloys. This electrode can be used in electroplating baths,
In an electrorefining bath, especially in a sulfuric acid solution, PbO2 is generated on the surface during the current treatment. Although the PbO2 functions as an insoluble electrode, the adhesion between the generated PbO2 and Pb is weak and it mixes into the electrolytic solution, resulting in poor plating or impurity-containing refined metal.

【0003】そこでその対策として、電気メッキ浴、電
気精錬浴、特に硫酸溶液中で最も電気化学的に安定であ
る白金族酸化物であるIrO2を、母材であるバルブ金
属(Ti,Ta,Zr等の金属で、通電により表面に絶
縁性の酸化物層を形成し通電をストップしてしまう金属
)層上に被膜化した電極が特公昭48−3954号公報
に示されている。さらにバルブ金属層の酸化を抑制する
、あるいは密着性を向上させるために中間層にTa2O
5等を添加した被膜を形成し、更にIrO2層を形成し
た不溶性電極を使用する方法が特公昭46−21884
号公報、特開昭63−235493号公報に示されてい
る。被膜厚は最大5μmであり、図3にその電極構造を
示す。1はSUS製電極母材、2はバルブ金属層、3は
IrO2−Ta2O5層、4はIrO2層である。この
層3,4の施工方法は酸化物となる溶液をバルブ金属層
上に塗布し、それを酸化物となる温度で焼成することを
繰り返すことにより作製する、いわゆる塗布焼き付け法
である。
Therefore, as a countermeasure, IrO2, which is a platinum group oxide that is the most electrochemically stable in an electroplating bath, an electrorefining bath, and especially a sulfuric acid solution, has been added to the base metal valve metal (Ti, Ta, Zr). Japanese Patent Publication No. 48-3954 discloses an electrode coated on a layer of metal such as, which forms an insulating oxide layer on the surface and stops the current flow when energized. Furthermore, in order to suppress oxidation of the valve metal layer or improve adhesion, Ta2O is added to the intermediate layer.
Japanese Patent Publication No. 46-21884 describes a method of using an insoluble electrode in which a film containing IrO2 and the like is formed, and an IrO2 layer is further formed.
JP-A-63-235493. The maximum coating thickness is 5 μm, and the electrode structure is shown in FIG. 1 is a SUS electrode base material, 2 is a valve metal layer, 3 is an IrO2-Ta2O5 layer, and 4 is an IrO2 layer. The construction method for the layers 3 and 4 is a so-called coating and baking method, in which a solution that becomes an oxide is repeatedly applied onto the valve metal layer and then fired at a temperature that becomes an oxide.

【0004】0004

【発明が解決しようとする課題】特公昭46−2188
4号公報、特開昭63−235493号公報に提示され
ている塗布焼き付け法によるIrO2を主体とした層を
有する不溶性電極は、低電流密度(〜100A/dm2
)では長時間使用可能であるが、高電流密度下、特に硫
酸溶液中200A/dm2で通電腐食試験を行うと、3
000〜4000時間で急激な電圧上昇が起こり電極が
使用不可能となる。この電極の腐食メカニズムを電極構
造から図4により説明する。IrO2を含有する層3,
4は溶液の熱処理によるため、溶液成分の揮発による気
孔がある。またバルブ金属層とIrO2との熱膨張差に
よって亀甲状クラック5が多数発生している。 この気
孔とクラックが原因によりバルブ金属層2との直接通電
が起こり、 バルブ金属層の腐食、あるいはバルブ金属
層表面に絶縁性酸化物被膜6が形成される。さらに通電
により絶縁性酸化物被膜6が増加し電圧上昇を引き起こ
し電極としての機能を失ってしまう。
[Problem to be solved by the invention] Japanese Patent Publication No. 46-2188
An insoluble electrode having a layer mainly composed of IrO2 by the coating and baking method proposed in Publication No. 4 and Japanese Unexamined Patent Publication No. 63-235493 has a low current density (~100 A/dm2).
) can be used for a long time, but when conducting a galvanic corrosion test under high current density, especially at 200 A/dm2 in a sulfuric acid solution,
000 to 4000 hours, a sudden voltage increase occurs and the electrode becomes unusable. The corrosion mechanism of this electrode will be explained from the electrode structure with reference to FIG. layer 3 containing IrO2,
No. 4 is due to heat treatment of the solution, so there are pores due to volatilization of solution components. Further, many hexagonal cracks 5 are generated due to the difference in thermal expansion between the valve metal layer and IrO2. Direct current conduction with the valve metal layer 2 occurs due to these pores and cracks, causing corrosion of the valve metal layer or formation of an insulating oxide film 6 on the surface of the valve metal layer. Furthermore, the insulating oxide film 6 increases as a result of energization, causing a voltage increase and causing the electrode to lose its function.

【0005】電極機能を失わないためには、気孔、クラ
ックのない均質被膜を作製することが必要である。従来
特公昭46−21884号公報、日本写真学会誌[Vo
l.51,No.1,p3(1988)]にIr金属を
スパッタ、蒸着、イオンプレーティングするとともに基
板上近傍で酸化させる反応性スパッタ法、反応性蒸着法
、反応性イオンプレーティング法が示されている。 こ
の反応性スパッタ法、反応性蒸着法、反応性イオンプレ
ーティング法によるIrO2被膜(以下IrO2反応性
スパッタ被膜、IrO2反応性蒸着被膜、IrO2反応
性イオンプレーティング被膜という)は均質でクラック
、気孔はほとんどないという長所をもっている。
[0005] In order not to lose the electrode function, it is necessary to produce a homogeneous film free of pores and cracks. Previously published in Special Publication No. 46-21884, Journal of the Photographic Society of Japan [Vo
l. 51, No. 1, p. 3 (1988)] discloses a reactive sputtering method, a reactive vapor deposition method, and a reactive ion plating method in which Ir metal is sputtered, vapor-deposited, or ion-plated and oxidized near the substrate. The IrO2 coating produced by this reactive sputtering method, reactive vapor deposition method, or reactive ion plating method (hereinafter referred to as IrO2 reactive sputtering coating, IrO2 reactive vapor deposition coating, or IrO2 reactive ion plating coating) is homogeneous with no cracks or pores. It has the advantage of being almost non-existent.

【0006】しかし100A/dm2の低電流密度で通
電すると短特間で通電がストップしてしまうという欠点
がある。この理由は、このIrO2反応性スパッタ被膜
、IrO2反応性蒸着被膜、IrO2反応性イオンプレ
ーティング被膜の作製最適膜厚が100オングストロー
ム〜数1000オングストロームで非常に薄いこと、単
位断面積当たりの電流が一定の場合、均質故に塗布焼き
付けIrO2被膜と比べ比表面積が少なく単位面積当た
りの酸素発生量が多く溶損スピードが早いためである。 またIrO2反応性スパッタ被膜、IrO2反応性蒸着
被膜、IrO2反応性イオンプレーティング被膜の耐用
性を向上させるには均質被膜の厚膜化が必要であるが、
厚膜にすると剥離しやすくなるという欠点がある。本発
明は、200A/dm2以上の高電流密度で電解をおこ
なっても耐食性に優れ、長時間の使用に耐える不溶性電
極を提供するものである。
However, when current is applied at a low current density of 100 A/dm2, there is a drawback that the current flow stops after a short period of time. The reason for this is that the optimum film thickness for producing the IrO2 reactive sputtering film, IrO2 reactive vapor deposition film, and IrO2 reactive ion plating film is extremely thin, ranging from 100 angstroms to several thousand angstroms, and the current per unit cross-sectional area is constant. This is because in the case of , the specific surface area is smaller than that of a coated and baked IrO2 film, the amount of oxygen generated per unit area is large, and the melting speed is fast. Furthermore, in order to improve the durability of IrO2-reactive sputtered coatings, IrO2-reactive vapor deposition coatings, and IrO2-reactive ion plating coatings, it is necessary to increase the thickness of homogeneous coatings.
The disadvantage is that thicker films tend to peel off more easily. The present invention provides an insoluble electrode that has excellent corrosion resistance even when electrolyzed at a high current density of 200 A/dm2 or more and can withstand long-term use.

【0007】[0007]

【課題を解決するための手段】本発明の不溶性電極の構
成は以下の通りである。 (1)電極母材表面にバルブ金属層を形成し、 そのバ
ルブ金属層表面にIrO2反応性スパッタ被膜を形成し
更にその上にIrO2塗布焼き付け被膜を形成した、ま
たはバルブ金属層表面にIrO2塗布焼き付け被膜を形
成し更にその上にIrO2反応性スパッタ被膜を形成し
たことを特徴とする不溶性電極。 (2)電極母材表面にバルブ金属層を形成し、そのバル
ブ金属層表面にIrO2反応性蒸着被膜を形成し更にそ
の上にIrO2塗布焼き付け被膜を形成した、またはバ
ルブ金属層表面にIrO2塗布焼き付け被膜を形成し更
にその上にIrO2反応性蒸着被膜を形成したことを特
徴とする不溶性電極。 (3)電極母材表面にバルブ金属層を形成し、そのバル
ブ金属層表面にIrO2反応性イオンプレーティング被
膜を形成し更にその上にIrO2塗布焼き付け被膜を形
成した、またはバルブ金属層表面にIrO2塗布焼き付
け被膜を形成し更にその上にIrO2反応性イオンプレ
ーティング被膜を形成したことを特徴とする不溶性電極
である。
[Means for Solving the Problems] The structure of the insoluble electrode of the present invention is as follows. (1) A valve metal layer is formed on the surface of the electrode base material, an IrO2 reactive sputtering film is formed on the surface of the valve metal layer, and an IrO2 coating and baking film is further formed on the surface of the valve metal layer, or an IrO2 coating and baking coating is formed on the valve metal layer surface. An insoluble electrode characterized by forming a film and further forming an IrO2 reactive sputtered film thereon. (2) A valve metal layer is formed on the surface of the electrode base material, an IrO2 reactive vapor deposition film is formed on the surface of the valve metal layer, and an IrO2 coating and baking film is further formed on it, or an IrO2 coating and baking coating is formed on the valve metal layer surface. An insoluble electrode characterized by forming a film and further forming an IrO2 reactive vapor deposition film thereon. (3) A valve metal layer is formed on the surface of the electrode base material, an IrO2 reactive ion plating film is formed on the surface of the valve metal layer, and an IrO2 coating and baking film is further formed on the surface of the valve metal layer, or an IrO2 reactive ion plating film is formed on the surface of the valve metal layer. This is an insoluble electrode characterized by forming a coating and baking film and further forming an IrO2 reactive ion plating film thereon.

【0008】本発明による不溶性電極の構造を図1に模
式的に示す。図1(a)はIrO2反応性スパッタ被膜
、又はIrO2反応性蒸着被膜、又はIrO2イオンプ
レーティング被膜をバルブ金属層上に形成し、更にその
被膜上に塗布焼き付け法によるIrO2被膜を形成した
場合、図1(b)は、バルブ金属層上に塗布焼き付け法
によりIrO2被膜を形成し、更にその被膜上にIrO
2反応性スパッタ被膜、又はIrO2反応性蒸着被膜、
又はIrO2反応性イオンプレーティング被膜を形成し
た場合である。2はバルブ金属層、7はIrO2反応性
スパッタ被膜、又はIrO2反応性蒸着被膜、又はIr
O2反応性イオンプレーティング被膜、4はIrO2塗
布焼き付け被膜である。
The structure of the insoluble electrode according to the present invention is schematically shown in FIG. FIG. 1(a) shows the case where an IrO2 reactive sputtering coating, an IrO2 reactive vapor deposition coating, or an IrO2 ion plating coating is formed on the valve metal layer, and an IrO2 coating is further formed on the coating by a coating and baking method. In FIG. 1(b), an IrO2 film is formed on the valve metal layer by a coating and baking method, and then IrO
2 reactive sputter coating or IrO2 reactive vapor deposited coating,
Or when an IrO2 reactive ion plating film is formed. 2 is a valve metal layer, 7 is an IrO2 reactive sputtered coating, or an IrO2 reactive vapor deposited coating, or an IrO2 reactive sputtered coating, or an IrO2 reactive vapor deposited coating;
O2 reactive ion plating coating, 4 is IrO2 applied baking coating.

【0009】[0009]

【作用】以下本発明を詳細に説明する。塗布焼き付けI
rO2被膜では、被膜内の気孔、クラックからの通電に
よりTi層表面に絶縁性酸化物が生成し通電がストップ
する。IrO2反応性スパッタ被膜、又はIrO2反応
性蒸着被膜、又はIrO2反応性イオンプレーティング
被膜は、径が数10オングストロームの気孔が点在する
均質被膜であり、IrO2塗布焼き付け被膜よりも比表
面積が小さく単位面積当たりの酸素発生量が多くなり腐
食スピードが速く、また膜厚も薄いため電極機能が短い
。 よってこの両者の欠点を補うためにIrO2塗布焼き付
け被膜とIrO2反応性スパッタ被膜、又はIrO2反
応性蒸着被膜、又はIrO2反応性イオンプレーティン
グ被膜を複層にすることを考えた。
[Operation] The present invention will be explained in detail below. Coating and baking I
In the rO2 film, an insulating oxide is generated on the surface of the Ti layer due to current flow from the pores and cracks in the film, and the current flow is stopped. An IrO2 reactive sputtered coating, an IrO2 reactive vapor deposition coating, or an IrO2 reactive ion plating coating is a homogeneous coating dotted with pores with a diameter of several tens of angstroms, and has a smaller specific surface area than an IrO2 applied baking coating. The amount of oxygen generated per area is large, resulting in faster corrosion, and the film is thinner, so the electrode function is shorter. Therefore, in order to compensate for these two drawbacks, we considered creating a multilayer structure consisting of an IrO2 applied baked coating and an IrO2 reactive sputtered coating, an IrO2 reactive vapor deposition coating, or an IrO2 reactive ion plating coating.

【0010】バルブ金属であるTi板上へ作製したIr
O2均質被膜とIrO2塗布焼き付け被膜の比表面積は
、表1に示すようにIrO2塗布焼き付け被膜はIrO
2反応性スパッタ被膜、IrO2反応性蒸着被膜、Ir
O2反応性イオンプレーティング被膜より大きく、多孔
質であることが分かる。これらの被膜を一定電流密度で
通電した場合、単位比表面積当たりの酸素発生量はIr
O2塗布焼き付け被膜の方が少なく、また溶損スピード
も小さい。
[0010] Ir fabricated on a Ti plate, which is a valve metal.
The specific surface areas of the O2 homogeneous coating and the IrO2 coated baked coating are as shown in Table 1.
2 reactive sputter coating, IrO2 reactive vapor deposited coating, Ir
It can be seen that it is larger and more porous than the O2 reactive ion plating coating. When these coatings are energized at a constant current density, the amount of oxygen generated per unit specific surface area is Ir
The amount of O2 coated and baked coating is smaller and the speed of erosion is also lower.

【0011】[0011]

【表1】[Table 1]

【0012】IrO2塗布焼き付け被膜とIrO2反応
性スパッタ被膜、又はIrO2反応性蒸着被膜、又はI
rO2反応性イオンプレーティング被膜を複層にした場
合、IrO2塗布焼き付け被膜4により単位比表面積当
たりの酸素発生量が低減でき、それによりIrO2塗布
焼き付け被膜の下層あるいは上層のIrO2均質被膜の
単位比表面積当たりの酸素発生量を低減させ、溶損スピ
ードも低減させることができる。
[0012] IrO2 applied baked coating and IrO2 reactive sputtered coating, or IrO2 reactive vapor deposited coating, or
When the rO2 reactive ion plating film is multi-layered, the amount of oxygen generated per unit specific surface area can be reduced by the IrO2 applied baking film 4, thereby reducing the unit specific surface area of the IrO2 homogeneous film below or above the IrO2 applied baking film. It is possible to reduce the amount of oxygen generated per unit and reduce the speed of erosion.

【0013】従来のIrO2塗布焼き付け被膜4ではI
rO2反応性スパッタ被膜又はIrO2反応性蒸着被膜
、又はIrO2反応性イオンプレーティング被膜7より
気孔、クラックが多くそのためバルブ金属層2との通電
があり絶縁性酸化物層6を形成するという欠点があるが
、 IrO2反応性スパッタ被膜又はIrO2反応性蒸
着被膜、又はIrO2反応性イオンプレーティング被膜
7をIrO2塗布焼き付け被膜4上、あるいは下に形成
することによりバルブ金属層2との通電はIrO2反応
性スパッタ被膜、又はIrO2反応性蒸着被膜、又はI
rO2反応性イオンプレーティング被膜7が溶損してし
まうまでおこらない。よってIrO2塗布焼き付け被膜
とIrO2反応性スパッタ被膜、又はIrO2反応性蒸
着被膜、又はIrO2反応性イオンプレーティング被膜
を複層にすることによりIrO2塗布焼き付け被膜単身
あるいはIrO2反応性スパッタ被膜、又はIrO2反
応性蒸着被膜、又は、IrO2反応性イオンプレーティ
ング被膜単身の電極より長時間通電が可能である。
In the conventional IrO2 coating and baking film 4, I
It has more pores and cracks than the rO2-reactive sputtered coating, IrO2-reactive vapor deposition coating, or IrO2-reactive ion plating coating 7, and therefore has the disadvantage that it conducts electricity with the valve metal layer 2 to form the insulating oxide layer 6. However, by forming an IrO2-reactive sputtering film, an IrO2-reactive vapor deposition film, or an IrO2-reactive ion-plating film 7 on or below the IrO2 coating and baking film 4, electrical conduction with the valve metal layer 2 can be achieved by IrO2-reactive sputtering. coating, or IrO2 reactive vapor deposited coating, or IrO2 reactive evaporation coating, or
This does not occur until the rO2 reactive ion plating coating 7 is eroded away. Therefore, by forming a multilayer of an IrO2 applied baked coating and an IrO2 reactive sputtered coating, an IrO2 reactive vapor deposition coating, or an IrO2 reactive ion plating coating, the IrO2 applied baked coating alone, an IrO2 reactive sputtered coating, or an IrO2 reactive ion plating coating can be formed. It is possible to conduct electricity for a longer time than with an electrode of a vapor deposited film or an IrO2 reactive ion plating film alone.

【0014】[0014]

【実施例】〔実施例1〕 母材である被メッキ材に面するSUS製電極母材表面 
(1800×700mm)に、Tiをクラッド接合しそ
の表面を蓚酸を用いて洗浄した。このTiクラッドSU
S製電極を真空中(8×10−4torr)でIr板と
対向させて設置した。真空槽中をアルゴン圧1×10−
1〜2×10−2torrにし、ターゲットに1kVの
電位を印加してアルゴンイオンを放電させIr板にぶち
あてIr原子を叩き出し、ガス圧4.5×10−4to
rrでO2ガスを基材上に吹きつけ成膜速度2オングス
トローム/secでTiクラッド接合体表面にIrO2
反応性スパッタ被膜1000オングストロームを作製し
た。
[Example] [Example 1] SUS electrode base material surface facing the base material to be plated
(1800 x 700 mm) was cladded with Ti and its surface was cleaned using oxalic acid. This Ti clad SU
An electrode made of S was placed facing an Ir plate in a vacuum (8×10 −4 torr). Argon pressure in the vacuum chamber is 1 x 10-
1 to 2 x 10-2 torr, apply a potential of 1 kV to the target, discharge the argon ions, and hit the Ir plate to knock out the Ir atoms, and the gas pressure is 4.5 x 10-4 torr.
IrO2 was applied to the surface of the Ti clad assembly by blowing O2 gas onto the base material at a film formation rate of 2 angstroms/sec.
A 1000 angstrom reactive sputter coating was prepared.

【0015】さらにこの反応性スパッタ被膜上に熱分解
によりIrO2になるH2IrCl6をブタノールに溶
解してIr金属濃度が60g/lになるように調整した
塗布焼き付け被膜溶液を等で塗布し乾燥後電気炉に入れ
450℃で焼き付けた。この塗布、乾燥、焼き付けとい
う操作を8回繰り返しIrO2層を約5μm形成し本発
明の電極を製造した。(本発明品1)
[0015] Further, on this reactive sputtered film, a coating/baking film solution prepared by dissolving H2IrCl6, which becomes IrO2 through thermal decomposition, in butanol and adjusting the Ir metal concentration to 60 g/l, was coated using a method such as drying, and then heated in an electric furnace after drying. and baked at 450℃. This operation of coating, drying, and baking was repeated eight times to form an IrO2 layer of about 5 μm to produce an electrode of the present invention. (Invention product 1)

【0016】また上記TiクラッドSUS製電極表面に
上記の方法によりIrO2塗布焼き付け法被膜を約5μ
m形成し、さらに上記の方法により塗布焼き付け被膜上
に1000オングストロームのIrO2反応性スパッタ
被膜を形成し本発明の電極を製造した。(本発明品2)
[0016] Furthermore, an IrO2 coating and baking film of approximately 5 μm was applied to the surface of the Ti-clad SUS electrode by the method described above.
An electrode of the present invention was manufactured by forming an IrO2 reactive sputtering film of 1000 angstroms on the coated and baked film by the method described above. (Product of the present invention 2)

【0017】次に60℃、5wt%硫酸溶液中で、陽極
に本発明品1、2、陰極に白金板をもちい、電流密度2
00A/dm2で通電腐食試験を行ない電圧の変化を測
定した。これらの結果を図2に示す。
Next, in a 5 wt % sulfuric acid solution at 60° C., the products 1 and 2 of the present invention were used as anodes, the platinum plate was used as a cathode, and the current density was 2.
An electrical corrosion test was conducted at 00 A/dm2, and changes in voltage were measured. These results are shown in FIG. 2.

【0018】〔実施例2〕 母材である被メッキ材に面するSUS製電極母材表面 
(1800×700mm)に、Tiをクラッド接合しそ
の表面を蓚酸を用いて洗浄した。このTiクラッドSU
S製電極を真空中(8×10−4torr)でIr板と
対向させて設置した。このIr板を200Wで電子ビー
ム加熱を行いIrを蒸発させ、さらにガス圧6.5×1
0−4でO2ガスを導入し成形膜速度2オングストロー
ム/secでTiクラッド接合体表面にIrO2反応性
蒸着被膜を1000オングストロームを作成した。さら
にこのIrO2反応性スパッタ被膜上に熱分解によりI
rO2になるH2IrCl6をブタノールに溶解してI
r金属濃度が60g/lになるように調整した塗布焼き
付け被膜溶液を筆で塗布し乾燥後電気炉に入れ 450
℃で焼き付けた。(本発明品3)
[Example 2] SUS electrode base material surface facing the base material to be plated
(1800 x 700 mm) was cladded with Ti and its surface was cleaned using oxalic acid. This Ti clad SU
An electrode made of S was placed facing an Ir plate in a vacuum (8×10 −4 torr). This Ir plate was heated with an electron beam at 200W to evaporate the Ir, and the gas pressure was further increased to 6.5×1
O2 gas was introduced at 0-4, and an IrO2 reactive vapor deposition film of 1000 angstroms was formed on the surface of the Ti clad assembly at a film forming rate of 2 angstroms/sec. Further, IrO2 is deposited on this IrO2 reactive sputtered film by thermal decomposition.
H2IrCl6, which becomes rO2, is dissolved in butanol and I
Apply a coated and baked coating solution adjusted to have a metal concentration of 60 g/l with a brush, dry it, and then put it in an electric furnace 450
Baked at ℃. (Product of the present invention 3)

【0019】また上記TiをクラッドSUS製電極表面
に上記の方法によりIrO2塗布焼き付け法被膜を約5
μm形成し、さらに上記の方法により塗布焼き付け被膜
上に1000オングストロームのIrO2反応性蒸着被
膜を形成し本発明の電極を製造した(本発明品4)。次
に60℃、5wt%硫酸溶液中で、陽極に本発明品3、
4、陰極に白金板をもちい、電流密度200A/dm2
で通電腐食試験を行ない電圧の変化を測定した。これら
の結果を図2に示す。
[0019] Furthermore, the Ti-clad SUS electrode surface was coated with IrO2 by the above-described method and baked to form a film of about 5 %.
.mu.m, and then a 1000 angstrom IrO2 reactive vapor deposited film was formed on the coated and baked film by the method described above to produce an electrode of the present invention (Product 4 of the present invention). Next, in a 5 wt% sulfuric acid solution at 60°C, the present invention product 3 was added to the anode.
4. Use a platinum plate as the cathode, current density 200A/dm2
A galvanic corrosion test was conducted and the change in voltage was measured. These results are shown in FIG. 2.

【0020】〔実施例3〕 母材である被メッキ材に面するSUS製電極母材表面 
(1800×700mm)に、Tiをクラッド接合しそ
の表面を蓚酸を用いて洗浄した。このTiクラッドSU
S製電極を真空中(8×10−4torr)で陽極とし
て設置し、陰極にIr板を設置し200Wを印加するこ
とによりIrイオンを蒸着するとともに、ガス圧4.5
×10−4torrでO2ガスを基板上に吹きつけ成膜
速度2オングストローム/secでTiクラッド接合表
面にIrO2反応性イオンプレーティング被膜1000
オングストロームを作製した。
[Example 3] SUS electrode base material surface facing the base material to be plated
(1800 x 700 mm) was cladded with Ti and its surface was cleaned using oxalic acid. This Ti clad SU
An electrode made of S was installed as an anode in a vacuum (8 x 10-4 torr), an Ir plate was installed as a cathode, and 200 W was applied to deposit Ir ions, and the gas pressure was 4.5
IrO2 reactive ion plating film 1000 was applied to the Ti clad bonding surface by blowing O2 gas onto the substrate at ×10-4 torr and at a film formation rate of 2 angstroms/sec.
angstrom was made.

【0021】さらにこのIrO2反応性イオンプレーテ
ィング被膜上に熱分解によりIrO2になるH2IrC
l6をブタノールに溶解してIr金属濃度が60g/l
になるように調整した塗布焼き付け被膜溶液を筆で塗布
し乾燥後電気炉に入れ450℃で基き付けた。(本発明
品5)
Furthermore, on this IrO2 reactive ion plating film, H2IrC which becomes IrO2 by thermal decomposition is applied.
Ir metal concentration is 60g/l by dissolving l6 in butanol.
A coating and baking coating solution adjusted to have the following properties was applied with a brush, dried, and then placed in an electric furnace to form a base at 450°C. (Product of the present invention 5)

【0022】また上記TiクラッドSUS製電極表面に
上記の方法によりIrO2塗布焼き付け法被膜を約5μ
m形成し、さらに上記の方法により塗布焼き付け被膜上
に1000オングストロームのIrO2反応性蒸着被膜
を形成し本発明の電極を製造した(本発明品6)。次に
60℃、5wt%硫酸溶液中で、陽極に本発明品5、6
、陰極に白金板をもちい、電流密度200A/dm2で
通電腐食試験を行ない電圧の変化を測定した。これらの
結果を図2に示す。
[0022] Furthermore, an IrO2 coating and baking film of about 5 μm was applied to the surface of the Ti-clad SUS electrode by the above method.
Then, an IrO2 reactive vapor deposition film of 1000 angstroms was formed on the coated and baked film by the method described above to produce an electrode of the present invention (Product 6 of the present invention). Next, in a 5 wt% sulfuric acid solution at 60°C, the present invention products 5 and 6 were placed on the anode.
A galvanic corrosion test was conducted using a platinum plate as a cathode at a current density of 200 A/dm2, and changes in voltage were measured. These results are shown in FIG. 2.

【0023】〔従来例〕 比較のためIrO2系塗布焼き付け被膜単身の電極を製
造した。まずIr60モル%、Ta40モル%の組成に
なるようにH2IrCl6・6H2O、Ta(OC4H
9)5をブタノールに80g/lとなるように溶解した
。その溶液を用い、上記TiクラッドSUS製電極表面
(1800×700mm)に塗布し450℃で焼き付け
た。さらにこの操作を3回繰り返し、約1μm厚のIr
O2−Ta2O5(60:40)被膜を形成した。上記
実施例で示した方法で上記IrO2−Ta2O5(60
:40)塗布焼き付け被膜上に塗布し450℃で焼き付
けた。この操作を5回繰り返しTiクラッドSUS製電
極表面上の(60モル%IrO2・40モル%Ta2O
5)被膜上にIrO2被膜を形成し被膜厚約5μmを形
成し従来電極を製造した(従来品1)
[Conventional Example] For comparison, an electrode with only an IrO2 coating and baking film was manufactured. First, H2IrCl6.6H2O, Ta(OC4H
9) 5 was dissolved in butanol to a concentration of 80 g/l. The solution was applied to the surface of the Ti-clad SUS electrode (1800 x 700 mm) and baked at 450°C. This operation was repeated three more times to form a layer of approximately 1 μm thick Ir layer.
An O2-Ta2O5 (60:40) film was formed. The above IrO2-Ta2O5 (60
:40) Coating and Baking: The coating was coated on the film and baked at 450°C. This operation was repeated 5 times and the (60 mol% IrO2, 40 mol% Ta2O) on the Ti-clad SUS electrode surface was
5) A conventional electrode was manufactured by forming an IrO2 film on the film to a film thickness of approximately 5 μm (Conventional Product 1)

【0024】またIrO2反応性スパッタ被膜、IrO
2反応性蒸着被膜、IrO2反応性イオンプレーティン
グ被膜(被膜厚1000オングストローム)単身(従来
品2,3,4)を蓚酸で洗浄したTiクラッドSUS製
電極表面(1800×700mm)に実施例1,2,3
と同様な方法で製造した。
[0024] Also, IrO2 reactive sputter coating, IrO
2 reactive vapor deposition film, IrO2 reactive ion plating film (film thickness 1000 angstroms) alone (conventional products 2, 3, 4) was applied to the Ti-clad SUS electrode surface (1800 x 700 mm) that had been cleaned with oxalic acid in Example 1. 2,3
Manufactured in a similar manner.

【0025】次に60℃、5wt%硫酸溶液中で、陽極
に従来品1、2、3、4、陰極に白金板をもちい、電流
密度200A/dm2で通電腐食試験を行ない電圧の変
化を測定した。これらの結果を図2に併記した。上記本
発明品、従来品の通電結果、従来品2、3、4は、過電
圧が高く非常に単時間に通電がストップしてしまい、ま
た、従来品1は、3000〜4000時間で急激な電圧
上昇が起こり電極が使用不可能となった。 本発明品は
12000〜14000時間に達するまで電圧上昇が起
こらず電極寿命が著しく長くなった。
Next, in a 5 wt % sulfuric acid solution at 60° C., using conventional products 1, 2, 3, and 4 as the anode and a platinum plate as the cathode, a galvanic corrosion test was conducted at a current density of 200 A/dm2, and the change in voltage was measured. did. These results are also shown in FIG. 2. As a result of energization of the above-mentioned products of the present invention and conventional products, conventional products 2, 3, and 4 had a high overvoltage and stopped energizing in a very short period of time, and conventional product 1 had a sudden voltage drop after 3000 to 4000 hours. A rise occurred and the electrode became unusable. In the product of the present invention, the voltage did not increase until reaching 12,000 to 14,000 hours, resulting in a significantly longer electrode life.

【0026】[0026]

【発明の効果】本発明の不溶化電極は、200A/dm
2以上の高電流密度で電解をおこなっても耐食性に優れ
、長時間の使用に耐えるものであり、電気メッキ用電極
に限らず他の用途の電極として極めて有用である。
Effect of the invention: The insolubilized electrode of the present invention has a
It has excellent corrosion resistance even when electrolyzed at a high current density of 2 or more and can withstand long-term use, making it extremely useful not only as an electrode for electroplating but also as an electrode for other uses.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明電極構造を示すものである。 (a):IrO2反応性スパッタ被膜、又はIrO2反
応性蒸着被膜、又はIrO2反応性イオンプレーティン
グ被膜上にIrO2塗布焼き付け被膜を形成した電極構
造で、 (b):IrO2塗布焼き付け被膜上にIrO2反応性
スパッタ被膜、又はIrO2反応性蒸着被膜、又はIr
O2反応性イオンプレーティング被膜を形成した電極構
造である。
FIG. 1 shows the electrode structure of the present invention. (a): An electrode structure in which an IrO2-coated baked film is formed on an IrO2-reactive sputtered film, an IrO2-reactive vapor-deposited film, or an IrO2-reactive ion plating film, (b): an IrO2-reactive film on an IrO2-coated baked film. reactive sputter coating, or IrO2 reactive vapor deposition coating, or Ir
This is an electrode structure in which an O2-reactive ion plating film is formed.

【図2】本発明電極、従来電極の通電腐食結果を示すも
のである。
FIG. 2 shows the results of galvanic corrosion of the electrode of the present invention and the conventional electrode.

【図3】従来の電極構造を示す。FIG. 3 shows a conventional electrode structure.

【図4】従来の電極の腐食メカニズムの説明図である。FIG. 4 is an explanatory diagram of the corrosion mechanism of a conventional electrode.

【符号の説明】[Explanation of symbols]

1  SUS製電極母材 2  バルブ金属層 3  IrO2−Ta2O5塗布焼き付け被膜4  I
rO2塗布焼き付け被膜 5  クラック 6  絶縁性酸化物 7  IrO2反応性スパッタ被膜、又はIrO2反応
性蒸着被膜又はIr O2反応性イオンプレーティング被膜
1 SUS electrode base material 2 Valve metal layer 3 IrO2-Ta2O5 coating and baking film 4 I
rO2 applied baked coating 5 Cracks 6 Insulating oxide 7 IrO2 reactive sputter coating, or IrO2 reactive vapor deposition coating, or IrO2 reactive ion plating coating

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  電極母材表面にバルブ金属層を形成し
、そのバルブ金属層表面にIrO2反応性スパッタ被膜
を形成し更にその上にIrO2塗布焼き付け被膜を形成
した、またはバルブ金属層表面にIrO2塗布焼き付け
被膜を形成し更にその上にIrO2反応性スパッタ被膜
を形成したことを特徴とする不溶性電極。
Claim 1: A valve metal layer is formed on the surface of the electrode base material, an IrO2 reactive sputtering coating is formed on the surface of the valve metal layer, and an IrO2 coating and baking coating is further formed on the surface of the valve metal layer, or an IrO2 reactive coating is formed on the surface of the valve metal layer. An insoluble electrode characterized in that a coating and baking film is formed and an IrO2 reactive sputtering film is further formed thereon.
【請求項2】  電極母材表面にバルブ金属層を形成し
、そのバルブ金属層表面にIrO2反応性蒸着被膜を形
成し更にその上にIrO2塗布焼き付け被膜を形成した
、またはバルブ金属層表面にIrO2塗布焼き付け被膜
を形成し更にその上にIrO2反応性蒸着被膜を形成し
たことを特徴とする不溶性電極。
2. A valve metal layer is formed on the surface of the electrode base material, an IrO2 reactive vapor deposition film is formed on the surface of the valve metal layer, and an IrO2 coating and baking film is further formed on the surface of the valve metal layer, or an IrO2 reactive coating is formed on the surface of the valve metal layer. An insoluble electrode characterized in that a coating and baking film is formed, and an IrO2 reactive vapor deposition film is further formed thereon.
【請求項3】  電極母材表面にバルブ金属層を形成し
、そのバルブ金属層表面にIrO2反応性イオンプレー
ティング被膜を形成し更にその上にIrO2塗布焼き付
け被膜を形成した、またはバルブ金属層表面にIrO2
塗布焼き付け被膜を形成し更にその上にIrO2反応性
イオンプレーティング被膜を形成したことを特徴とする
不溶性電極。
3. A valve metal layer is formed on the surface of the electrode base material, an IrO2 reactive ion plating film is formed on the surface of the valve metal layer, and an IrO2 coating and baking film is further formed on the surface of the valve metal layer, or the surface of the valve metal layer is formed. to IrO2
An insoluble electrode characterized by forming a coating and baking film and further forming an IrO2 reactive ion plating film thereon.
JP6760891A 1990-11-26 1991-03-08 Insoluble electrode Withdrawn JPH04214899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6760891A JPH04214899A (en) 1990-11-26 1991-03-08 Insoluble electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31784190 1990-11-26
JP2-317841 1990-11-26
JP6760891A JPH04214899A (en) 1990-11-26 1991-03-08 Insoluble electrode

Publications (1)

Publication Number Publication Date
JPH04214899A true JPH04214899A (en) 1992-08-05

Family

ID=26408823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6760891A Withdrawn JPH04214899A (en) 1990-11-26 1991-03-08 Insoluble electrode

Country Status (1)

Country Link
JP (1) JPH04214899A (en)

Similar Documents

Publication Publication Date Title
US5435896A (en) Cell having electrodes of improved service life
US4349581A (en) Method for forming an anticorrosive coating on a metal substrate
US5059297A (en) Durable electrode for use in electrolysis and process for producing the same
US3773639A (en) Process for the deposition of metals or oxides on a metallic support by cathodic sputtering and applications thereof
US4456518A (en) Noble metal-coated cathode
US5593556A (en) Highly durable electrodes for electrolysis and a method for preparation thereof
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JP3116490B2 (en) Manufacturing method of anode for oxygen generation
JP3430479B2 (en) Anode for oxygen generation
JPH04214899A (en) Insoluble electrode
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JPH0499294A (en) Oxygen generating anode and its production
JP3045031B2 (en) Manufacturing method of anode for oxygen generation
JPH1161496A (en) Insoluble electrode and its production
JPH05209299A (en) Insoluble electrode and its production
JP2549962B2 (en) Iridium oxide insoluble electrode and method for producing the same
JP2920040B2 (en) Highly durable electrolytic electrode and method for producing the same
JPH0681198A (en) Insoluble electrode and its production
JPS6324083A (en) Production of insoluble anode
JP3431715B2 (en) Manufacturing method of spray-coated electrode with excellent durability
JPH06293998A (en) Insoluble iridium oxide coated electrode and its production
JPH06128781A (en) High durable electrode for electrolysis
JP2004323955A (en) Electrode for electrolysis, and manufacturing method therefor
CA1051514A (en) Storage battery plate with core of lighter metal
JPH06294000A (en) Insoluble iridium oxide coated electrode and its production

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514