JPH04214186A - Sealing method of in-furnace thermal medium particles in fluidized bed and flame resistant device using the method - Google Patents

Sealing method of in-furnace thermal medium particles in fluidized bed and flame resistant device using the method

Info

Publication number
JPH04214186A
JPH04214186A JP2747791A JP2747791A JPH04214186A JP H04214186 A JPH04214186 A JP H04214186A JP 2747791 A JP2747791 A JP 2747791A JP 2747791 A JP2747791 A JP 2747791A JP H04214186 A JPH04214186 A JP H04214186A
Authority
JP
Japan
Prior art keywords
medium particles
heating medium
particles
hole
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2747791A
Other languages
Japanese (ja)
Inventor
Yoshihiko Osawa
大澤 芳彦
Tatsuo Akimoto
秋本 龍夫
Yukiyoshi Mori
森 幸由
Yasuyuki Kawanomoto
川野元 靖之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPH04214186A publication Critical patent/JPH04214186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To provide a sealing method and its device which are capable of effectively sealing the leakage of heat medium particles from an inlet 23 and an outlet 24 of front drive fiber in a flame resistant device 10 which serves as a fluidized bed. CONSTITUTION:In a flame resistant device 10 which comprises a main body 11 which holds heating medium particles inside, an intake hole 23 and an outlet hole 24 of front drive fiber bored on the aforesaid main body, an air supply system and an air emission system of heating gas which is connected with the main body 11, an attempt is made to install at least two suction holes 29 which are designed to absorbcatch heating medium particles in a holdup chamber 27 and the inlet 25 and outlet 26 of the front drive body fiber 3 or the particles which leaked out in the holdup chamber by way of a porous plate 34 having a finer ventilation hole than the size of the fine particles, near the intake hole 23 and sealing section 12 and 13 which comprises an air suction means 33 connected with the suction hole 29. The leakage of in-furnace heating medium particles 1 from the inlet and outlet holes 23 and 24 can be effectively sealed by means of a bridge 38 formed in the holdup chamber 27.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、流動床炉に連続して線
状の被処理物を導入・導出させるに際し、流動床炉の出
入口部において効果的に炉内熱媒粒子をシールする方法
および該シール方法を用いた耐炎化装置に関する。
[Industrial Application Field] The present invention provides a method for effectively sealing in-furnace heat transfer medium particles at the entrance and exit portion of a fluidized bed furnace when a linear workpiece is continuously introduced into and taken out of the fluidized bed furnace. The present invention also relates to a flame-resistant device using the sealing method.

【0002】0002

【従来の技術】従来、線状の被処理物を連続して加熱処
理するため、その熱媒に固体粒子を用いた流動床炉によ
る加熱処理方法としては、多くのものが知られている。
2. Description of the Related Art Conventionally, many heat treatment methods using a fluidized bed furnace using solid particles as a heating medium have been known for continuously heat treating a linear workpiece.

【0003】例えば、ポリアクリロニトリル(PAN)
系繊維、再生セルローズ系繊維等の重合体から成る前駆
体繊維束を先ず200〜300℃の空気または酸化性ガ
ス雰囲気中で加熱処理する耐炎化工程、次いでこれを8
00〜2000℃の窒素、アルゴン等の不活性ガス雰囲
気中で炭化させる炭化工程を経ることによって一段と弾
性率強度の高い炭素繊維を得る前駆体繊維束の耐炎化方
法には、熱媒粒子として炭素粒子、金属粒子等が用いら
れており、流動床炉による加熱処理方法の好ましい適用
例である。
For example, polyacrylonitrile (PAN)
First, a flame-retardant process is performed in which a precursor fiber bundle made of a polymer such as cellulose-based fiber or recycled cellulose-based fiber is heat-treated in an air or oxidizing gas atmosphere at 200 to 300°C.
A method for flame-proofing a precursor fiber bundle, in which carbon fibers with even higher elastic modulus and strength are obtained by carbonization in an inert gas atmosphere such as nitrogen or argon at a temperature of 00 to 2000°C, uses carbon as heat transfer particles. Particles, metal particles, etc. are used, and this is a preferred application example of a heat treatment method using a fluidized bed furnace.

【0004】ところで、上記耐炎化方法では、炉内で被
処理物に均一な加熱処理を加えて耐炎化繊維を得るため
、その前提条件として炉内の流動化状態と炉内温度を炉
内のいずれの箇所においても均一化させる必要がある。
By the way, in the above flame-retardant method, in order to obtain flame-retardant fibers by applying uniform heat treatment to the material to be treated in the furnace, the prerequisites for this are the fluidization state and the temperature in the furnace. It is necessary to make it uniform at all locations.

【0005】そのための具体的手段としては、炉内と熱
媒粒子を炉外に漏出させないこと、すなわち流動床炉の
前駆体繊維の出入口部において、確実に炉内熱媒粒子を
シールすることが必須の技術となる。
[0005] As a specific means for this purpose, it is necessary to prevent the heating medium particles inside the furnace from leaking out of the furnace, that is, to reliably seal the heating medium particles inside the furnace at the entrance and exit of the precursor fiber of the fluidized bed furnace. It becomes an essential technology.

【0006】本出願人は、このような流動床炉の炉内熱
媒粒子のシール方法として、特開平1−192825号
公報において図3に示すシール方法を提案した。
The present applicant proposed a sealing method shown in FIG. 3 in Japanese Patent Application Laid-Open No. 1-192825 as a method for sealing heat medium particles in the furnace of such a fluidized bed furnace.

【0007】このシール方法は、内部の熱媒粒子1によ
って流動層が形成された流動床炉2の前駆体繊維3の導
入孔4に、前駆体繊維の入口5と、加圧エアの給気口6
とを有する筒状の加圧シール室7を設け、給気口6から
炉内圧力よりも若干高目の圧力を有するシールガスを加
圧シール室内に供給することにより、導入孔4からの炉
内雰囲気と熱媒粒子1の漏れを防止せんとするものであ
り、前駆体繊維の導出孔においても同様のシール方法を
採るものある。
In this sealing method, an inlet 5 for the precursor fibers and a supply of pressurized air are connected to the introduction holes 4 for the precursor fibers 3 of the fluidized bed furnace 2 in which a fluidized bed is formed by the heating medium particles 1 inside. Mouth 6
By providing a cylindrical pressurized seal chamber 7 having The purpose is to prevent leakage of the internal atmosphere and the heating medium particles 1, and some use a similar sealing method for the outlet holes of the precursor fibers.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来のシール方法は、シールガスが気体であるため、前駆
体繊維に糸切れ、毛羽発生などの損傷を与えないという
長所を有するものの、以下に述べる問題があった。すな
わち、 (1)  加圧シール室7のシール圧を炉内圧よりも高
く設定しているため、必然的にシールガスが前駆体繊維
の導入および導出孔から流動層内に流入することになる
が、この流入現象は、炉内における流動層の流動状態お
よび温度分布の不均一化を招き、熱媒粒子の均一な流動
化作用を妨げる問題があること。
[Problems to be Solved by the Invention] However, although the conventional sealing method described above has the advantage that it does not cause damage to the precursor fibers such as yarn breakage or fluffing because the sealing gas is a gas, There was a problem. That is, (1) Since the sealing pressure in the pressurized sealing chamber 7 is set higher than the furnace internal pressure, sealing gas inevitably flows into the fluidized bed through the precursor fiber introduction and outlet holes. This inflow phenomenon causes a non-uniform fluidization state and temperature distribution of the fluidized bed in the furnace, and there is a problem in that it prevents uniform fluidization of heat transfer particles.

【0009】(2)  前駆体繊維の導入孔と導出孔は
、繊維が流動床炉に導入、導出する際にこれら導入、導
出孔に接触し易く損傷を受け易いため、できるだけ開孔
面積の大きいものが望ましい。
(2) The inlet and outlet holes for the precursor fibers should have as large an opening area as possible, since the fibers are likely to come into contact with these inlet and outlet holes and be damaged when the fibers are introduced into and out of the fluidized bed furnace. Something is desirable.

【0010】しかし、余り導入孔と導出孔の開孔面積を
大きくすると、熱媒粒子の炉外への漏出を招くことにな
り、実際には炉内の流動状態および炉内温度の均一化の
ための開孔面積と、加圧シール圧力のバランス調節が非
常に困難であり、特に嵩密度の大きい熱媒程問題があっ
た。
However, if the opening area of the inlet hole and the outlet hole is increased too much, the heat transfer particles will leak out of the furnace, and in reality, the flow state in the furnace and the uniformity of the temperature in the furnace will be affected. It is very difficult to adjust the balance between the aperture area and the pressurized sealing pressure, and there is a problem in particular when the heat medium has a large bulk density.

【0011】上記の問題が解決されないと流動床炉に供
給される被処理物に対して均一な加熱処理ができないた
め、品質の優れた耐炎化繊維を到底得ることができない
[0011] Unless the above-mentioned problems are solved, it will not be possible to uniformly heat treat the material to be fed to the fluidized bed furnace, making it impossible to obtain flame-resistant fibers of excellent quality.

【0012】本発明は、上記問題点を解決し、流動床炉
の被処理物の出入口部からの熱媒粒子の漏出を、効果的
にシールし得る炉内熱媒粒子のシール方法、およびこの
シール方法を用いた耐炎化装置を提供することを目的と
する。
The present invention solves the above-mentioned problems and provides a method for sealing heating medium particles in a furnace, which can effectively seal leakage of heating medium particles from an inlet and an inlet of a workpiece in a fluidized bed furnace, and a method for sealing heat medium particles in a furnace. The purpose of the present invention is to provide a flame-resistant device using a sealing method.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
、本発明に係る流動床炉の炉内熱媒粒子のシール方法は
、線状の被処理物を、熱媒粒子を加熱気体で流動化せし
めた流動床炉の導入孔より導入し、加熱処理したのち導
出孔から導出する際に、前記導入孔および前記導出孔か
ら炉外に流出する前記熱媒粒子をシールする流動床炉の
炉内熱媒粒子のシール方法において、前記導入孔および
導出孔近傍に、前記流動床炉内の熱媒粒子を滞留せしめ
る滞留室を形成せしめ、前記滞留室内に流出した熱媒粒
子を、該滞留室内に前記被処理物を介して少なくとも2
箇所設けられた吸引孔から、前記熱媒粒子径よりも小さ
い通気孔を有する多孔板を介して吸引手段で吸引捕捉す
ることにより、前記被処理物の周囲に熱媒粒子のブリッ
ジを形成せしめてシールすることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, a method for sealing heating medium particles in a fluidized bed furnace according to the present invention includes a method for sealing heat medium particles in a fluidized bed furnace, in which a linear workpiece is fluidized with heated gas. A furnace of a fluidized bed furnace that seals the heat transfer medium particles flowing out of the furnace from the introduction hole and the outlet hole when the heating medium particles are introduced through the introduction hole of the fluidized bed furnace and are led out from the outlet hole after heat treatment. In the method for sealing internal heating medium particles, a retention chamber for retaining the heating medium particles in the fluidized bed furnace is formed in the vicinity of the introduction hole and the outlet hole, and the heating medium particles flowing into the retention chamber are collected in the retention chamber. at least 2 times through the object to be processed.
A bridge of heating medium particles is formed around the object to be processed by suctioning and trapping the heating medium particles through a perforated plate having ventilation holes smaller than the diameter of the heating medium particles through suction holes provided at certain locations. It is characterized by being sealed.

【0014】ここで、線状の被処理物とは、例えばフィ
ラメント、紡績糸、ストランド等の線状体や、トウ、織
物、不織布等の帯状体からなる連続体または不連続体が
含まれ、その断面形状は特に限定されない。上記線状の
被処理物としては、ポリアクリロニトリル(PAN)系
繊維、再生セルローズ系繊維等の重合体から成る前駆体
繊維束が挙げられる。
Here, the linear object to be treated includes, for example, linear objects such as filaments, spun yarns, strands, etc., and continuous or discontinuous objects such as tows, woven fabrics, non-woven fabrics, etc. Its cross-sectional shape is not particularly limited. Examples of the linear object to be treated include precursor fiber bundles made of polymers such as polyacrylonitrile (PAN) fibers and recycled cellulose fibers.

【0015】熱媒粒子とは、加熱された気体で流動化さ
れる固体粒子をいい、例えば、主成分として、炭素、ア
ルミナ、炭化ケイ素、ジルコニア、シリカ等が単独、あ
るいは共存して構成されるセラミックスやガラス等の無
機物粒子が挙げられる。また、の粒子径は、0.1〜0
.5mmの範囲内のものが好ましく、また密度は、0.
6〜2.0g/cm3 の範囲内のものが好ましい。
[0015] Heat transfer particles refer to solid particles that are fluidized by heated gas, and are composed, for example, of carbon, alumina, silicon carbide, zirconia, silica, etc., singly or in combination as main components. Examples include inorganic particles such as ceramics and glass. In addition, the particle size of is 0.1 to 0
.. Preferably, the thickness is within the range of 5 mm, and the density is 0.
It is preferably within the range of 6 to 2.0 g/cm3.

【0016】流動床炉とは、上記熱媒粒子に例えばアル
ゴン、窒素などの加熱された不活性ガスを供給すること
によって、流動床炉内の熱媒粒子を流動化せしめた状態
で被処理物を加熱処理する公知の装置で、例えば、上記
した前駆体繊維の耐炎化装置、流動床焼成炉、流動床焼
却炉、線材熱処理炉などが含まれる。
[0016] A fluidized bed furnace is a fluidized bed furnace in which the heat medium particles in the fluidized bed furnace are fluidized by supplying a heated inert gas such as argon or nitrogen to the heat medium particles. Known devices for heat-treating fibers include, for example, the above-described flameproofing device for precursor fibers, fluidized bed firing furnaces, fluidized bed incinerators, wire heat treatment furnaces, and the like.

【0017】吸引手段の吸引速度は、熱媒粒子径および
流動層深さにもよるが、多孔板において流動層深さ10
cm当り1.5〜2.0Ncm/Sの範囲内の吸引速度
にすることが好ましい。
The suction speed of the suction means depends on the diameter of the heat medium particles and the depth of the fluidized bed, but the suction speed of the suction means depends on the diameter of the heat medium particles and the depth of the fluidized bed.
It is preferable to set the suction speed within the range of 1.5 to 2.0 Ncm/S per cm.

【0018】また、上記目的を達成するため、本発明に
係る耐炎化装置は、内部に熱媒粒子を保有する本体と、
該本体に開孔された被処理物の導入孔および導出孔と、
前記本体に接続された前記加熱ガスの給気系および排気
系とからなり、前記熱媒粒子を加熱ガスで流動化せしめ
ることにより前記被処理物を加熱処理する耐炎化装置に
おいて、 (イ)前記本体の導入孔および導出孔の近傍に隣接して
設けられた熱媒粒子の滞留室と、 (ロ)該滞留室に開口された被処理物の入口および出口
と、 (ハ)前記滞留室に相互に隔てられて少なくとも2箇所
設けられ、前記滞留室内に流出した熱媒粒子を熱媒粒子
径よりも細かい通気孔を有する多孔板を介して吸引捕捉
する吸引孔と、 (ニ)該吸引孔に接続された吸気手段と、からなるシー
ル部を設けたことを特徴とする。
[0018] Furthermore, in order to achieve the above object, the flameproofing device according to the present invention includes a main body containing heating medium particles therein;
an introduction hole and an outlet hole for the object to be treated, which are formed in the main body;
In a flame-retardant device that includes an air supply system and an exhaust system for the heated gas connected to the main body, and heat-treats the object by fluidizing the heating medium particles with the heated gas, (a) the above-mentioned a retention chamber for heating medium particles provided adjacent to the inlet hole and outlet hole of the main body; (b) an inlet and an outlet for the to-be-processed material opened to the retention chamber; and (c) an inlet to the retention chamber. (d) suction holes provided in at least two locations separated from each other and for suctioning and trapping heat medium particles flowing into the retention chamber through a perforated plate having ventilation holes smaller than the diameter of the heat medium particles; The invention is characterized in that it is provided with an air intake means connected to the air intake means, and a sealing portion consisting of.

【0019】ここで、本発明のシール方法が用いられる
耐炎化装置とは、公知の装置、例えばポリアクリロニト
リル系繊維、再生セルローズ系繊維、フェノール系繊維
、ピッチ系繊維等の有機重合体から成る前駆体繊維を炭
素、アルミナ、炭化ケイ素、ジルコニア等の熱媒粒子層
に空気または他の酸化性の加熱ガスを供給することによ
って、約200〜300℃に加熱された流動層中で耐炎
化処理される装置をいう。
Here, the flame-retardant device used in the sealing method of the present invention refers to a known device, such as a precursor made of an organic polymer such as polyacrylonitrile fiber, recycled cellulose fiber, phenol fiber, pitch fiber, etc. The body fibers are flame-resistant treated in a fluidized bed heated to about 200 to 300°C by supplying air or other oxidizing heated gas to a bed of heating medium particles such as carbon, alumina, silicon carbide, and zirconia. means a device that

【0020】滞留室は、被処理物の走行方向に一定長さ
を有する筒状体であればよく、その形状は例えば丸筒体
、角筒体等如何なるものでもよい。この滞留室内では、
後述するように吸気手段で滞留室内に流出してきた熱媒
粒子を吸引捕捉することにより、多孔板周辺に凝集密度
の高い熱媒粒子のブリッジが被処理物を包囲するように
形成されるが、この熱媒粒子によるブリッジが炉内雰囲
気および熱媒粒子のシール性能に大きく影響する。 多孔板上におけるブリッジの形成力は、多孔板の近傍に
吸引捕捉せしめた熱媒量、すなわち吸引孔の断面積Sと
吸引孔から被処理物までの距離Hとの積と、吸引孔での
吸引力とで決定される。そして、このブリッジによる熱
媒粒子のシール性能は、熱媒粒子径、流動層の高さにも
よるが、吸引孔の数、本体の導入孔または導出孔から滞
留室の吸引孔までの長さ(以下、シール長さという)L
、吸引孔から被処理物までの距離H、および吸気手段の
吸気能力等によって決定される。ブリッジによるシール
効果は、シール長さLが長く、かつ距離Hが小さく、吸
引力が高いほど多孔板上に吸引捕捉せしめる熱媒粒子量
が多いから、ブリッジ自体の破壊強度も強く、最もシー
ル効果が大きい。しかし、余りシール長さLが長いと、
被処理物が通過する際の走行抵抗が大きくなり、また被
処理物も擦過による損傷を受ける。一方、シール長さL
が短か過ぎると、熱媒粒子の吸引捕捉量が不十分でシー
ル効果が充分でない。
[0020] The retention chamber may be a cylindrical body having a constant length in the traveling direction of the object to be treated, and may have any shape such as a round cylinder or a rectangular cylinder. Inside this retention chamber,
As will be described later, by suctioning and trapping the heating medium particles flowing into the retention chamber by the suction means, a bridge of heating medium particles with a high agglomeration density is formed around the perforated plate so as to surround the object to be treated. This bridge formed by the heating medium particles greatly affects the atmosphere in the furnace and the sealing performance of the heating medium particles. The force for forming a bridge on a perforated plate is determined by the amount of heat medium sucked and captured near the perforated plate, that is, the product of the cross-sectional area S of the suction hole and the distance H from the suction hole to the workpiece, and the amount of heat transfer at the suction hole. It is determined by the suction power. The sealing performance of the heating medium particles by this bridge depends on the heating medium particle diameter and the height of the fluidized bed, but it also depends on the number of suction holes and the length from the main body's introduction hole or outlet hole to the suction hole in the retention chamber. (hereinafter referred to as seal length) L
, the distance H from the suction hole to the object to be processed, the suction capacity of the suction means, etc. The sealing effect by the bridge is that the seal length L is long and the distance H is small, and the higher the suction force is, the more heat transfer particles are attracted and captured on the perforated plate, so the fracture strength of the bridge itself is stronger, and the sealing effect is the most effective. is large. However, if the seal length L is too long,
The running resistance when the object to be processed passes increases, and the object to be processed also suffers damage due to scratches. On the other hand, the seal length L
If is too short, the amount of heat transfer particles sucked and captured will be insufficient and the sealing effect will not be sufficient.

【0021】吸引孔から被処理物までの距離Hは、必要
最小限にすることが好ましい。距離Hを長くすると熱媒
粒子を捕捉せしめる吸引速度も高く設定する必要がある
が、吸引速度を高くすることにより、流動床内の流動化
気体も多量に流出することになるからである。一方、距
離Hが短か過ぎると、被処理物が滞留室内面に接触し、
被処理物が損傷を受けるからよくない。
[0021] It is preferable that the distance H from the suction hole to the object to be treated is kept to the minimum necessary. This is because when the distance H is increased, the suction speed to capture the heat medium particles must also be set high, but by increasing the suction speed, a large amount of fluidizing gas in the fluidized bed also flows out. On the other hand, if the distance H is too short, the object to be processed will come into contact with the inside of the retention chamber,
This is not good because the object to be processed will be damaged.

【0022】このような観点から、上記シール長さLは
、50〜100mmとするのが好ましい。この範囲内に
すると、被処理物の擦過による損傷と、滞留室内の気体
および熱媒粒子の炉外への流出を極力抑制することがで
き、また滞留室内の圧損も高くはならない。
From this point of view, the seal length L is preferably 50 to 100 mm. When the temperature is within this range, damage caused by abrasion of the object to be treated and outflow of gas and heat transfer particles in the retention chamber to the outside of the furnace can be suppressed as much as possible, and the pressure drop in the retention chamber will not become high.

【0023】多孔板は、吸気孔の入口において熱媒粒子
と滞留室内の気体を分離せしめるため、複数の通気孔を
有する板状体であり、例えば、焼結金網、焼結金属、金
網などを用いることができる。通気孔の内径は、熱媒粒
子を捕捉するため熱媒粒子径よりも細かい孔径であるこ
とを要するが、余り細かいと多孔板上で熱媒粒子の目詰
りが生じ、かえって吸引捕捉効果を悪くする。よって、
通気孔の内径は、熱媒粒子径の40〜80%の範囲内の
ものが好ましく、50〜70%の範囲内のものがより好
ましい。
[0023] The perforated plate is a plate-like body having a plurality of ventilation holes in order to separate the heating medium particles from the gas in the retention chamber at the entrance of the intake hole. Can be used. The inner diameter of the ventilation hole needs to be smaller than the diameter of the heating medium particles in order to capture the heating medium particles, but if it is too small, the heating medium particles will clog on the perforated plate, which will actually worsen the suction trapping effect. do. Therefore,
The inner diameter of the vent hole is preferably within the range of 40 to 80%, more preferably within the range of 50 to 70%, of the heat medium particle diameter.

【0024】吸気孔は、被処理物を中心に開孔面が対向
するように滞留室に2箇所設けられるが、3箇所以上に
等分配すればより好ましいことは勿論である。  吸気
手段は、例えば、真空ポンプ、排気ブロワ、排風機など
からなる公知の吸引手段を用いることができる。
[0024] The suction holes are provided at two locations in the retention chamber so that the open surfaces thereof face each other with the object to be treated at the center, but it is of course more preferable if they are equally distributed at three or more locations. As the suction means, for example, known suction means such as a vacuum pump, an exhaust blower, an exhaust fan, etc. can be used.

【0025】なお、本発明に係る装置で処理できる線状
の被処理物としては、PAN系、再生セルローズ系、フ
エノール系、ピッチ系の各繊維に代表される有機重合体
を紡糸して得られるフィラメント、ストランド、トウな
どである。
[0025] Line-shaped objects that can be processed by the apparatus according to the present invention include those obtained by spinning organic polymers typified by PAN-based, recycled cellulose-based, phenol-based, and pitch-based fibers. filament, strand, tow, etc.

【0026】[0026]

【作用】熱媒粒子が充填された流動床炉の被処理物に対
し、被処理物に対向して設けられた滞留室内の給気孔か
ら多孔板を介して滞留室内の雰囲気が吸気手段で吸引さ
れると、流動床炉の導入孔および導出孔から滞留室内に
流出してきた熱媒粒子は、吸引された雰囲気に捕捉され
て多孔板方向に移動する。
[Operation] The atmosphere inside the retention chamber is sucked by the suction means through the perforated plate from the air supply hole in the retention chamber provided opposite to the workpiece in the fluidized bed furnace filled with heating medium particles. Then, the heating medium particles flowing out into the retention chamber from the inlet and outlet holes of the fluidized bed furnace are captured by the sucked atmosphere and move toward the perforated plate.

【0027】多孔板方向に移動した熱媒粒子は、多孔板
の通気孔が熱媒粒子よりも小さいので移動を遮られ、や
がて多孔板周辺において多孔板と被処理物との間で凝集
密度の高いブリッジを形成する。このブリッジが次第に
成長して大きくなると、被処理物を包囲し始め、ついに
は被処理物を完全にシールし、熱媒粒子の炉外への漏出
を防止する。
The heat medium particles moving toward the perforated plate are blocked from moving because the ventilation holes in the perforated plate are smaller than the heat medium particles, and eventually the agglomeration density increases between the perforated plate and the object to be processed around the perforated plate. Form a high bridge. As this bridge gradually grows and becomes larger, it begins to surround the workpiece and eventually completely seals the workpiece, preventing heat transfer particles from leaking out of the furnace.

【0028】[0028]

【実施例】以下、本発明に係る耐炎化装置の一実施例を
図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the flameproofing device according to the present invention will be described below with reference to the drawings.

【0029】実施例1図1は、本発明に係る耐炎化装置
の概略縦断面図である。図において、10は、本体部1
1と、入口シール部12と、出口シール部13とからな
る耐炎化装置である。本体部11は、連続的に供給され
る前駆体繊維3を内部に装填された熱媒粒子1の流動層
で加熱処理するための箱状の容器で、その左右には、前
駆体繊維3の導入孔23と、導出孔24とが開孔されて
いる。また14は、熱媒粒子1を支持するための分散板
である。底部の15は、上記流動層に加熱ガスを供給す
るための給気管で、その上流側には給気ライン16、ヒ
ータ17、流量調整弁18、給気ブロワ19からなる加
熱ガスの給気系が接続されている。
Embodiment 1 FIG. 1 is a schematic vertical sectional view of a flameproofing device according to the present invention. In the figure, 10 is the main body part 1
1, an inlet seal part 12, and an outlet seal part 13. The main body part 11 is a box-shaped container for heat-treating continuously supplied precursor fibers 3 in a fluidized bed of heating medium particles 1 loaded therein. An introduction hole 23 and an outlet hole 24 are opened. Further, 14 is a dispersion plate for supporting the heat medium particles 1. Reference numeral 15 at the bottom is an air supply pipe for supplying heated gas to the fluidized bed, and on the upstream side there is an air supply system for heating gas consisting of an air supply line 16, a heater 17, a flow rate adjustment valve 18, and an air supply blower 19. is connected.

【0030】一方、本体上部には、媒粒子層の流動化を
終えた加熱ガスを排気するための排気管20、排気ライ
ン21からなる排気系が接続されている。なお、22は
、前記入口シール部12および出口シール部13から炉
外に若干漏出した熱媒粒子を本体内に返送するための返
送口である。
On the other hand, an exhaust system consisting of an exhaust pipe 20 and an exhaust line 21 is connected to the upper part of the main body for exhausting the heated gas that has finished fluidizing the medium particle layer. Note that 22 is a return port for returning heat transfer particles that have slightly leaked out of the furnace from the inlet seal portion 12 and the outlet seal portion 13 into the main body.

【0031】入口シール部12および出口シール部13
は、共に本体の導入、導出孔23、24から炉内雰囲気
と熱媒粒子が炉外に流出するのを防ぐためのもので、ほ
ぼ左右対称の構成を有している。
[0031] Inlet seal section 12 and outlet seal section 13
Both are for preventing the atmosphere inside the furnace and heat transfer particles from flowing out of the furnace through the introduction and outlet holes 23 and 24 of the main body, and have a substantially symmetrical configuration.

【0032】入口シール部12には、前駆体繊維3の入
口25と、出口26を有する内径が20mmの筒状の滞
留室27が、本体の導入孔23と滞留室の出口26とが
対向するようにフランジ28で固定されている。
The inlet seal portion 12 has a cylindrical retention chamber 27 with an inner diameter of 20 mm having an inlet 25 for the precursor fibers 3 and an outlet 26, and the introduction hole 23 of the main body and the outlet 26 of the retention chamber are opposed to each other. It is fixed with a flange 28 as shown in FIG.

【0033】滞留室27には、シール長さLが50mm
の位置に前駆体繊維3を介して2つの吸引孔29が互い
に対向するように上下に開口されている。そして、各々
の吸引孔29には、吸気管30が接続され、吸気ライン
31、流量調節弁32、吸気ブロワ33からなる吸気手
段が接続されている。また、上記各々の吸引孔29には
、内面が滞留室27の内周面と一致するように焼結金網
製の多孔板34が固定されている。なお、35は、滞留
室27内に形成されたブリッジ38から脱落した熱媒粒
子を受け入れるホッパで、返送ライン36、排気ブロワ
37、熱媒返送口22とで、熱媒粒子の返送系を構成し
ている。
The retention chamber 27 has a seal length L of 50 mm.
Two suction holes 29 are opened vertically at positions opposite to each other through the precursor fibers 3. An intake pipe 30 is connected to each suction hole 29, and an intake means consisting of an intake line 31, a flow rate control valve 32, and an intake blower 33 is connected. Further, a porous plate 34 made of sintered wire mesh is fixed to each of the suction holes 29 so that its inner surface coincides with the inner circumferential surface of the retention chamber 27 . Note that 35 is a hopper that receives the heat medium particles that have fallen off from the bridge 38 formed in the retention chamber 27, and the return line 36, exhaust blower 37, and heat medium return port 22 constitute a return system for the heat medium particles. are doing.

【0034】以上が入口シール部12の構成であるが、
出口シール部13においても同様の構成であるためその
説明は省略する。
The above is the configuration of the inlet seal portion 12.
The outlet seal portion 13 also has a similar configuration, so a description thereof will be omitted.

【0035】上記のように構成された実施例装置を用い
て、本発明に係る炉内熱媒粒子のシール方法を次のよう
にして実施した。
Using the embodiment apparatus constructed as described above, the method for sealing heat medium particles in a furnace according to the present invention was carried out as follows.

【0036】まず、本体部11に粒子径が0.35mm
、材質が黒鉛の熱媒粒子を静置時深さが400mmとな
るように装填した。そして、給気ブロワ19、ヒータ1
7を運転し、給気孔から280℃のエアガスを3Ncm
/Sの供給速度で供給することにより熱媒粒子の流動層
を形成した。
First, particles with a diameter of 0.35 mm are placed in the main body 11.
, heat medium particles made of graphite were loaded so that the depth when standing still was 400 mm. And air supply blower 19, heater 1
7 and supply 3Ncm of 280℃ air gas from the air supply hole.
A fluidized bed of heat transfer particles was formed by supplying at a supply rate of /S.

【0037】一方、吸気ブロワ33を吸引孔29での吸
引速度が8Ncm/S、静圧が350mmH2 oとな
るように流量調節弁32で調節して運転した。このよう
な運転条件を設定した後、入口12からポリアクリロニ
トリルからなる前駆体繊維3を糸速5m/分で連続的に
供給したところ、ホッパ35から本体部11に返送され
る熱媒粒子量は、30g/分・ライン程度であることか
ら、炉内雰囲気および熱媒粒子は、ほぼ完全にシールさ
れていることが分った。
On the other hand, the intake blower 33 was operated by adjusting the flow rate control valve 32 so that the suction speed at the suction hole 29 was 8 Ncm/S and the static pressure was 350 mmH2o. After setting such operating conditions, when precursor fibers 3 made of polyacrylonitrile were continuously fed from the inlet 12 at a yarn speed of 5 m/min, the amount of heat medium particles returned from the hopper 35 to the main body 11 was , 30 g/min/line, it was found that the furnace atmosphere and heat transfer particles were almost completely sealed.

【0038】ちなみに、前駆体繊維3の供給を停止し、
入口25から多孔板34周辺でのブリッジ38の形成状
況を目視したところ、熱媒粒子1があたかも前駆体繊維
3を包囲するかの如く凝集して炉内の熱媒粒子をシール
していることが確認された。実施例2図2は、実施例1
の耐炎化装置に対し、熱媒粒子の漏出を防ぐと共に、よ
り炉内温度の均一化の向上を図った実施例を示す概略縦
断面図である。
Incidentally, when the supply of the precursor fiber 3 is stopped,
Visual observation of the formation of the bridge 38 around the perforated plate 34 from the inlet 25 revealed that the heating medium particles 1 aggregated as if surrounding the precursor fibers 3, sealing the heating medium particles in the furnace. was confirmed. Example 2 Figure 2 shows Example 1
FIG. 2 is a schematic longitudinal cross-sectional view showing an embodiment of the flameproofing device in which the leakage of heat transfer particles is prevented and the temperature inside the furnace is further improved.

【0039】本実施例装置が実施例1の装置に対して異
なる点は、熱風を滞留室27内に押し込むための給気系
39、40を設けた点であり、その他の点は実施例1の
装置と全く同様の構成である。
The difference between the device of this embodiment and the device of Embodiment 1 is that air supply systems 39 and 40 for forcing hot air into the retention chamber 27 are provided, and other points are different from the device of Embodiment 1. The configuration is exactly the same as that of the device.

【0040】すなわち、本実施例装置は、図1のシール
部12の出口26と吸気管30との間、およびシール部
13の入口25と吸気管30との間に、前駆体繊維3を
介して給気孔41が互いに対向するように2個の給気管
42を設け、これに炉内温度と同程度の温度の熱風が押
し込めるようにヒータ43と、ダンパ44と、給気ブロ
ワ45とを配管46で接続したものである。この場合の
給気管42から滞留室27内への押し込み熱風量は、押
し込まれた熱風が本体部11の導入孔23と導出孔24
から炉内に流入しないようにするため、本体部11と滞
留室27とに設けた図示しない圧力計を見ながら、滞留
室内の圧力が炉内圧力に対して5〜30mmH2 o程
度低くなるようにダンパ44によって調節される。この
場合、滞留室内の圧力を炉内圧力よりも高くすることは
、従来技術の項で述べたように滞留室から炉内に流入し
た外気が炉内の流動層の流動状態と温度分布の不均一化
を招くので好ましくない。
That is, in the device of this embodiment, the precursor fibers 3 are interposed between the outlet 26 of the seal portion 12 and the intake pipe 30 and between the inlet 25 of the seal portion 13 and the intake pipe 30 in FIG. Two air supply pipes 42 are provided so that the air supply holes 41 face each other, and a heater 43, a damper 44, and an air supply blower 45 are connected to these pipes so that hot air having a temperature similar to the temperature inside the furnace can be forced into the pipes. 46. In this case, the amount of hot air forced into the retention chamber 27 from the air supply pipe 42 is such that the forced hot air is transferred between the introduction hole 23 of the main body 11 and the outlet hole 27.
In order to prevent water from flowing into the furnace, check the pressure gauges (not shown) installed in the main body 11 and the retention chamber 27 so that the pressure in the retention chamber is approximately 5 to 30 mmH2 o lower than the pressure in the furnace. It is adjusted by a damper 44. In this case, making the pressure in the retention chamber higher than the pressure in the furnace means that the outside air flowing into the furnace from the retention chamber has an imbalance in the fluidization state and temperature distribution of the fluidized bed in the furnace, as described in the prior art section. This is not preferable because it causes uniformity.

【0041】このような構成にすると、滞留室27内の
雰囲気を吸気ブロワ33で多孔板34を介して吸気管3
0から吸引することにより滞留室内に前駆体繊維3をシ
ールするブリッジ38を形成しつつも、給気管42から
押し込まれた熱風が、導入孔23および導出孔24から
の炉内の熱媒粒子1およびこれに随伴する炉内雰囲気の
漏出を防ぐ。したがって、導入孔23および導出孔24
近傍の炉内温度は、変動することなく均一に維持される
。また、滞留室内に押し込まれた熱風は、導入孔23お
よび導出孔24からシール部12、13に漏出する熱風
量の減少にも寄与するので、ブリッジ38を形成するた
めの排気量を少なくすることができ、省エネが達成でき
ると共に吸気ブロワ33の排気能力も小さくてすむ効果
がある。なお、本実施例において滞留室27に押し込む
熱風は、ヒータ43で予熱したが、これは炉内温度より
も低い外気をそのままの温度で滞留室内に押し込むと滞
留室内が冷却され、前駆体繊維3から遊離したタール分
が室内の壁面に付着してスムーズなブリッジの形成を阻
害するので、これを防ぐためと温度の低い外気が返送口
22から炉内に流入することによって炉内温度分布の変
動を来たすのを防ぐためである。しかし、このようなタ
ール分の付着の心配のない被処理物の場合はヒータを設
けなくてもよいことは勿論である。
With this configuration, the atmosphere inside the retention chamber 27 is transferred to the intake pipe 3 by the intake blower 33 through the perforated plate 34.
While forming a bridge 38 that seals the precursor fibers 3 in the retention chamber by suctioning from 0, the hot air pushed in from the air supply pipe 42 flows through the inlet hole 23 and the outlet hole 24 to the heating medium particles 1 in the furnace. and prevent the accompanying leakage of the furnace atmosphere. Therefore, the introduction hole 23 and the outlet hole 24
The nearby furnace temperature is maintained uniformly without fluctuation. Furthermore, the hot air pushed into the retention chamber also contributes to reducing the amount of hot air leaking from the introduction hole 23 and the outlet hole 24 to the seal parts 12, 13, so that the amount of exhaust air for forming the bridge 38 can be reduced. This has the effect that energy saving can be achieved and the exhaust capacity of the intake blower 33 can be reduced. In this example, the hot air pushed into the retention chamber 27 was preheated by the heater 43, but this is because when outside air, which is lower than the temperature inside the furnace, is pushed into the retention chamber at the same temperature, the inside of the retention chamber is cooled, and the precursor fibers 3 In order to prevent this, the temperature distribution inside the furnace is changed by flowing low temperature outside air into the furnace from the return port 22. This is to prevent this from happening. However, it goes without saying that the heater does not need to be provided in the case of objects to be treated where there is no risk of tar adhesion.

【0042】[0042]

【発明の効果】本発明は、以上に説明した構成としたた
め、以下の優れた効果を奏することができる。 (1)  滞留室内で被処理物を包囲する如く熱媒粒子
自身によるブリッジが形成されるので、流動床炉からの
熱媒粒子の炉外への漏出が大幅に減少する。したがって
、炉内温度の低下が抑制されると共に、炉内圧力分布も
平均化し、炉内に供給される被処理物に均一で安定した
加熱処理を加えることができ、品質の優れた製品が得ら
れる。 (2)  また、滞留室内におけるシール性能は、吸気
手段の吸引量を調整することにより容易に調節すること
ができるので、炉内圧力と炉内温度のバランス調節が非
常に容易となる。 (3)  さらに、炉内の熱媒粒子は、入口および出口
シール部で確実にシールされるので、流動床内に返送す
る熱媒粒子量も比較的少なくてすみ、熱媒粒子の加熱エ
ネルギが逓減し、省エルネギが達成できる。
Advantages of the Invention Since the present invention has the configuration described above, it can achieve the following excellent effects. (1) Since a bridge is formed by the heating medium particles themselves so as to surround the object to be treated in the retention chamber, leakage of the heating medium particles from the fluidized bed furnace to the outside of the furnace is significantly reduced. Therefore, the drop in temperature inside the furnace is suppressed, and the pressure distribution inside the furnace is evened out, allowing uniform and stable heat treatment to be applied to the workpieces fed into the furnace, resulting in products of excellent quality. It will be done. (2) Furthermore, since the sealing performance in the retention chamber can be easily adjusted by adjusting the suction amount of the suction means, it is very easy to adjust the balance between the furnace pressure and the furnace temperature. (3) Furthermore, since the heating medium particles in the furnace are reliably sealed at the inlet and outlet seals, the amount of heating medium particles returned to the fluidized bed is relatively small, and the heating energy of the heating medium particles is reduced. Energy savings can be achieved through gradual reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る耐炎化装置の一実施例を示す概略
縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an embodiment of a flameproofing device according to the present invention.

【図2】図1とは異なる実施例の本発明に係る耐炎化装
置の概略縦断面図である。
FIG. 2 is a schematic longitudinal cross-sectional view of a flameproofing device according to the present invention, which is a different embodiment from FIG. 1;

【図3】従来のシール方法を用いた流動床炉の出口シー
ル部の概略縦断面図である。
FIG. 3 is a schematic vertical cross-sectional view of an outlet seal portion of a fluidized bed furnace using a conventional sealing method.

【符号の説明】[Explanation of symbols]

1……熱媒粒子 2……流動床炉 3……前駆体繊維(被処理物) 6……給気口 7……加圧シール室 10……耐炎化装置 12……入口シール部 13……出口シール部 15、42……給気管 17、43……ヒータ 18、44……ダンパ 19、45……給気ブロワ 20……排気管 22……熱媒返送口 4、23……導入孔 24……導出孔 5、25……入口 26……出口 27……滞留室 29……吸引孔 30……吸気管 33……吸気ブロワ(吸気手段) 34……多孔板 35……ホッパ 38……ブリッジ 39、40……給気系 41……給気孔 42……給気管 46……配管 1...Heating medium particles 2...Fluidized bed furnace 3...Precursor fiber (material to be treated) 6...Air supply port 7...Pressure seal chamber 10...Flame resistant device 12...Inlet seal part 13...Exit seal part 15, 42...Air supply pipe 17, 43...Heater 18, 44...damper 19, 45...Air supply blower 20...exhaust pipe 22... Heat medium return port 4, 23...Introduction hole 24... Outlet hole 5, 25... Entrance 26...exit 27... Retention room 29...Suction hole 30...Intake pipe 33...Intake blower (intake means) 34...Perforated plate 35...hopper 38...Bridge 39, 40...Air supply system 41...Air supply hole 42...Air supply pipe 46...Piping

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】線状の被処理物を、熱媒粒子を加熱気体で
流動化せしめた流動床炉の導入孔より導入し、加熱処理
したのち導出孔から導出する際に、前記導入孔および前
記導出孔から炉外に流出する前記熱媒粒子をシールする
流動床炉の炉内熱媒粒子のシール方法において、前記導
入孔および導出孔近傍に、前記流動床炉内の熱媒粒子を
滞留せしめる滞留室を形成せしめ、前記滞留室内に流出
した熱媒粒子を、該滞留室内に前記被処理物を介して少
なくとも2箇所設けられた吸引孔から、前記熱媒粒子径
よりも小さい通気孔を有する多孔板を介して吸引手段で
吸引捕捉することにより、前記被処理物の周囲に熱媒粒
子のブリッジを形成せしめてシールすることを特徴とす
る流動床炉の炉内熱媒粒子のシール方法。
[Claim 1] When a linear workpiece is introduced through an introduction hole of a fluidized bed furnace in which heating medium particles are fluidized with heated gas, and then taken out from an outlet hole after being heat-treated, In the method for sealing heating medium particles in a fluidized bed furnace that seals the heating medium particles flowing out of the furnace from the outlet hole, the heating medium particles in the fluidized bed furnace are retained in the vicinity of the introduction hole and the outlet hole. forming a retention chamber in which the heating medium particles flow out into the retention chamber, through suction holes provided in at least two locations in the retention chamber through the object to be treated, and venting holes smaller than the diameter of the heating medium particles; A method for sealing heating medium particles in a fluidized bed furnace, characterized by forming a bridge of heating medium particles around the object to be processed and sealing the object by suctioning and trapping the particles with a suction means through a perforated plate having a porous plate. .
【請求項2】内部に熱媒粒子を保有する本体と、該本体
に開孔された被処理物の導入孔および導出孔と、前記本
体に接続された前記加熱ガスの給気系および排気系とか
らなり、前記熱媒粒子を加熱ガスで流動化せしめること
により前記被処理物を加熱処理する耐炎化装置において
、 (イ)前記本体の導入孔および導出孔の近傍に隣接して
設けられた熱媒粒子の滞留室と、 (ロ)該滞留室に開口された被処理物の入口および出口
と、 (ハ)前記滞留室に相互に隔てられて少なくとも2箇所
設けられ、前記滞留室内に流出した熱媒粒子を熱媒粒子
径よりも細かい通気孔を有する多孔板を介して吸引捕捉
する吸引孔と、 (ニ)該吸引孔に接続された吸気手段と、からなるシー
ル部を設けたことを特徴とする耐炎化装置。
2. A main body having heating medium particles therein, an inlet hole and an outlet hole for the object to be processed, which are opened in the main body, and an air supply system and an exhaust system for the heated gas connected to the main body. In a flame-retardant device that heat-treats the object to be treated by fluidizing the heating medium particles with heated gas, the flame-retardant device comprises: a retention chamber for heat transfer particles; (b) an inlet and an outlet for the to-be-processed material opened to the retention chamber; and (c) at least two spaces provided in the retention chamber and separated from each other, the flow of which flows into the retention chamber. A sealing portion is provided, which includes a suction hole that suctions and captures the heat medium particles through a perforated plate having ventilation holes smaller than the diameter of the heat medium particles, and (d) an air suction means connected to the suction hole. A flame-retardant device featuring:
JP2747791A 1990-09-20 1991-02-21 Sealing method of in-furnace thermal medium particles in fluidized bed and flame resistant device using the method Pending JPH04214186A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25229890 1990-09-20
JP2-252298 1990-09-20

Publications (1)

Publication Number Publication Date
JPH04214186A true JPH04214186A (en) 1992-08-05

Family

ID=17235309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2747791A Pending JPH04214186A (en) 1990-09-20 1991-02-21 Sealing method of in-furnace thermal medium particles in fluidized bed and flame resistant device using the method

Country Status (1)

Country Link
JP (1) JPH04214186A (en)

Similar Documents

Publication Publication Date Title
WO2014002879A1 (en) Carbonization furnace for manufacturing carbon fiber bundles and method for manufacturing carbon fiber bundles
JPH04214186A (en) Sealing method of in-furnace thermal medium particles in fluidized bed and flame resistant device using the method
GB2148866A (en) Method and system for producing carbon fibers
JP4377007B2 (en) Carbon fiber manufacturing method
JP2007224483A (en) Apparatus for producing carbon fiber bundle and method for producing the same
JP2008144293A (en) Heat treatment apparatus for flame resistance and method for producing flame-resistant fiber bundle
CN114836846A (en) Fiber heat treatment device
JPH0681223A (en) Production of carbon fiber
JPH01207421A (en) Apparatus for making flame-resistance and method therefor
JPH08311723A (en) Oxidation treatment furnace and production of carbon fiber
JP2000088464A (en) Heat treatment furnace and manufacture of carbon fiber using it
JPS6030762B2 (en) Hot air heating furnace for carbon fiber production
JPH06229681A (en) Fluidized bed apparatus for treating wire or band material
KR20220146497A (en) Flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and flame-resistant furnace
JP4572460B2 (en) Heat treatment furnace and method for producing carbon fiber using the same
JPH0214022A (en) Fire-resistant treatment
JPH02169727A (en) Oven for infusing pitch fiber
KR20020022569A (en) Apparatus for manufacturing activated carbon fiber
JPH01104835A (en) Production of fire-resistant fiber
JPH01192825A (en) Apparatus for making flame-resistant
JP2505495B2 (en) Method for producing flame resistant fiber
JP2009084763A (en) Method for preparing carbon fiber
JP4386426B2 (en) Carbonization furnace
JP2001234434A (en) Method for producing carbon fiber
EP0301915B1 (en) Method for producing oxidized filaments