JP2004323955A - Electrode for electrolysis, and manufacturing method therefor - Google Patents

Electrode for electrolysis, and manufacturing method therefor Download PDF

Info

Publication number
JP2004323955A
JP2004323955A JP2003123918A JP2003123918A JP2004323955A JP 2004323955 A JP2004323955 A JP 2004323955A JP 2003123918 A JP2003123918 A JP 2003123918A JP 2003123918 A JP2003123918 A JP 2003123918A JP 2004323955 A JP2004323955 A JP 2004323955A
Authority
JP
Japan
Prior art keywords
iridium
electrode
oxide
metal
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123918A
Other languages
Japanese (ja)
Inventor
Takao Uchida
隆夫 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wako Sangyo KK
Original Assignee
Wako Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Sangyo KK filed Critical Wako Sangyo KK
Priority to JP2003123918A priority Critical patent/JP2004323955A/en
Publication of JP2004323955A publication Critical patent/JP2004323955A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for electrolysis, which can be used for high-speed zinc plating, and has durability particularly to a counter current. <P>SOLUTION: The electrode for electrolysis comprises a substrate of a valve metal, an intermediate layer of metallic iridium covering the substrate surface, iridium oxides covering the surface of the intermediate layer, and a catalytic layer containing a stabilizer for a metallic oxide. The electrode for electrolysis is used as an anode 18 in a metal plating apparatus 11, and then even when the counter current flows and cathodic polarization occurs during the electrolysis, the electrode has the durability to the counter current given by the intermediate layer of the metallic iridium, has an electrode performance improved by the stabilizer for the metallic oxide, and enables a stable operation for a long term. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電解用電極及びその製造方法に関し、より詳細には工業用電解に使用する電解用陽極と製造方法、更に詳細には電解中に逆電流の流れる可能性のある、高速電気亜鉛メッキ用などに最適な電解用陽極並びにその製造方法に関する。
【0002】
【従来の技術】
高速亜鉛メッキ用電極に代表される電解用陽極として古くは、メッキ物質である亜鉛などの金属が使用されていた。ここでは、陽極から電解液に金属を補給しながら、陰極で前記金属をメッキ層として析出させる方法が採られており、陰極反応及び陽極反応共に同じ反応であるので、理論上メッキ液が常に一定になること、また理論分解電圧はゼロになり、省エネルギー化が図れること、などから前記亜鉛陽極は広く使用されてきた。
しかしながら実際には陽極では理論通りの溶解が起こるのに対して、陰極の電析は必ずしも理論通りには進行せず、電解液中の金属濃度が高くなる傾向があること、また陽極が消耗するに従って電極間距離が大きくなって行き、消費電力が常に変化するとともに、一定の電圧を保持するには常に電極間距離の調整を行わなければならないという問題があった。従って近年では不溶性で寸法変化のない電極を使用し、電解液の調整と通電を別に行う方法が採られるようになって来ている。
【0003】
つまり不溶性陽極として当初は、安定かつ安価な銅合金が使用されたが、銅合金はある程度の溶出があり、溶出する銅が製品やメッキ設備の汚染に繋がり、更に電解液自身も汚染するという問題があった。特に銅は重金属としての規制物質であり、その溶出は環境面でも重大問題であった。
この問題の対策として、基材にチタンまたはチタン合金などの弁金属を使用し、その表面に白金族金属酸化物を被覆したいわゆるDSAと呼ばれる電極が使用されるようになった。このDSAを陽極酸素発生用に使用する場合には、前記白金族金属酸化物として酸化イリジウムが使用され、これにより実質的に電極自身の形状変化が無くなり、安定した電流/電圧特性を得ることができるようになった。酸化イリジウムを電極物質とする電極では高電流で長時間の電解が可能になり、広く使用されている。
【0004】
この種の電極は特に高電流密度での安定性が高いことから、広く工業的に使用されるようになって来ていて、現在では実用価値の観点から標準的に使われている。
しかしながらこの種の電極の特徴として陽極として連続的に使用される限りは極めて優れた特性を示すものの、酸中で逆電流が流れると、つまり部分的であれ、また短時間であれ陰極として働き水素発生反応が起こると、電極の消耗が激しくなり、電極寿命を短くしてしまうという問題点があった。これを改良する手段として、特開2002−275697号公報は、製造時の熱分解温度を上昇させることにより、逆電流に強い電極を提案している。この技術は電極物質の安定化に利するものであるものの、熱分解による結晶成長によって電極を製造するものである。つまり前駆体(塩化物等の化合物)を熱分解し、揮発性物質や溶媒を熱で飛ばしながらその一部を酸素で置き換え、またそのときに結晶を新たに形成するというメカニズムであり、更に生成物は融体でないので生成物生成後の均一化は起こらず、必然的に多孔質になる。従って熱分解法で製造する限り多孔質となり、基材の保護が不十分になり、従来の熱分解法(酸化物法)はこの点において不利であった。
【0005】
一方金属を析出させるために電気メッキ法が提案され、この電気メッキ法を使用すると、前記熱分解法よりも緻密な電極物質層が得られる。つまり電気メッキ法では金属同士が繋がって成長するため、電着歪みの問題は残るものの全体を比較的緻密に被覆できる。また前記熱分解法を酸化物の代わりに金属にすると、酸化物と同様に多孔質に成り易く、還元により非常に小さな析出粒子が得られ、その粒子は活性で金属の上に金属の組織のハビットを有して成長して行くので酸化物より緻密になり、更に金属であるため陰分極時は酸化物より安定であるため、逆電流が生じ易い電極として有利になる。
前記以外に特開平9−125290号公報は、中間にプラズマ溶射による酸化物層を設け、実用的な電極を提案している。
逆電流が電極消耗に及ぼすメカニズムが明確でなく、それ故に前記公報で提案された技術の効果は実績によるのみで、理論的な解明はなされていないが、おそらく陰分極時の基材金属であるチタンの特性に依ると推測できる。つまり酸中ではチタンは腐食性となり、また水素を吸蔵して脆化を起こし易くなり、その結果腐食に至り電極物質の損耗に繋がっていた。
【0006】
【特許文献1】
特開平6−293999号公報(特許請求の範囲、段落0022〜0030、実施例1)
【0007】
【発明が解決しようとする課題】
前述した問題点、特に酸化イリジウムを触媒とする電極に係る問題点を解決するために、例えば特許文献1に開示されているように、基材と酸化イリジウム層間に金属イリジウム層を挿入した電極、つまり基材−金属イリジウム層−酸化イリジウム層の積層構造を有する電極が提案され、この提案では酸化イリジウム層の被覆をイオンプレーティングで行うようにしている。
この酸化イリジウム層のイオンプレーティングによる被覆の際に金属イリジウム層が存在しないと、つまり基材表面に直接酸化イリジウム層を形成すると、基材表面の金属例えばチタンが僅かではあるが酸化されて基材と酸化イリジウム層の界面に酸化チタンが形成されて通電を阻害することがある。特許文献1に記載の通り、基材と酸化イリジウム層間に金属イリジウム層が存在すると、基材表面の酸化が抑制されて通電阻害が防止される。
【0008】
しかしながらこのようにしてイオンプレーティングで製造された電極は、基材表面の酸化は防止される反面、本発明者らの検討によると、歪みが生じ易く、表面積が大きくならず、電解電圧が高く、更に消耗が激しいという欠点があった。
従ってこの金属イリジウム層−酸化イリジウム層の積層構造を有する電極は、基材表面の酸化防止という観点からは有用な電極ではあるが、基材表面に酸化イリジウムの単層を被覆した電極と比較して性能劣化が大き過ぎ、到底実用化できるものではなかった。またイオンプレーティングでは、酸化イリジウム単体であり、他の安定化剤との複合化ができず、その面での安定化も十分にできないという欠点があった。
従って本発明は、前述した基材表面に、金属イリジウム層−酸化イリジウム層の積層構造を被覆した電極を改良し、歪み発生や高電解電圧等の性能劣化を極力抑えて、基材表面の酸化を抑制して逆電流に耐性を有する電解用電極とその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、弁金属基材、該基材表面に被覆された金属イリジウム中間層、及び該中間層表面に被覆された酸化イリジウム及び金属酸化物安定剤を含有する触媒層を含んで成る電解用電極であり、金属酸化物安定剤として、酸化チタン、酸化タンタル及び酸化スズなどがある。又本発明方法は、弁金属基材表面に、還元剤を含むイリジウム化合物含有液を塗布し、熱分解により前記弁金属基材上に金属イリジウム中間層を形成し、該金属イリジウム中間層表面にイリジウム含有液を塗布し、酸化雰囲気中で熱分解を行って酸化イリジウムを含有する触媒層を形成することを特徴とする電解用電極の製造方法である。
【0010】
以下本発明を詳細に説明する。
金属イリジウムは陽分極時に金属状態でも安定で、酸化イリジウムほどの活性はないことが知られている。
弁金属基材−金属イリジウム中間層−酸化イリジウム含有触媒層の積層構造を有する本発明の酸素発生電解用電極では、触媒層が電解液とできるだけ接触して電解効率を上昇させるため、触媒層は通常多孔性である。従って金属イリジウム中間層が存在しないと、電解液が基材に接触して基材が腐食し易くなるのに対し、本発明では前記金属イリジウム中間層の存在により電解液が基材に接触するのが防止される。あるいは金属イリジウム中間層をある程度多孔質として酸化イリジウム層との親和性を向上させると共に表面の酸化イリジウムを含有する触媒層で実質的に封孔をし、かつ電極としての実表面積を極めて大きくする態様では、電解液が基材に接触する可能性が生じるが、この場合にも貴な金属イリジウムにより基材は防食される。これにより基材の水素化が防止され、更に逆電流が流れて電極が陰分極する場合にも金属イリジウムは安定で被覆の消耗が起こり難くなる。
金属イリジウム中間層を多孔質にする場合は、金属酸化物を多孔質にする場合と比較して多孔質の程度が小さく、より緻密な構造が得られる。つまり金属酸化物は通常熱分解被覆で生成し、この熱分解法では溶媒が揮散することと、前駆体の構成物質(例えば金属塩化物の塩素原子)が酸素と置き換わることから必然的に多孔質の程度が大きくなる。これに対し、本発明の金属イリジウム中間層は、金属−金属結合で形成され、金属同士の場合は相互拡散し易いために、より緻密な多孔質層が形成できる。即ち本発明の金属イリジウム中間層は、被覆形成時より緻密な多孔皮膜となり、その表面に形成される触媒層との親和性あるいは付着性を向上させるために有効となる。
【0011】
このように本発明により従来の酸素発生電極の問題点が解消され、下記特徴を有する電解用電極が提供できる。
1)電解液による基材の腐食を防止する。
2)金属イリジウム中間層は順電流/逆電流の両電流に対して耐久性を有し、逆電流が発生した場合の基材の腐食をほぼ完全に防止する。
3)電解は表面の酸化イリジウム層が行うので、その消耗が極めて小さく効果的である。酸化イリジウムの表面積を大きくできるため、逆電流時の電極物質に対する負荷を小さくすることができ、これによって電極消耗を更に小さくすることができる。
【0012】
しかしながら前述した通り、イオンプレーティング法で製造される弁金属基材−金属イリジウム層−酸化イリジウム層(触媒層)の積層構造を有する電解用電極は、逆電流に対する耐久性は十分であるが、歪みが生じ易く、表面積が大きくなり難く、電解電圧が高くなり易く、更に消耗が激しいという欠点があり、実用的な電解用電極とはなり難い。
本発明者らは、この電極の欠点を解消するために、2種類の手法を検討した。
第1に、表面の酸化イリジウム層に、他の金属酸化物(金属酸化物安定剤)を添加して電極物質の改質を図ることであり、第2に積層構造は従来と同じ弁金属基材−金属イリジウム中間層−酸化イリジウム層とし、イオンプレーティング法に代えて熱分解法により積層構造を作製することである。
【0013】
酸化イリジウム単独では、上記したように製法によっては前述した欠点が生じ易いのに対し、酸化イリジウムに他の金属酸化物である、例えば、酸化チタン、酸化タンタルや酸化スズ等を添加すると、この金属酸化物があたかも安定剤のように機能して酸化イリジウムを安定化し、歪みを生じ難くし、表面積を大きくし、電解電圧を低下させ、消耗も最小限に抑える、といった効果の内の少なくとも1つが達成できる。
次いで熱分解法で弁金属基材−金属イリジウム中間層−酸化イリジウム層を製造すると、イオンプレーティング法の場合と異なり、金属イリジウム中間層が緻密になって歪みが生じ難くなり、更に基材の保護を十分に行うことが可能になる。
【0014】
【発明の実施の形態】
本発明で使用する弁金属基材は、JIS1種又は2種の純チタンが最も好ましく使用されるが、電解液の条件によってはタンタルやニオブなどのより耐食性の高い弁金属を使用することも可能である。なお弁金属は、陽極として使用するときにはそのままでも表面が酸化してしまい、いわゆる不働体となって表面酸化物の電気抵抗から通電が困難になり、陰極としては金属としての作用により通電性が生じる、つまり電気の方向によって通電できたりできなかったりする弁のような役目をする金属であることから名付けられたもので、チタン、ジルコニウム、タンタル、ニオブのような4族及び5族の金属が知られている。またこれらの金属の合金も弁金属と同様の特性を有する。
基材の形状は目的の応じて決めれば良く、例えば高速亜鉛連続メッキ(EGL)などでは板状の基材が使用されるが、他の用途ではメッシュや穴あき板などが使われる。
【0015】
このような特性を有する金属又は合金から成る基材に必要に応じて前処理を施しても良い。前記前処理は特に限定されないが、基材表面を荒らして実表面積を増加させ、更に酸洗によって表面付着物やブラスト残渣を除去すると共に活性化することが好ましい。
次いでこの基材表面に金属イリジウム中間層を形成する。この中間層形成は、電気メッキで行っても良いが通常は熱分解法による。例えば塩化イリジウム酸などのイリジウム化合物のアルコール溶液にラベンダーオイルなどの還元剤を加えた塗布液を作製し、この塗布液を基材表面に塗布し、乾燥後、ガスバーナーなどを使用して実質的に還元雰囲気になるようにしながら加熱分解(火炎熱分解)を行って、基材表面に金属イリジウム中間層を析出させる。前記熱分解は雰囲気炉などの加熱炉で行っても良く、この場合はできるだけ酸素を断つように炉中に中箱を入れその中に不活性ガスを流すなどの工夫を施すことが望ましい。
【0016】
この他に、前記溶液あるいは、イリジウムの樹脂酸塩のアルコール溶液を基材に塗布し、乾燥後にマッフル炉などで熱分解を行い、金属イリジウムとして析出させることもできる。例えばイリジウムメルカプタンのエタノール溶液を基材表面に塗布し、乾燥後、450℃から600℃で熱分解する。塗布−熱分解を3回から10回程度繰り返すことにより金属光沢を有する金属イリジウム中間層が形成される。
このようにして析出する金属イリジウムは、互いに周囲の化合物基を分解しながら互いに結合して金属イリジウム中間層を構成するためか、ほぼ完全に基材表面を被覆するようになる。更にイリジウムは水素を殆ど透過させないので、金属イリジウム中間層表面で水素発生が起こっても基材に到達することは殆どない。更に金属イリジウムは化学的に安定で、通常の無機酸を含むメッキ液中では実質的に腐食することがなく、これにより弁金属基材が良好に保護される。
更に弁金属基材基材表面に直接酸化物層を形成する場合には、前述の通りチタン等の弁金属が酸化され易く、短期間の電解で通電不能になることが多い。これに対し、本発明では弁金属基体表面に金属イリジウム中間層を形成していて、この際には金属酸化物の形成の場合の酸化性雰囲気とは異なり、実質的な還元雰囲気で行うため、弁金属基体の表面は実質的に酸化されず通電に悪影響を及ぼさない。
【0017】
次いでこのように形成した金属イリジウム中間層表面に酸化イリジウムを含有する触媒層を被覆する。
この触媒層を構成する酸化物は、前述の通り酸化イリジウム単独でも良いが、その場合には、熱分解法により金属イリジウム中間層及び触媒層を形成する。
触媒層が酸化イリジウム及び金属酸化物安定剤を含有する場合には、製法は限定されないが、ここでは熱分解法を例としてその製法について説明する。
代表的な酸化イリジウムと金属酸化物安定剤の組合わせは、酸化イリジウムと酸化タンタルの複合酸化物であり、それらの組成比は特に限定されないが、酸化イリジウム:酸化タンタル=1:4から4:1(モル比)が望ましく、1:1から4:1が特に望ましい。
【0018】
触媒層を形成するには、まずこのような組成比を有する塗布液を準備する。この塗布液としては、例えば塩化タンタルの10%塩酸溶液に塩化イリジウム酸を所定量溶解した液、或いはブチルタンタレートなどのタンタルアルコキシドのアルコール溶液を僅かな塩酸で酸性にし、この溶液に、塩酸イリジウムや塩化イリジウム酸を所定量溶解した液などがある。
これらの塗布液は目的に応じて選択すれば良く、一般に高速亜鉛メッキのような場合には、酸濃度が比較例低く、酸による腐食力が小さいため、アルコキシドを含む溶液を使用することが望ましい。これに対し、銅箔製造用など酸濃度が高い電解液中で使う場合には、揮発性物質が少なく、より密な被覆の生成が期待できる塩化物溶液を使用することが望ましい。
【0019】
次いでこのような塗布液を金属イリジウム中間層表面に塗布し、熱分解により金属化合物を金属酸化物に変換する。熱分解条件は、酸化イリジウムが安定なIrOとして、またタンタル成分が酸化イリジウム中に一部固溶し、あるいは酸化タンタルが無定型として存在するような状態を形成できれば良く、典型的には前記塗布液を塗布し乾燥後、空気中などの酸化雰囲気中、450℃から550℃で5分から15分程度熱分解して黒色の酸化物被覆を得る。この塗布−熱分解を繰り返すことにより安定中に酸化物から成る触媒層が得られる。なおこの塗布−熱分解の過程で、酸化イリジウムを含む触媒層が得られると共に、下地の金属イリジウム中間層の表面が酸化されてより安定で付着力の優れた触媒層が形成される。
【0020】
次に金属メッキに本発明の電解用電極を使用する例を添付図面に基づいて説明する。
図1は本発明の電解用電極を装着した金属メッキ装置を例示する概略縦断面図、図2は図1のA−A線矢示図である。
【0021】
金属メッキ装置11は、金属メッキ槽12内にメッキ用金属化合物を溶解するメッキ液13を収容している。被メッキシート14の基端側は、送り出しロール15に巻回され、このロール15からメッキ液13中に送り出され、1対のローラ16及び17で案内されて板状の陽極18及び陰極19の間を通り、前記金属化合物が陰極還元されて被メッキシート14の陰極19側に金属が析出してメッキされ、この被メッキシート14が巻き取りロール20に巻き取られてメッキが完了する。前記陽極18は、弁金属基材上に金属イリジウム中間層を、更にその表面に酸化イリジウムと金属酸化物安定剤の複合酸化物から成る触媒層を被覆することにより構成されている。
【0022】
この金属メッキ装置11では、図2に示すように、装置11内に供給されるメッキ対象である被メッキシート14の幅は陽極18の幅とほぼ等しい場合(実線)、陽極18の幅より少し短い場合(点線)或いは陽極18の幅の約半分である場合(一点鎖線)等様々である。図2の実線の場合には殆ど逆電流は流れないが、点線及び一点鎖線の場合には、陽極18の幅に対してメッキ対象の被メッキシート14の幅が狭く、被メッキシート14と重なっていない陽極18の部分は電流供給に寄与しないため、電流が流れず、通常の場合とは逆に陰分極して逆電流が流れ易くなっている。
従来のメッキ用電極では、逆電流に対する耐久性が乏しく、逆電流が流れると触媒物質が剥離又は溶出したりして極端に電極寿命が短くなっていた。これに対し図示の陽極18は上記の通りの構成を有し逆電流に対する優れた耐久性を有するため、逆電流が生じる環境で使用を継続しても長期間操業を実施できる。
【0023】
次に本発明の電解用電極の実施例に関し説明するが、該実施例は本発明を限定するものではない。
【0024】
[実施例1]
厚さ1mmのチタン板をグリッドブラストで粗面化し、平均粗度JIS Ra=10μmとし、その表面を沸騰20%塩酸で酸処理を行って活性化し弁金属基材とした。
塩化イリジウム酸のブチルアルコール溶液にラベンダーオイルを前記塩化イリジウム酸と同量溶解した塗布液を作製し、この塗布液を前記弁金属基材表面に塗布し、室温で10分間乾燥した後、ブタンガスバーナーで表面から加熱及び熱分解を行った。加熱は、加熱開始から基材表面が黒白色になるまでの時間の2倍の時間行った。この塗布−加熱を10回繰り返し、見掛け厚さが2μmのやや黒色がかった白色の金属イリジウム中間層の被覆を得た。
次に、Ir(イリジウム)/Ta(タンタル)=2/1となるように配合した塩化イリジウムと塩化タンタルの希塩酸水溶液を塗布液として、前記金属イリジウム中間層表面に塗布し、室温で乾燥した後、更に60℃で10分間乾燥し、510℃の空気を流通させたマッフル炉で10分間熱分解を行った。冷却後、同じ操作を繰り返した。15回の繰り返しにより、表面に酸化イリジウムと酸化タンタルから成る複合酸化物の被覆を形成して電解用電極とした。このようにして作製した複合酸化物層の厚さは見掛け上3μmであり、金属イリジウム中間層と合わせて5μmであった。
【0025】
この電解用電極を試料電極として使用して次の通りの条件で電解試験を行った。
60℃の150g/リットルの硫酸ナトリウム溶液に硫酸を加えてpH=1.8とした水溶液を電解液とした。白金板を対極とし、前記試料電極を陽極とし、電流密度3A/cmで5時間ごとに10分間電流を逆転させて電解を行った。電解電圧は5.8Vであった。これにより陽極として通電できなくなるまでに2800時間(全電解時間)の電解を行うことができた。
【0026】
[比較例1]
実施例1と同じようにして基材を準備し、金属イリジウム中間層の代わりに、前記基材表面に直接チタン/タンタル=8/1の比率から成る複合酸化物被覆を形成して中間層とした。この中間層の表面に、実施例1と同じ酸化イリジウム/酸化タンタルの複合酸化物層を形成して試料電極とした。被覆のための操作は25回繰り返し、単位面積当たりのイリジウム被覆の総量が同じになるようにした。
この試料電極を使用して実施例1と同じ条件で電解試験を行ったところ、電解電圧は5.9Vで実施例1とほぼ同じであったが、電極の寿命は1200時間であった。
【0027】
[実施例2]
酸化イリジウムと酸化タンタルから成る複合酸化物の被覆の代わりに、同モル量の酸化イリジウムのみを用いて酸化イリジウム層(触媒層)を形成したこと以外は、実施例1と同じ条件で試料電極を作製した。
この試料電極を使用して実施例1と同じ条件で電解試験を行ったところ、電解電圧は6.2Vで電極の寿命は400時間であった。
【0028】
[比較例2]
坩堝にイリジウムを入れ、電子ビームで溶解して蒸発させ、さらに坩堝直上のイオン化電極により、50V及び10Aの条件でイオン化させた。
そして、実施例1と同じ基材をイリジウムと対向して設置し、バイアス電圧500V、成膜速度10μm/秒で真空中においてイリジウム成膜して厚さ2μmの金属イリジウム中間層を成膜した。次いでその表面上に酸素雰囲気下8×10−4Torrで酸化イリジウムを被覆して試料電極とした。なお成膜温度は金属イリジウム中間層及び酸化イリジウム被覆とも500℃にした。
この試料電極を使用して実施例1と同じ条件で電解試験を行ったところ、電解電圧は6.3Vで電極の寿命は220時間であった。
【0029】
[実施例3]
基材をチタンの代わりにタンタルとして実施例1とほぼ同様の条件で試料電極を作製した。
但しタンタルは酸化され易いので、最初の5回の金属イリジウムの被覆の際には黒白色に被膜の色が変わる時点で次の被覆形成に移るようにして基材の酸化を防止した。10回の被覆が終了した時点で510℃のマッフル炉で1時間焼鈍を行った。複合酸化物層形成用の塗布液はイリジウムとタンタルのモル比は実施例1と同じにしたが、原材料は塩化イリジウムとブチルタンタレートとし、溶媒はブチルアルコールとした。熱分解温度は500℃とした。
得られた試料電極を使用して実施例1と同じ条件で電解試験を行ったところ、電解電圧は5.6Vで電極の寿命は3200時間であった。
【0030】
[実施例4]
実施例1と同様に準備した基材表面に、塩化チタンと塩化タンタルの希塩酸溶液を塗布し乾燥後、マッフル炉中で540℃、10分間熱分解を行った。この操作を4回繰り返して前記基材表面に、酸化チタン/酸化タンタル=9:1(モル比)で金属チタン及び金属タンタル換算で約1g/mとなるように複合酸化物層を熱分解により形成した。
大研工業製のイリジウム樹脂酸塩をエチルアルコールとテレピン油の1:1混合液を溶媒として薄めた液を塗布液とし、この塗布液を前記複合酸化物層の表面に塗布し、乾燥後、500℃のマッフル炉中で熱分解を行い、やや灰色を帯びた被覆が得られた。これを6回繰り返して実施例1と同じ量の金属イリジウム中間層を形成した。
この表面に実施例1と同じ条件で酸化イリジウム/酸化タンタルの複合酸化物被膜を形成した。
得られた試料電極を使用して実施例1と同じ条件で電解試験を行ったところ、電解電圧は5.7Vで電極の寿命は2450時間であった。
【0031】
[実施例5]
表面の電極物質の組成をイリジウム/タンタル=8/2(モル比)としたこと以外は実施例4と同様に試料電極を作製した。
得られた試料電極を使用して実施例1と同じ条件で電解試験を行ったところ、電解電圧は5.6Vで電極の寿命は2550時間であった。
【0032】
【発明の効果】
本発明は、弁金属基材、該基材表面に被覆された金属イリジウム中間層、及び該中間層表面に被覆された酸化イリジウム及び金属酸化物安定剤を含有する触媒層を含んで成る電解用電極、及び弁金属基材表面に、還元剤を含むイリジウム化合物含有液を塗布し、熱分解により前記弁金属基材上に金属イリジウム中間層を形成し、該金属イリジウム中間層表面にイリジウム含有液を塗布し、酸化雰囲気中で熱分解を行って酸化イリジウムを含有する触媒層を形成することを特徴とする電解用電極の製造方法である。
【0033】
本発明では、金属イリジウム中間層を有する電解用電極を提供できる。
高電流密度での酸素発生を伴う工業電解、すなわち高速亜鉛メッキや銅箔製造用の高速電解で使用する陽極でしばしば問題になる逆電流や電流切断時の電流逆転、更に逆電流ではなくても強い腐食雰囲気下での工業電解では基材材料の腐食が大きな問題になっている。
本発明の前記電解用電極を使用すると、触媒層中の金属酸化物安定剤により、あるいは本発明方法により製造される電解用電極中の金属イリジウム中間層の高緻密性により、前記腐食をほぼ完全に防止でき、更に酸化物系の安定した電解物質(触媒層)により高電流密度下でも十分に長寿命の電解用電極を提供できる。
【0034】
又従来の熱分解法による電解用電極の製造では、被覆形成の際に酸化による被覆層の剥離を起こし易かったが、本発明では中間層である金属イリジウムが適切な還元剤として機能するために、基材の保護がより確実になり、最適な条件で表面の触媒層の酸化物被覆を形成することが可能になっている。
このように本発明では、逆電流に耐えられ、更に腐食雰囲気で使用しても長寿命である電解用電極が提供できる。
【図面の簡単な説明】
【図1】本発明の電解用電極を装着した金属メッキ装置を例示する概略縦断面図。
【図2】図1のA−A線矢示図。
【符号の説明】
11 金属メッキ装置
12 金属メッキ槽
13 メッキ液
14 被メッキシート
18 陽極
19 陰極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode for electrolysis and a method for manufacturing the same, and more particularly, to an anode for electrolysis used for industrial electrolysis and a method for manufacturing the same, and more particularly, to high-speed electrogalvanization in which a reverse current may flow during electrolysis. The present invention relates to an anode for electrolysis which is most suitable for use and a method for producing the anode.
[0002]
[Prior art]
As an anode for electrolysis typified by a high-speed galvanizing electrode, a metal such as zinc as a plating substance has been used. Here, a method is employed in which the metal is deposited as a plating layer at the cathode while replenishing the metal from the anode to the electrolytic solution. Since both the cathodic reaction and the anodic reaction are the same, the plating solution is theoretically always constant. The zinc anode has been widely used because of the fact that the theoretical decomposition voltage becomes zero and energy saving can be achieved.
However, in practice, the theoretical dissolution occurs at the anode, but the electrodeposition of the cathode does not necessarily proceed as expected, the metal concentration in the electrolyte tends to increase, and the anode is consumed. Accordingly, there is a problem that the inter-electrode distance increases, the power consumption always changes, and the inter-electrode distance must be constantly adjusted to maintain a constant voltage. Therefore, in recent years, a method has been adopted in which an insoluble electrode having no dimensional change is used and the adjustment of the electrolytic solution and the energization are performed separately.
[0003]
In other words, initially, a stable and inexpensive copper alloy was used as the insoluble anode, but the copper alloy elutes to some extent, and the eluted copper leads to contamination of products and plating equipment, and furthermore, the electrolytic solution itself is also contaminated. was there. In particular, copper is a controlled substance as a heavy metal, and its elution has been a serious environmental problem.
As a measure against this problem, an electrode called a so-called DSA in which a valve metal such as titanium or a titanium alloy is used as a base material and the surface thereof is coated with a platinum group metal oxide has come to be used. When this DSA is used for anodic oxygen generation, iridium oxide is used as the platinum group metal oxide, whereby substantially no change in the shape of the electrode itself is obtained, and stable current / voltage characteristics can be obtained. Now you can. Electrodes using iridium oxide as an electrode material enable high-current electrolysis for a long time and are widely used.
[0004]
This kind of electrode has been widely used industrially because of its high stability particularly at high current density, and is now used as standard from the viewpoint of practical value.
However, this type of electrode exhibits extremely excellent characteristics as long as it is used continuously as an anode.However, when a reverse current flows in an acid, that is, it functions as a cathode even partially or for a short time, hydrogen When the generated reaction occurs, there is a problem in that the electrode is greatly consumed and the life of the electrode is shortened. As a means for improving this, Japanese Patent Application Laid-Open No. 2002-275697 proposes an electrode that is resistant to reverse current by increasing the thermal decomposition temperature during production. Although this technique is useful for stabilizing the electrode material, it is used for producing an electrode by crystal growth by thermal decomposition. In other words, it is a mechanism in which the precursor (compound such as chloride) is thermally decomposed and a part of the volatile substance or solvent is replaced with oxygen while being blown off by heat, and a new crystal is formed at that time. Since the product is not a melt, homogenization does not occur after the product is formed, and the material is necessarily porous. Therefore, as long as it is manufactured by the thermal decomposition method, it becomes porous, and the protection of the base material becomes insufficient, and the conventional thermal decomposition method (oxide method) is disadvantageous in this point.
[0005]
On the other hand, an electroplating method has been proposed for depositing a metal. When this electroplating method is used, a denser electrode material layer can be obtained than in the above-mentioned pyrolysis method. That is, in the electroplating method, the metals are connected to each other and grow, so that although the problem of electrodeposition distortion remains, the whole can be covered relatively densely. Further, when the thermal decomposition method is performed using a metal instead of an oxide, the oxide tends to be porous similarly to the oxide, and very small precipitated particles are obtained by reduction, and the particles are active and have a metal structure on the metal. Since it grows with habits, it becomes denser than oxide, and since it is a metal, it is more stable than oxide at the time of negative polarization, so that it is advantageous as an electrode in which reverse current easily occurs.
In addition to the above, JP-A-9-125290 proposes a practical electrode in which an oxide layer is formed by plasma spraying in the middle.
The mechanism by which the reverse current affects the electrode wear is not clear, and therefore the effect of the technology proposed in the above publication is based only on results, and has not been theoretically elucidated, but is probably the base metal at the time of negative polarization It can be estimated that it depends on the properties of titanium. In other words, titanium becomes corrosive in an acid, and easily absorbs hydrogen to cause embrittlement. As a result, corrosion occurs, leading to wear of the electrode material.
[0006]
[Patent Document 1]
JP-A-6-293999 (Claims, paragraphs 0022 to 0030, Example 1)
[0007]
[Problems to be solved by the invention]
In order to solve the above-mentioned problems, particularly problems relating to electrodes using iridium oxide as a catalyst, for example, as disclosed in Patent Document 1, an electrode in which a metal iridium layer is inserted between a substrate and an iridium oxide layer, That is, an electrode having a laminated structure of a base material, a metal iridium layer, and an iridium oxide layer has been proposed. In this proposal, coating of the iridium oxide layer is performed by ion plating.
If the metal iridium oxide layer is not present during the coating of the iridium oxide layer by ion plating, that is, if the iridium oxide layer is formed directly on the surface of the substrate, the metal on the surface of the substrate, such as titanium, is slightly oxidized to a small extent. Titanium oxide may be formed at the interface between the material and the iridium oxide layer, which may impede energization. As described in Patent Literature 1, when a metal iridium layer exists between the base material and the iridium oxide layer, oxidation of the base material surface is suppressed, and conduction inhibition is prevented.
[0008]
However, the electrode manufactured by ion plating in this way prevents oxidation of the substrate surface, but according to the present inventors' studies, it is easy for distortion to occur, the surface area does not increase, and the electrolytic voltage is high. However, there is a drawback that wear is severe.
Therefore, although the electrode having the laminated structure of the metal iridium layer and the iridium oxide layer is a useful electrode from the viewpoint of preventing oxidation of the substrate surface, it is compared with an electrode having the substrate surface coated with a single layer of iridium oxide. As a result, the performance deteriorated too much, and could not be put to practical use at all. In addition, ion plating is disadvantageous in that it is iridium oxide alone, cannot be combined with another stabilizer, and cannot be sufficiently stabilized in that aspect.
Therefore, the present invention improves the electrode in which the above-mentioned substrate surface is coated with a laminated structure of a metal iridium layer and an iridium oxide layer, and suppresses deterioration of performance such as generation of distortion and high electrolytic voltage as much as possible, thereby oxidizing the surface of the substrate. It is an object of the present invention to provide an electrode for electrolysis having a resistance to reverse current by suppressing the occurrence of a reverse current and a method for producing the same.
[0009]
[Means for Solving the Problems]
The present invention relates to an electrolytic solution comprising a valve metal substrate, a metal iridium intermediate layer coated on the surface of the substrate, and a catalyst layer containing iridium oxide and a metal oxide stabilizer coated on the surface of the intermediate layer. The electrode is a metal oxide stabilizer such as titanium oxide, tantalum oxide, and tin oxide. Further, the method of the present invention comprises applying an iridium compound-containing liquid containing a reducing agent to the surface of the valve metal substrate, forming a metal iridium intermediate layer on the valve metal substrate by thermal decomposition, and forming a metal iridium intermediate layer on the surface of the metal iridium intermediate layer. A method for producing an electrode for electrolysis, comprising applying an iridium-containing liquid and performing thermal decomposition in an oxidizing atmosphere to form a catalyst layer containing iridium oxide.
[0010]
Hereinafter, the present invention will be described in detail.
It is known that metal iridium is stable even in a metal state at the time of anodic polarization, and is not as active as iridium oxide.
In the electrode for oxygen generation electrolysis of the present invention having a laminated structure of a valve metal base material-a metal iridium intermediate layer-an iridium oxide-containing catalyst layer, the catalyst layer is brought into contact with the electrolytic solution as much as possible to increase the electrolysis efficiency. It is usually porous. Therefore, when the metal iridium intermediate layer is not present, the electrolyte comes into contact with the base material, and the base material is easily corroded, whereas in the present invention, the presence of the metal iridium intermediate layer causes the electrolyte solution to come into contact with the base material. Is prevented. Or a mode in which the metal iridium intermediate layer is made porous to some extent to improve the affinity with the iridium oxide layer, and the surface is substantially sealed with a catalyst layer containing iridium oxide, and the actual surface area as an electrode is extremely large. In this case, there is a possibility that the electrolytic solution comes into contact with the base material. In this case, however, the noble metal iridium protects the base material. This prevents the base material from being hydrogenated, and furthermore, the metal iridium is stable and the coating is less likely to be consumed even when a reverse current flows and the electrode is negatively polarized.
When the metal iridium intermediate layer is made porous, the degree of porosity is smaller than when the metal oxide is made porous, and a more dense structure can be obtained. In other words, metal oxides are usually produced by thermal decomposition coating, and in this thermal decomposition method, the solvent is volatilized, and the constituents of the precursor (for example, chlorine atoms of the metal chloride) are replaced by oxygen, which inevitably results in a porous material. The degree of is increased. On the other hand, the metal iridium intermediate layer of the present invention is formed by a metal-metal bond. In the case of metal, the metal iridium easily diffuses with each other, so that a denser porous layer can be formed. That is, the metal iridium intermediate layer of the present invention becomes a dense porous film when the coating is formed, and is effective for improving the affinity or adhesion to the catalyst layer formed on the surface.
[0011]
As described above, the problems of the conventional oxygen generating electrode are solved by the present invention, and an electrode for electrolysis having the following characteristics can be provided.
1) Prevent corrosion of the substrate by the electrolyte.
2) The metal iridium intermediate layer has durability against both forward current and reverse current, and almost completely prevents corrosion of the base material when a reverse current occurs.
3) Since the electrolysis is performed on the iridium oxide layer on the surface, the consumption is extremely small and effective. Since the surface area of iridium oxide can be increased, the load on the electrode material at the time of reverse current can be reduced, thereby further reducing electrode consumption.
[0012]
However, as described above, an electrode for electrolysis having a laminated structure of a valve metal substrate, a metal iridium layer, and an iridium oxide layer (catalyst layer) manufactured by an ion plating method has sufficient durability against a reverse current, Distortion is likely to occur, the surface area is not easily increased, the electrolysis voltage is likely to be increased, and further, there is a drawback that exhaustion is severe, and it is hard to be a practical electrode for electrolysis.
The present inventors have studied two types of techniques in order to eliminate the disadvantages of this electrode.
The first is to improve the electrode material by adding another metal oxide (metal oxide stabilizer) to the iridium oxide layer on the surface. Second, the laminated structure is the same as the conventional valve metal base. That is, a laminated structure is formed by using a material, a metal iridium intermediate layer, and an iridium oxide layer by a thermal decomposition method instead of the ion plating method.
[0013]
While iridium oxide alone tends to cause the above-mentioned disadvantages depending on the production method as described above, when other metal oxides such as titanium oxide, tantalum oxide and tin oxide are added to iridium oxide, this metal At least one of the effects that the oxide functions as a stabilizer to stabilize iridium oxide, reduce distortion, increase surface area, reduce electrolysis voltage, and minimize consumption. Can be achieved.
Then, when the valve metal base material-metal iridium intermediate layer-iridium oxide layer is manufactured by a thermal decomposition method, unlike the case of the ion plating method, the metal iridium intermediate layer becomes dense and hardly generates distortion, and furthermore, the base material It is possible to provide sufficient protection.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
As the valve metal base material used in the present invention, JIS Class 1 or 2 pure titanium is most preferably used, but a valve metal having higher corrosion resistance such as tantalum or niobium may be used depending on the conditions of the electrolytic solution. It is. In addition, when used as an anode, the valve metal oxidizes the surface even as it is, so it becomes a so-called passive body, and it becomes difficult to conduct electricity from the electric resistance of the surface oxide, and as a cathode, conductivity occurs due to the action as a metal That is, it is named because it functions as a valve that can or cannot be energized depending on the direction of electricity, and metals of Group 4 and Group 5 such as titanium, zirconium, tantalum, and niobium are known. Have been. Also, alloys of these metals have the same characteristics as valve metals.
The shape of the base material may be determined according to the purpose. For example, a plate-like base material is used in high-speed zinc continuous plating (EGL), but a mesh or a perforated plate is used in other applications.
[0015]
A pretreatment may be applied to a substrate made of a metal or an alloy having such characteristics as required. The pretreatment is not particularly limited, but it is preferable to roughen the surface of the base material to increase the actual surface area, and to activate and remove acid deposits and blast residues by pickling.
Next, a metal iridium intermediate layer is formed on the surface of the substrate. This intermediate layer may be formed by electroplating, but is usually formed by a thermal decomposition method. For example, a coating solution is prepared by adding a reducing agent such as lavender oil to an alcohol solution of an iridium compound such as iridium chloride, and the coating solution is applied to the substrate surface, dried, and then substantially dried using a gas burner or the like. In this case, thermal decomposition (flame pyrolysis) is performed while reducing the temperature to a reducing atmosphere to deposit a metal iridium intermediate layer on the substrate surface. The thermal decomposition may be performed in a heating furnace such as an atmosphere furnace. In this case, it is desirable to take measures such as placing an inner box in the furnace so as to cut off oxygen as much as possible and flowing an inert gas therein.
[0016]
Alternatively, the above solution or an alcohol solution of iridium resinate may be applied to a substrate, dried and then thermally decomposed in a muffle furnace or the like to precipitate as metal iridium. For example, an ethanol solution of iridium mercaptan is applied to the surface of the substrate, dried, and then thermally decomposed at 450 to 600 ° C. The coating-pyrolysis is repeated about three to ten times to form a metallic iridium intermediate layer having metallic luster.
The metal iridium precipitated in this manner almost completely covers the surface of the base material, probably because the metal iridium bonds to each other while decomposing the compound groups around the metal iridium to form a metal iridium intermediate layer. Furthermore, since iridium hardly transmits hydrogen, even if hydrogen is generated on the surface of the metal iridium intermediate layer, it hardly reaches the substrate. Furthermore, metal iridium is chemically stable and does not substantially corrode in a plating solution containing a common inorganic acid, thereby providing good protection of the valve metal substrate.
Furthermore, when an oxide layer is formed directly on the surface of a valve metal substrate, as described above, valve metals such as titanium are easily oxidized, and in many cases, electricity cannot be supplied by electrolysis for a short period of time. On the other hand, in the present invention, the metal iridium intermediate layer is formed on the surface of the valve metal base, and in this case, unlike the oxidizing atmosphere in the case of forming a metal oxide, it is performed in a substantial reducing atmosphere. The surface of the valve metal substrate is not substantially oxidized and does not adversely affect the current flow.
[0017]
Next, the catalyst layer containing iridium oxide is coated on the surface of the metal iridium intermediate layer thus formed.
The oxide constituting the catalyst layer may be iridium oxide alone as described above, but in that case, the metal iridium intermediate layer and the catalyst layer are formed by a thermal decomposition method.
When the catalyst layer contains iridium oxide and a metal oxide stabilizer, the production method is not limited, but here, the production method will be described using a thermal decomposition method as an example.
A typical combination of iridium oxide and a metal oxide stabilizer is a composite oxide of iridium oxide and tantalum oxide, and their composition ratio is not particularly limited, but iridium oxide: tantalum oxide = 1: 4 to 4: 1 (molar ratio) is desirable, and 1: 1 to 4: 1 is particularly desirable.
[0018]
To form the catalyst layer, first, a coating liquid having such a composition ratio is prepared. As this coating solution, for example, a solution obtained by dissolving a predetermined amount of iridic acid in a 10% hydrochloric acid solution of tantalum chloride or a tantalum alkoxide alcohol solution such as butyl tantalate is acidified with a slight amount of hydrochloric acid. And a solution obtained by dissolving a predetermined amount of iridic acid chloride.
These coating solutions may be selected according to the purpose. In general, in the case of high-speed galvanizing, the acid concentration is comparatively low, and the corrosiveness due to the acid is small. Therefore, it is desirable to use a solution containing an alkoxide. . On the other hand, when used in an electrolytic solution having a high acid concentration, such as for the production of copper foil, it is desirable to use a chloride solution which contains few volatile substances and can be expected to form a denser coating.
[0019]
Next, such a coating liquid is applied to the surface of the metal iridium intermediate layer, and the metal compound is converted into a metal oxide by thermal decomposition. The thermal decomposition conditions are such that iridium oxide is stable IrO 2 As long as the tantalum component is partially dissolved in iridium oxide, or a state in which tantalum oxide is present as an amorphous type may be formed.Typically, the coating solution is applied and dried, and then dried. Thermal decomposition at 450 ° C. to 550 ° C. for about 5 to 15 minutes in an oxidizing atmosphere to obtain a black oxide coating. By repeating this coating and thermal decomposition, a catalyst layer composed of an oxide can be obtained during stabilization. In the course of the coating and thermal decomposition, a catalyst layer containing iridium oxide is obtained, and the surface of the underlying metal iridium intermediate layer is oxidized to form a more stable catalyst layer having excellent adhesion.
[0020]
Next, an example in which the electrode for electrolysis of the present invention is used for metal plating will be described with reference to the accompanying drawings.
FIG. 1 is a schematic vertical sectional view illustrating a metal plating apparatus equipped with an electrode for electrolysis of the present invention, and FIG. 2 is a view taken along line AA of FIG.
[0021]
The metal plating apparatus 11 contains a plating solution 13 for dissolving a metal compound for plating in a metal plating tank 12. The base end side of the sheet to be plated 14 is wound around a feed roll 15, fed out of the roll 15 into a plating solution 13, guided by a pair of rollers 16 and 17, and formed into a plate-shaped anode 18 and a cathode 19. Through the gap, the metal compound is subjected to the cathodic reduction to deposit metal on the cathode 19 side of the sheet to be plated 14 and plated, and the sheet to be plated 14 is wound up by a take-up roll 20 to complete the plating. The anode 18 is constituted by coating a metal iridium intermediate layer on a valve metal base material, and further covering a surface thereof with a catalyst layer composed of a composite oxide of iridium oxide and a metal oxide stabilizer.
[0022]
In the metal plating apparatus 11, as shown in FIG. 2, when the width of the sheet to be plated 14 supplied to the apparatus 11 is substantially equal to the width of the anode 18 (solid line), it is slightly smaller than the width of the anode 18. There are various cases such as a short case (dotted line) and a case where the width is about half the width of the anode 18 (dashed line). In the case of the solid line in FIG. 2, almost no reverse current flows, but in the case of the dotted line and the dashed line, the width of the sheet to be plated 14 is narrower than the width of the anode 18 and overlaps with the sheet to be plated 14. Since the portion of the anode 18 which does not contribute to the current supply, no current flows, and the reverse current easily flows due to the negative polarization contrary to the normal case.
Conventional plating electrodes have poor durability against a reverse current, and when the reverse current flows, the catalyst material is peeled off or eluted, resulting in an extremely short electrode life. On the other hand, the illustrated anode 18 has the above-described configuration and has excellent durability against the reverse current, so that the operation can be performed for a long time even when the anode 18 is continuously used in an environment where the reverse current occurs.
[0023]
Next, examples of the electrode for electrolysis of the present invention will be described, but the examples do not limit the present invention.
[0024]
[Example 1]
A titanium plate having a thickness of 1 mm was roughened by grid blasting to have an average roughness of JIS Ra = 10 μm, and the surface was activated by an acid treatment with boiling 20% hydrochloric acid to obtain a valve metal substrate.
A coating solution was prepared by dissolving lavender oil in the same amount as the iridic acid chloride in a butyl alcohol solution of iridic acid chloride. This coating solution was applied to the surface of the valve metal substrate, dried at room temperature for 10 minutes, and then heated with a butane gas burner. Heating and thermal decomposition from the surface. The heating was performed for twice the time from the start of heating to the time when the surface of the base material became black and white. This coating-heating was repeated 10 times to obtain a coating of a slightly blackish white metal iridium intermediate layer having an apparent thickness of 2 μm.
Next, using a dilute hydrochloric acid aqueous solution of iridium chloride and tantalum chloride mixed so that Ir (iridium) / Ta (tantalum) = 2/1 as a coating solution, the solution is applied to the surface of the metal iridium intermediate layer, and dried at room temperature. After drying at 60 ° C. for 10 minutes, thermal decomposition was performed for 10 minutes in a muffle furnace through which air at 510 ° C. was passed. After cooling, the same operation was repeated. By repeating 15 times, a coating of a composite oxide composed of iridium oxide and tantalum oxide was formed on the surface to form an electrode for electrolysis. The thickness of the composite oxide layer thus produced was apparently 3 μm, and was 5 μm in total with the metal iridium intermediate layer.
[0025]
Using this electrode for electrolysis as a sample electrode, an electrolysis test was performed under the following conditions.
An aqueous solution having a pH of 1.8 by adding sulfuric acid to a 150 g / liter sodium sulfate solution at 60 ° C. was used as an electrolyte. A platinum plate was used as a counter electrode, the sample electrode was used as an anode, and the current density was 3 A / cm. 2 The electrolysis was performed by reversing the current every 5 hours for 10 minutes. The electrolysis voltage was 5.8V. Thus, electrolysis could be performed for 2800 hours (total electrolysis time) before the anode could not be energized.
[0026]
[Comparative Example 1]
A substrate was prepared in the same manner as in Example 1, and instead of the metal iridium intermediate layer, a composite oxide coating having a titanium / tantalum ratio of 8/1 was directly formed on the surface of the substrate to form an intermediate layer. did. The same iridium oxide / tantalum oxide composite oxide layer as in Example 1 was formed on the surface of this intermediate layer to obtain a sample electrode. The operation for coating was repeated 25 times so that the total amount of iridium coating per unit area was the same.
When an electrolysis test was performed using the sample electrode under the same conditions as in Example 1, the electrolysis voltage was 5.9 V, which was almost the same as in Example 1, but the life of the electrode was 1200 hours.
[0027]
[Example 2]
A sample electrode was prepared under the same conditions as in Example 1 except that the iridium oxide layer (catalyst layer) was formed using only the same molar amount of iridium oxide instead of coating the composite oxide composed of iridium oxide and tantalum oxide. Produced.
When an electrolysis test was performed using this sample electrode under the same conditions as in Example 1, the electrolysis voltage was 6.2 V and the life of the electrode was 400 hours.
[0028]
[Comparative Example 2]
Iridium was put in the crucible, melted and evaporated by an electron beam, and further ionized at 50 V and 10 A with an ionization electrode immediately above the crucible.
Then, the same base material as in Example 1 was placed facing iridium, and a iridium film was formed in a vacuum at a bias voltage of 500 V and a film forming speed of 10 μm / sec to form a metal iridium intermediate layer having a thickness of 2 μm. Next, 8 × 10 -4 A sample electrode was formed by coating iridium oxide with Torr. The film formation temperature was 500 ° C. for both the metal iridium intermediate layer and the iridium oxide coating.
When an electrolysis test was performed using the sample electrode under the same conditions as in Example 1, the electrolysis voltage was 6.3 V and the life of the electrode was 220 hours.
[0029]
[Example 3]
A sample electrode was produced under substantially the same conditions as in Example 1 except that the substrate was tantalum instead of titanium.
However, since tantalum is easily oxidized, the oxidation of the substrate was prevented during the first five coats of metal iridium by shifting to the next coat formation when the color of the coat changed to black and white. When the coating was completed 10 times, annealing was performed in a muffle furnace at 510 ° C. for 1 hour. The coating liquid for forming the composite oxide layer had the same molar ratio of iridium and tantalum as in Example 1, but the raw materials were iridium chloride and butyl tantalate, and the solvent was butyl alcohol. The thermal decomposition temperature was 500 ° C.
When an electrolysis test was performed using the obtained sample electrode under the same conditions as in Example 1, the electrolysis voltage was 5.6 V and the life of the electrode was 3,200 hours.
[0030]
[Example 4]
A dilute hydrochloric acid solution of titanium chloride and tantalum chloride was applied to the surface of the base material prepared in the same manner as in Example 1, dried, and then thermally decomposed in a muffle furnace at 540 ° C. for 10 minutes. This operation was repeated four times, and the surface of the base material was coated with titanium oxide / tantalum oxide = 9: 1 (molar ratio) in an amount of about 1 g / m 2 in terms of titanium metal and tantalum metal. 2 The composite oxide layer was formed by thermal decomposition so that
A solution obtained by diluting iridium resinate manufactured by Daiken Kogyo using a 1: 1 mixture of ethyl alcohol and turpentine as a solvent is used as a coating solution, and this coating solution is applied to the surface of the composite oxide layer, and after drying, Pyrolysis was performed in a muffle furnace at 500 ° C., and a slightly grayish coating was obtained. This was repeated six times to form the same amount of metal iridium intermediate layer as in Example 1.
On this surface, a composite oxide film of iridium oxide / tantalum oxide was formed under the same conditions as in Example 1.
When an electrolysis test was performed using the obtained sample electrode under the same conditions as in Example 1, the electrolysis voltage was 5.7 V and the life of the electrode was 2450 hours.
[0031]
[Example 5]
A sample electrode was prepared in the same manner as in Example 4, except that the composition of the electrode material on the surface was changed to iridium / tantalum = 8/2 (molar ratio).
When an electrolysis test was performed using the obtained sample electrode under the same conditions as in Example 1, the electrolysis voltage was 5.6 V and the life of the electrode was 2550 hours.
[0032]
【The invention's effect】
The present invention relates to an electrolytic solution comprising a valve metal substrate, a metal iridium intermediate layer coated on the surface of the substrate, and a catalyst layer containing iridium oxide and a metal oxide stabilizer coated on the surface of the intermediate layer. An electrode, and an iridium compound-containing liquid containing a reducing agent is applied to the surface of the valve metal base material, a metal iridium intermediate layer is formed on the valve metal base material by thermal decomposition, and the iridium-containing liquid is applied to the surface of the metal iridium intermediate layer. Is applied and thermally decomposed in an oxidizing atmosphere to form a catalyst layer containing iridium oxide.
[0033]
The present invention can provide an electrode for electrolysis having a metal iridium intermediate layer.
Industrial electrolysis with oxygen generation at high current density, that is, reverse current or current reversal when cutting current, which is often a problem with anodes used in high speed galvanizing and high speed electrolysis for copper foil production, even if it is not reverse current In industrial electrolysis under a strong corrosive atmosphere, corrosion of the base material is a major problem.
When the electrode for electrolysis of the present invention is used, the corrosion is almost completely eliminated by the metal oxide stabilizer in the catalyst layer or by the high density of the metal iridium intermediate layer in the electrode for electrolysis produced by the method of the present invention. In addition, it is possible to provide an electrode for electrolysis having a sufficiently long life even under a high current density by using an oxide-based stable electrolytic substance (catalyst layer).
[0034]
Further, in the production of an electrode for electrolysis by a conventional pyrolysis method, the coating layer was easily peeled off by oxidation during the formation of the coating, but in the present invention, the metal iridium as the intermediate layer functions as an appropriate reducing agent. In addition, the protection of the base material becomes more reliable, and the oxide coating of the catalyst layer on the surface can be formed under optimal conditions.
As described above, the present invention can provide an electrode for electrolysis that can withstand a reverse current and has a long life even when used in a corrosive atmosphere.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view illustrating a metal plating apparatus equipped with an electrode for electrolysis of the present invention.
FIG. 2 is a view taken along line AA of FIG.
[Explanation of symbols]
11 Metal plating equipment
12 Metal plating tank
13 Plating solution
14 Sheet to be plated
18 Anode
19 cathode

Claims (10)

弁金属基材、該基材表面に被覆された金属イリジウム中間層、及び該中間層表面に被覆された酸化イリジウム及び金属酸化物安定剤を含有する触媒層を含んで成ることを特徴とする電解用電極。Electrolysis comprising a valve metal substrate, a metal iridium intermediate layer coated on the surface of the substrate, and a catalyst layer containing iridium oxide and a metal oxide stabilizer coated on the surface of the intermediate layer. Electrodes. 金属酸化物安定剤が、酸化チタン、酸化タンタル及び酸化スズから成る群から選択される1種以上の酸化物である請求項1に記載の電解用電極。The electrode for electrolysis according to claim 1, wherein the metal oxide stabilizer is at least one oxide selected from the group consisting of titanium oxide, tantalum oxide, and tin oxide. 弁金属基材の弁金属が、チタン、チタン合金、タンタル及びタンタル合金から選択されるものである請求項1又は2に記載の電解用電極。The electrode for electrolysis according to claim 1 or 2, wherein the valve metal of the valve metal base material is selected from titanium, a titanium alloy, tantalum, and a tantalum alloy. 弁金属基材が表面に酸化物薄層を有する請求項1から3までのいずれかに記載の電解用電極。The electrode for electrolysis according to any one of claims 1 to 3, wherein the valve metal base has a thin oxide layer on the surface. 金属イリジウム中間層が多孔質層である請求項1から4までのいずれかに記載の電解用電極。The electrode for electrolysis according to any one of claims 1 to 4, wherein the metal iridium intermediate layer is a porous layer. 金属酸化物安定剤が酸化タンタルであり、該酸化タンタルと酸化イリジウムとで複合酸化物を構成している請求項1から5までのいずれかに記載の電解用電極。The electrode for electrolysis according to any one of claims 1 to 5, wherein the metal oxide stabilizer is tantalum oxide, and the tantalum oxide and iridium oxide form a composite oxide. 弁金属基材表面に、還元剤を含むイリジウム化合物含有液を塗布し、熱分解により前記弁金属基材上に金属イリジウム中間層を形成し、該金属イリジウム中間層表面にイリジウム含有液を塗布し、酸化雰囲気中で熱分解を行って酸化イリジウムを含有する触媒層を形成することを特徴とする電解用電極の製造方法。An iridium compound-containing liquid containing a reducing agent is applied to the surface of the valve metal base material, a metal iridium intermediate layer is formed on the valve metal base material by thermal decomposition, and the iridium-containing liquid is applied to the metal iridium intermediate layer surface. And producing a catalyst layer containing iridium oxide by performing thermal decomposition in an oxidizing atmosphere. 弁金属基材の前処理を行った後に、還元剤を含むイリジウム化合物含有液の塗布を行うようにした請求項7に記載の電解用電極の製造方法。The method for producing an electrode for electrolysis according to claim 7, wherein after the pretreatment of the valve metal base material, an iridium compound-containing liquid containing a reducing agent is applied. 弁金属基材の前処理が、基材表面をブラストによって粗面化し、酸洗によって表面付着物の除去と表面活性化を行うことである請求項8に記載の電解用電極の製造方法。9. The method for producing an electrode for electrolysis according to claim 8, wherein the pretreatment of the valve metal base material is to roughen the surface of the base material by blasting, and remove surface deposits and activate the surface by pickling. 金属イリジウム中間層の形成を、還元剤を含むイリジウム化合物含有液を塗布した後に火炎熱分解により行うようにした請求項8又は9に記載の電解用電極の製造方法。The method for producing an electrode for electrolysis according to claim 8 or 9, wherein the formation of the metal iridium intermediate layer is performed by flame pyrolysis after applying an iridium compound-containing liquid containing a reducing agent.
JP2003123918A 2003-04-28 2003-04-28 Electrode for electrolysis, and manufacturing method therefor Pending JP2004323955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123918A JP2004323955A (en) 2003-04-28 2003-04-28 Electrode for electrolysis, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123918A JP2004323955A (en) 2003-04-28 2003-04-28 Electrode for electrolysis, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004323955A true JP2004323955A (en) 2004-11-18

Family

ID=33501672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123918A Pending JP2004323955A (en) 2003-04-28 2003-04-28 Electrode for electrolysis, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004323955A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156684A (en) * 2006-12-22 2008-07-10 Tanaka Kikinzoku Kogyo Kk Anode electrode for hydrochloric acid electrolysis
WO2017188422A1 (en) * 2016-04-27 2017-11-02 デノラ・ペルメレック株式会社 Electrolytic cell
JPWO2021117311A1 (en) * 2019-12-13 2021-06-17
WO2021164702A1 (en) * 2020-02-17 2021-08-26 Magneto Special Anodes (suzhou) Co., Ltd. Electrode having polarity capable of being reversed and use thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156684A (en) * 2006-12-22 2008-07-10 Tanaka Kikinzoku Kogyo Kk Anode electrode for hydrochloric acid electrolysis
KR20190002578A (en) * 2016-04-27 2019-01-08 드 노라 페르멜렉 가부시키가이샤 Electrolytic electrode, method for manufacturing electrolytic electrode, and electrolytic cell
WO2017188421A1 (en) * 2016-04-27 2017-11-02 デノラ・ペルメレック株式会社 Electrode for electrolysis, manufacturing method of electrode for electrolysis and electrolytic cell
CN107923053A (en) * 2016-04-27 2018-04-17 迪诺拉永久电极股份有限公司 Electrolytic cell
JPWO2017188422A1 (en) * 2016-04-27 2018-06-07 デノラ・ペルメレック株式会社 Electrolytic cell
JPWO2017188421A1 (en) * 2016-04-27 2018-07-12 デノラ・ペルメレック株式会社 Electrode for electrolysis, method for producing electrode for electrolysis, and electrolytic cell
WO2017188422A1 (en) * 2016-04-27 2017-11-02 デノラ・ペルメレック株式会社 Electrolytic cell
KR102047350B1 (en) 2016-04-27 2019-11-21 드 노라 페르멜렉 가부시키가이샤 Electrolytic electrode, manufacturing method of electrolytic electrode and electrolytic cell
US10590551B2 (en) 2016-04-27 2020-03-17 De Nora Permelec Ltd Electrode for electrolysis, manufacturing method of electrode for electrolysis, and electrolyzer
US10669638B2 (en) 2016-04-27 2020-06-02 De Nora Permelec Ltd Electrolyzer
JPWO2021117311A1 (en) * 2019-12-13 2021-06-17
WO2021117311A1 (en) * 2019-12-13 2021-06-17 パナソニックIpマネジメント株式会社 Electrolysis electrode
JP7153887B2 (en) 2019-12-13 2022-10-17 パナソニックIpマネジメント株式会社 electrode for electrolysis
WO2021164702A1 (en) * 2020-02-17 2021-08-26 Magneto Special Anodes (suzhou) Co., Ltd. Electrode having polarity capable of being reversed and use thereof

Similar Documents

Publication Publication Date Title
US5435896A (en) Cell having electrodes of improved service life
JP3188361B2 (en) Chrome plating method
JP5619893B2 (en) Electrode for oxygen generation in industrial electrolysis process
Lee et al. An investigation on the electrochemical characteristics of Ta 2 O 5-IrO 2 anodes for the application of electrolysis process
JP2007039720A (en) Electroconductive diamond electrode and its producing method
JP4284387B2 (en) Electrode for electrolysis and method for producing the same
EP0955395B1 (en) Electrolyzing electrode and process for the production thereof
WO2021164702A1 (en) Electrode having polarity capable of being reversed and use thereof
US5531875A (en) Electrode substrate for electrolysis and production method thereof
JP3116490B2 (en) Manufacturing method of anode for oxygen generation
JPS6330996B2 (en)
JP2004323955A (en) Electrode for electrolysis, and manufacturing method therefor
MX2015006559A (en) Electrode for oxygen evolution in industrial electrochemical processes.
JP3430479B2 (en) Anode for oxygen generation
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPH0499294A (en) Oxygen generating anode and its production
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JP3081567B2 (en) Insoluble electrode for chrome plating
US3878084A (en) Bipolar electrode
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
JP3259939B2 (en) Chrome plating method
US5827413A (en) Low hydrogen over voltage cathode and process for production thereof
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JPH062194A (en) Electroplating method
JP3941898B2 (en) Activated cathode and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331