JP2000088464A - Heat treatment furnace and manufacture of carbon fiber using it - Google Patents

Heat treatment furnace and manufacture of carbon fiber using it

Info

Publication number
JP2000088464A
JP2000088464A JP10270587A JP27058798A JP2000088464A JP 2000088464 A JP2000088464 A JP 2000088464A JP 10270587 A JP10270587 A JP 10270587A JP 27058798 A JP27058798 A JP 27058798A JP 2000088464 A JP2000088464 A JP 2000088464A
Authority
JP
Japan
Prior art keywords
heat treatment
hot air
treatment furnace
furnace
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10270587A
Other languages
Japanese (ja)
Inventor
Toshinori Kawamura
俊紀 河村
Ryoichi Nakama
良一 仲摩
Hideyuki Arakane
秀行 荒金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10270587A priority Critical patent/JP2000088464A/en
Publication of JP2000088464A publication Critical patent/JP2000088464A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Control Of Resistance Heating (AREA)
  • Tunnel Furnaces (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To hold a temperature atmosphere in a heat treatment furnace uniform and to maintain the state for conducting a stable heat treatment by covering a periphery of a hot air diffusing nozzle with a heat insulator. SOLUTION: A hot air diffusing nozzle 32 is designed to cover a part surrounded by a shaded part with a heat insulator and to minimize a heat radiation Q1 from the nozzle 32 to an atmosphere V2 flowing from an exit/ entrance port 33 of a slit sealing structure. In a flame resisting furnace 31 for treating multi-filaments, a frontage of a filament exit/entrance port is lengthened, and the nozzle 32 indispensably lengthened in a lateral direction of the furnace, and hence its heat insulation characteristics are improved while suppressing its own weight deflection of the nozzle to a minimum limit by constituting it of a thin honeycomb member of a heat insulator part. Thus, a temperature difference in a heat treatment chamber can be made uniform, thereby assuring stability of its process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素繊維の製造に
用いて好適な熱処理炉およびその熱処理を用いた炭素繊
維の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment furnace suitable for producing carbon fibers and a method for producing carbon fibers using the heat treatment.

【0002】[0002]

【従来の技術】従来の熱処理炉、特に炭素繊維の製造に
用いられる熱処理炉としては、たとえば図1に示すよう
に、処理室11内に被処理物14を出し入れするスリッ
トシール構造の出入口16と、被処理物14を熱処理す
るための熱風を循環する装置が組み込まれている熱処理
炉10が知られている。
2. Description of the Related Art As a conventional heat treatment furnace, in particular, a heat treatment furnace used for producing carbon fibers, for example, as shown in FIG. There is known a heat treatment furnace 10 in which a device for circulating hot air for heat-treating a processing object 14 is incorporated.

【0003】この熱風循環装置10は、熱風を循環する
ためのファン18、熱風を加熱するためのヒータ17、
熱処理室11内に均一に熱風を流すための熱風吹き出し
ノズル12と、熱風吸い込みノズル13、それらを接続
するダクトで構成されている。
The hot air circulating apparatus 10 includes a fan 18 for circulating hot air, a heater 17 for heating hot air,
The heat treatment chamber 11 includes a hot air blowing nozzle 12 for uniformly flowing hot air into the heat treatment chamber 11, a hot air suction nozzle 13, and a duct connecting them.

【0004】このような熱処理炉においては、たとえば
それが耐炎化炉である場合、熱処理炉内を多段に配置さ
れた糸道(糸条の通過経路)を糸条が通過することによ
り耐炎化処理が行われるが、ポリアクリロニトリル(P
AN)系のプリカーサ(前駆体繊維)を耐炎化処理する
場合、以下のような問題点がある。
[0004] In such a heat treatment furnace, for example, when the furnace is a stabilization furnace, the stabilization treatment is performed by passing the yarn through a yarn path (yarn passage path) arranged in multiple stages in the heat treatment furnace. Is carried out, but polyacrylonitrile (P
In the case where an AN) -based precursor (precursor fiber) is subjected to a flame-resistant treatment, there are the following problems.

【0005】図2に熱風吹き出しノズル部分の一構造例
を真上からみた断面図で示すが、熱風吹き出しノズル2
2は熱処理炉21の側部から熱処理室内に延び、この熱
風吹き出しノズル22側の被処理物の出入口23(スリ
ットシール構造の出入口)では、熱風吹き出しノズル2
2から吹き出す熱風(V1a〜e)によるサクション効
果により、常温の外気(V2)が熱処理室内に流入す
る。
FIG. 2 is a cross-sectional view of one example of the structure of the hot air blowing nozzle viewed from directly above.
Numeral 2 extends into the heat treatment chamber from the side of the heat treatment furnace 21, and the hot air blowing nozzle 2 is provided at the entrance / exit 23 (the entrance / exit of the slit seal structure) of the workpiece on the side of the hot air blowing nozzle 22.
Due to the suction effect of the hot air (V1a to V1e) blown out from the outside air 2, room temperature outside air (V2) flows into the heat treatment chamber.

【0006】流入した外気は被処理物通過経路の上下に
設置された熱風吹き出しノズルから熱を奪い、熱処理室
内に流入(V2a〜e)する。
The inflowing outside air removes heat from hot air blowing nozzles provided above and below the passage of the workpiece, and flows into the heat treatment chamber (V2a to V2e).

【0007】このとき、ノズル22から奪い取られる熱
量は、被処理物の出入口側の面で多量に奪われるため、
熱風吹き出しノズル22自身の入り側では均一な温度で
供給される熱風(V1)も、出口側では吹き出す熱風
(V1a〜e)に温度差が発生し、炉内温度は通常、V
1a側が高く、V1e側が低くなる。
At this time, a large amount of heat is taken from the nozzle 22 at the entrance / exit surface of the object.
The hot air (V1) supplied at a uniform temperature on the inlet side of the hot air blowing nozzle 22 itself generates a difference in temperature between the hot air (V1a to e) to be blown on the outlet side.
The 1a side is high and the V1e side is low.

【0008】このため、熱処理室内の雰囲気温度を均一
に保つことが難しくなり、被処理物の製品品質、品位の
ばらつき、被処理物への蓄熱過多から糸切れ等の工程ト
ラブルが発生し易くなるという問題が発生する。
For this reason, it is difficult to keep the atmospheric temperature in the heat treatment chamber uniform, and process troubles such as yarn breakage due to excessive product storage and heat quality of the processed object and variation in product quality and quality of the processed object are liable to occur. The problem occurs.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、上記
のような問題に着目し、熱処理炉内の温度雰囲気を均一
に保ち、安定した熱処理を行える状況を維持できる熱処
理炉、とくに炭素繊維製造用に好適な熱処理炉、および
それを用いた炭素繊維の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat treatment furnace capable of maintaining a uniform temperature atmosphere in a heat treatment furnace and maintaining a stable heat treatment state. An object of the present invention is to provide a heat treatment furnace suitable for production and a method for producing carbon fiber using the same.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明の熱処理炉は、熱処理室内に被処理物を出し
入れするスリットシール構造の出入口を有し、被処理物
を熱処理するための熱風を循環する装置が組み込まれて
おり、熱処理室内の被処理物出入口近傍に被処理物の通
過経路に沿う方向へ熱風を吹き出すノズルを有する熱処
理炉において、該熱風吹き出しノズルの周囲を断熱材で
覆ったことを特徴とするものからなる。
In order to solve the above-mentioned problems, a heat treatment furnace according to the present invention has an entrance / exit having a slit seal structure for taking in / out an object to be treated into / from a heat treatment chamber, and is provided for heat-treating the object to be treated. A device for circulating hot air is incorporated, and in a heat treatment furnace having a nozzle that blows hot air in a direction along a passage of a processing object in the vicinity of a processing object inlet / outlet in the heat processing chamber, a heat insulating material surrounds the hot air blowing nozzle. It is characterized by being covered.

【0011】この熱処理炉は、いわゆる縦型炉に構成す
ることも可能であるが、好ましくは、被処理物を実質的
に水平方向に通過させる横型熱処理炉であり、該横型熱
処理炉に、上記複数個の熱風吹き出しノズルと熱風吸い
込みノズルが配設されている。
This heat treatment furnace can be constituted as a so-called vertical furnace, but is preferably a horizontal heat treatment furnace for allowing an object to be processed to pass in a substantially horizontal direction. A plurality of hot air blowing nozzles and a plurality of hot air suction nozzles are provided.

【0012】また、本発明の熱処理炉は、熱処理室内に
被処理物を出し入れするスリットシール構造の出入口を
有し、被処理物を熱処理するための熱風を循環する装置
が組み込まれており、熱処理室内の被処理物出入口近傍
に被処理物の通過経路に沿う方向へ熱風を吹き出すノズ
ルを有する熱処理炉において、該熱風吹き出しノズルが
吹き出し温度を制御する温度調節機能を有することを特
徴とするものからなる。すなわち、ノズルからの放熱対
策として、放熱量が多いノズル内部にシーズヒータ等の
加熱手段と温度制御用のセンサーを設けることで、奪わ
れた熱量分を供給する方式であり、この方式でも同様の
効果を得ることができる。
Further, the heat treatment furnace of the present invention has an entrance and exit of a slit seal structure for taking in and out the object to be treated into and out of the heat treatment chamber, and incorporates a device for circulating hot air for heat treating the object to be treated. In a heat treatment furnace having a nozzle that blows hot air in a direction along a passage of a processing object in the vicinity of a processing object inlet / outlet in a room, the hot air blowing nozzle has a temperature control function of controlling a blowing temperature. Become. In other words, as a measure against heat radiation from the nozzle, a heating means such as a sheathed heater and a sensor for temperature control are provided inside the nozzle with a large amount of heat radiation to supply the deprived heat amount. The effect can be obtained.

【0013】本発明に係る炭素繊維の製造方法は、上記
のような熱処理炉を用いて、該熱処理炉内に設けた熱風
吹き出しノズルから吹き出す熱風の温度を制御すること
を特徴とする方法からなる。
[0013] The method for producing carbon fibers according to the present invention comprises a method characterized by using a heat treatment furnace as described above and controlling the temperature of hot air blown from a hot air blow-off nozzle provided in the heat treatment furnace. .

【0014】特に、熱風吹き出しノズルから吹き出す熱
風の温度は、ノズルの幅方向において、温度差を10℃
以内、好ましくは5℃以内に制御するのが良い。
In particular, the temperature of the hot air blown from the hot-air blowing nozzle has a temperature difference of 10 ° C. in the width direction of the nozzle.
It is better to control the temperature within 5 ° C., preferably within 5 ° C.

【0015】このような熱処理炉は、炭素繊維の製造に
用いて好適なものであり、上記被処理物を、炭素繊維の
製造に供される糸条、つまり、耐炎化処理に供される前
駆体繊維や、炭化処理に供される耐炎化糸とすることが
できる。すなわち、前記熱処理炉は、炭素繊維の製造に
おいて、耐炎化炉や、炭化炉、工程油剤付与後の乾燥機
として用いることができ、特に耐炎化炉として好適なも
のである。
[0015] Such a heat treatment furnace is suitable for use in the production of carbon fiber, and converts the object to be processed into a thread to be used in the production of carbon fiber, that is, a precursor to be subjected to oxidizing treatment. It can be a body fiber or an oxidized yarn to be subjected to a carbonization treatment. That is, the heat treatment furnace can be used as an oxidation furnace, a carbonization furnace, or a drier after applying a process oil in the production of carbon fiber, and is particularly suitable as an oxidation furnace.

【0016】[0016]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態を、図面を参照しながら説明する。図1は熱処理炉
を耐炎化炉として使用する場合の、簡略化して示した耐
炎化炉の概略構成図である。図1において、10は熱処
理室11を有する耐炎化炉全体を示しており、耐炎化炉
10は、糸条14を実質的に水平方向に複数回通過させ
る横型熱処理炉に構成されている。この耐炎化炉10内
に、複数個の熱風吹き出しノズル12と、熱風吸い込み
ノズル13が配設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a simplified flame proofing furnace when a heat treatment furnace is used as a flame proofing furnace. In FIG. 1, reference numeral 10 denotes an entire oxidizing furnace having a heat treatment chamber 11, and the oxidizing furnace 10 is configured as a horizontal heat treatment furnace that passes a yarn 14 a plurality of times in a substantially horizontal direction. A plurality of hot-air blowing nozzles 12 and a hot-air suction nozzle 13 are provided in the flame-proof furnace 10.

【0017】入口側から耐炎化炉10内に送り込まれる
糸条14は、各ガイドローラ15で走行方向が反転さ
れ、熱処理炉10の両側に設けられたスリットシール構
造の出入口16を通り、耐炎化炉10の熱処理室11内
に供給される。
The running direction of the yarn 14 fed from the inlet side into the oxidizing furnace 10 is reversed by the guide rollers 15, and passes through the entrances and exits 16 of the slit seal structure provided on both sides of the heat treating furnace 10, and is oxidized. It is supplied into the heat treatment chamber 11 of the furnace 10.

【0018】耐炎化炉10内には、熱風吹き出しノズル
12および熱風吸い込みノズル13を介して熱風が循環
され、これらノズル12、13に熱風の循環ダクトが接
続されている。熱風循環経路には、熱風循環用ファン1
8、加熱用ヒータ17が設けられており、耐炎化炉10
内に、温度を制御しながら熱風を供給することができ
る。
Hot air is circulated in the flameproofing furnace 10 through a hot air blowing nozzle 12 and a hot air suction nozzle 13, and a hot air circulation duct is connected to the nozzles 12 and 13. Hot air circulation fan 1
8, a heating heater 17 is provided,
Inside, hot air can be supplied while controlling the temperature.

【0019】図2は図1に示した耐炎化炉を上部から見
た断面で、熱風吹き出しノズル12周辺部の構成を示し
ている。21は耐炎化炉外壁を示しており、22は糸条
の上下に配設された熱風吹き出しノズルである(つま
り、図1における各ノズル12の横断面を示してい
る)。糸条はスリットシール構造の出入口23を通って
耐炎化炉21内に供給される。
FIG. 2 is a cross-sectional view of the flameproofing furnace shown in FIG. 1 as viewed from above, and shows a configuration around the hot air blowing nozzle 12. Reference numeral 21 denotes an outer wall of the oxidation furnace, and reference numeral 22 denotes hot air blowing nozzles arranged above and below the yarn (that is, a cross section of each nozzle 12 in FIG. 1 is shown). The yarn is supplied into the flameproofing furnace 21 through an entrance 23 having a slit seal structure.

【0020】出入口23のスリットシールの幅H1は多
糸条を一度に通すため、複数の糸条を横に並べた幅H2
よりも大きく間口が設けてある。
The width H1 of the slit seal at the entrance 23 is a width H2 in which a plurality of yarns are arranged side by side so that multiple yarns can pass at one time.
There is a frontage larger than that.

【0021】均一な温度に加熱された循環熱風V1
は、、熱風吹き出しノズル22自身の入出口側に設けら
れたパンチングプレート、もしくはメッシュで適切な圧
損が加えられ、耐炎化炉21内に熱風吹き出しノズル幅
方向で、均一な風量を吹き出すようになっている。
Circulating hot air V1 heated to a uniform temperature
Is applied with an appropriate pressure loss by a punching plate or a mesh provided on the inlet / outlet side of the hot-air blowing nozzle 22 itself, so that a uniform air volume is blown out in the hot-air blowing nozzle 21 in the width direction of the hot-air blowing nozzle. ing.

【0022】耐炎化炉21内の処理室平均温度は、スリ
ットシール構造の出入口23から流入する外気V2と循
環熱風V1との総和により以下のとおり決定される。 処理室内温度=(V1温度×V1質量+V2温度×V2
質量)/(V1質量+V2質量)
The average temperature of the processing chamber in the oxidizing furnace 21 is determined as follows by the sum of the outside air V2 flowing from the entrance 23 of the slit seal structure and the circulating hot air V1. Processing chamber temperature = (V1 temperature x V1 mass + V2 temperature x V2
Mass) / (V1 mass + V2 mass)

【0023】また、局部的に見た場合、処理室内の各部
の温度は以下の通り決定される。(熱処理室の幅方向を
5分割したとき、図の上部側からa、b、c、d、e部
とし、図2におけるV1a〜V1e部に対応してい
る。) a部処理室内温度=(V1a温度×V1a質量+V2a
温度×V2a質量)/(V1a質量+V2a質量) b,c,d,e部もa部と同様に上記のとおり決定され
る。
When viewed locally, the temperature of each part in the processing chamber is determined as follows. (When the width direction of the heat treatment chamber is divided into five parts, the a, b, c, d, and e parts are taken from the upper side of the figure and correspond to the V1a to V1e parts in FIG. 2). V1a temperature x V1a mass + V2a
Temperature × V2a mass) / (V1a mass + V2a mass) The parts b, c, d, and e are also determined as described above in the same manner as the part a.

【0024】図3は図1に示した耐炎化炉に本発明を適
用した場合の熱風吹き出しノズル周辺の詳細図である。
31は耐炎化炉の外壁を示しており、32は糸条の上下
に配設された熱風吹き出しノズルである。糸条34はス
リットシール構造の出入口33を通って耐炎化炉31内
に供給される。
FIG. 3 is a detailed view of the vicinity of a hot-air blowing nozzle when the present invention is applied to the oxidation furnace shown in FIG.
Reference numeral 31 denotes an outer wall of the flameproofing furnace, and reference numeral 32 denotes hot air blowing nozzles disposed above and below the yarn. The yarn 34 is supplied into the oxidizing furnace 31 through an entrance 33 having a slit seal structure.

【0025】ここで、熱風吹き出しノズル32は斜線部
で囲まれた部分を断熱材35で覆われており、熱風吹き
出しノズル32からの、スリットシール構造の出入口3
3から流入する外気V2への放熱Q1が最小になるよう
に設計されている。
The hot air blow-out nozzle 32 has a portion surrounded by a hatched portion covered with a heat insulating material 35. The hot air blow-out nozzle 32 has a slit 3
3 is designed to minimize the heat radiation Q1 to the outside air V2 flowing in from outside.

【0026】ここで使用される断熱材の種類としては、
たとえばロックウール、グラスウール、石綿、けい酸カ
ルシウム等があるが、熱伝導率を考慮するとグラスウー
ルが優れている。
The type of heat insulating material used here is as follows.
For example, there are rock wool, glass wool, asbestos, calcium silicate and the like, but glass wool is excellent in consideration of thermal conductivity.

【0027】上記の断熱材はたとえばステンレスの薄板
で囲われており、直接炉内雰囲気に曝されることはな
い。
The above-mentioned heat insulating material is surrounded by a thin plate of stainless steel, for example, and is not directly exposed to the furnace atmosphere.

【0028】また、多糸条処理を行う耐炎化炉31にお
いては糸条出入口の間口が長くなり、必然的に熱風吹き
出しノズル32も炉の幅方向に長くなる。この様な場合
には熱風吹き出しノズル32の自重たわみが大きくな
り、充分な糸条の通糸経路を確保することが難しくな
る。よって、多糸条を処理する耐炎化炉においては、上
記のような断熱材を使用せず、断熱材部分を薄肉のハニ
カム部材で構成することで、ノズルの自重たわみを最小
限に抑えつつ、かつ、断熱特性を向上させることができ
る。
Further, in the flameproofing furnace 31 for performing the multi-filament treatment, the frontage of the yarn inlet / outlet becomes longer, and the hot air blowing nozzle 32 naturally becomes longer in the width direction of the furnace. In such a case, the deflection of the hot-air blowing nozzle 32 under its own weight becomes large, and it becomes difficult to secure a sufficient yarn passing path. Therefore, in a flameproofing furnace that processes multiple yarns, the heat insulating material is not used as described above, and the heat insulating material portion is formed of a thin honeycomb member, while minimizing the deflection of the nozzle by its own weight, In addition, the heat insulation properties can be improved.

【0029】図4は、図1に示した耐炎化炉に本発明の
別の態様を適用した場合の上部から見た断面で、熱風吹
き出しノズル周辺部の詳細であり、熱風吹き出しノズル
が温度調節機能を有する熱処理炉の図面である。
FIG. 4 is a cross-sectional view from the top when another embodiment of the present invention is applied to the stabilization furnace shown in FIG. 1 and shows details of a hot air blowing nozzle peripheral portion. It is a drawing of a heat treatment furnace having a function.

【0030】41は耐炎化炉外壁を示しており、42は
糸条の上下に配設された熱風吹き出しノズルである。糸
条はスリットシール構造の出入口43を通って耐炎化炉
41内に供給される。
Reference numeral 41 denotes an outer wall of the oxidizing furnace, and reference numeral 42 denotes hot air blowing nozzles disposed above and below the yarn. The yarn is supplied into the flameproofing furnace 41 through the entrance / exit 43 of the slit seal structure.

【0031】熱風吹き出しノズル42内には、特に放熱
量が大きく、熱風吹き出しノズル42からの吹き出し温
度が低下する流路に、温度調節機能を有する部品44が
配設されている。
A component 44 having a temperature adjusting function is disposed in the hot air blowing nozzle 42 in a flow path in which the amount of heat radiation is particularly large and the temperature of the hot air blowing nozzle 42 drops.

【0032】温度調節機能を有する部品44には、シー
ズヒータ、熱媒配管等の加熱手段が設けられている。ま
た、加熱手段の下流側の適当な位置には、ダクト内の温
度を検知して、加熱手段を制御するためのセンサーが設
けられている。
The component 44 having a temperature adjusting function is provided with heating means such as a sheathed heater and a heating medium pipe. Further, a sensor for detecting the temperature in the duct and controlling the heating means is provided at an appropriate position downstream of the heating means.

【0033】図4には、加熱手段が1つのみ記載されて
いるが、より均一な炉内温度を求める場合には、熱風吹
き出しノズル42内の全ての流路に温度調節機能を有す
る部品44を設けてもよい。
FIG. 4 shows only one heating means. However, when a more uniform furnace temperature is required, components 44 having a temperature control function are provided in all the flow paths in the hot air blowing nozzle 42. May be provided.

【0034】また、熱風吹き出しノズル42内に設けた
温度調節機能を有する部品44は、ノズルの流路内に複
数個に分割して設置してもよく、その際の温度管理はノ
ズル下流に設置したセンサーで一括管理してもよい。
The component 44 having a temperature adjusting function provided in the hot air blowing nozzle 42 may be divided into a plurality of parts in the flow path of the nozzle, and the temperature control in this case is provided downstream of the nozzle. You may collectively manage the sensors.

【0035】以上のような構成を有する耐炎化炉におい
ては、熱処理炉内に設けた熱風吹き出しノズルから吹き
出す熱風の温度を、ノズルの幅方向、つまり、処理され
る糸条の幅方向で温度差10℃以内、好ましくは5℃以
内に制御するのが良い。
In the flameproofing furnace having the above-described structure, the temperature of the hot air blown from the hot air blowing nozzle provided in the heat treatment furnace is controlled by the temperature difference in the width direction of the nozzle, that is, the width direction of the yarn to be processed. It is better to control the temperature within 10 ° C, preferably within 5 ° C.

【0036】目的とする温度範囲内に処理室内の雰囲気
を制御するためには、上述したような熱風吹き出しノズ
ルを断熱材で覆う手段と、温度調節機能による制御手段
とを組み合わせて配設してもよい。
In order to control the atmosphere in the processing chamber within a target temperature range, the above-described means for covering the hot air blowing nozzle with a heat insulating material and a control means using a temperature adjusting function are provided in combination. Is also good.

【0037】[0037]

【実施例】実施例1 PAN系のプリカーサ(単糸:1デニール、フィラメン
ト数:12,000本)を、糸条の走行速度を3m/
分、熱処理室内の平均熱風循環速度を3m/秒、熱処理
室内平均温度を250℃、スリットシール部の間口が2
000mm、熱風吹き出しノズルをグラスウール断熱材
で覆った横型耐炎化炉を用いて耐炎化処理した。
Example 1 A PAN-based precursor (single yarn: 1 denier, number of filaments: 12,000 filaments) was fed at a running speed of 3 m / yarn.
Min, the average hot air circulation speed in the heat treatment room is 3 m / sec, the average temperature in the heat treatment room is 250 ° C, and the width of the slit seal section is 2
A horizontal flame stabilization furnace in which a hot air blowing nozzle of 000 mm was covered with a glass wool heat insulating material was subjected to a flame-proof treatment.

【0038】熱風吹き出しノズルの吹き出し口から1m
離れた地点に、熱処理室の幅方向に5点、熱電対を配設
し、炉内の温度を測定した結果、A点:254℃、B
点:252℃、C点:248℃、D点:249℃、E
点:246℃となり、温度差は8℃となった。
1 m from the outlet of the hot air blowing nozzle
Five thermocouples were arranged at a distance in the width direction of the heat treatment chamber, and the temperature in the furnace was measured. As a result, point A: 254 ° C, B
Point: 252 ° C, Point C: 248 ° C, Point D: 249 ° C, E
Point: 246 ° C., and the temperature difference was 8 ° C.

【0039】得られた耐炎化糸に発生した毛羽数は、A
点:4.0個/m、B点:3.0個/m、C点:2.5
個/m、D点:2.5個/m、E点:2.0個/mで、
平均で2.8個/mであり、この耐炎化糸を窒素中14
00℃で炭化処理して得られた炭素繊維の炭化収率は5
5%で強度450kgf/mm2 であった。
The number of fluffs generated in the obtained flame-resistant yarn is A
Point: 4.0 / m, Point B: 3.0 / m, Point C: 2.5
Pieces / m, D point: 2.5 pieces / m, E point: 2.0 pieces / m,
The average value is 2.8 yarns / m.
The carbonization yield of carbon fibers obtained by carbonization at 00 ° C is 5
The strength was 450 kgf / mm 2 at 5%.

【0040】実施例2 PAN系のプリカーサ(単糸:1デニール、フィラメン
ト数:12,000本)を、糸条の走行速度を3m/
分、熱処理室内の平均熱風循環速度を3m/秒、熱処理
室内平均温度を250℃、スリットシール部の間口が2
000mm、熱風吹き出しノズル内にシーズヒータと制
御用温度センサーを配設した横型耐炎化炉を用いて耐炎
化処理した。
Example 2 A PAN-based precursor (single yarn: 1 denier, number of filaments: 12,000) was fed at a running speed of 3 m / y.
Min, the average hot air circulation speed in the heat treatment room is 3 m / sec, the average temperature in the heat treatment room is 250 ° C, and the width of the slit seal section is 2
A horizontal flame stabilization furnace in which a sheathed heater and a temperature sensor for control were disposed in a hot air blowing nozzle having a diameter of 000 mm was subjected to flameproofing treatment.

【0041】熱風吹き出しノズルの吹き出し口から1m
離れた地点に、熱処理室の幅方向に5点、熱電対を配設
し、炉内の温度を測定した結果、A点:255℃、B
点:250℃、C点:247℃、D点:250℃、E
点:248℃となり、温度差は8℃となった。
1 m from the outlet of the hot air blowing nozzle
Five thermocouples were arranged in the width direction of the heat treatment room at distant points, and the temperature in the furnace was measured. As a result, point A: 255 ° C, B
Point: 250 ° C, Point C: 247 ° C, Point D: 250 ° C, E
Point: 248 ° C., and the temperature difference was 8 ° C.

【0042】得られた耐炎化糸に発生した毛羽数は、A
点:4.0個/m、B点:3.0個/m、C点:2.0
個/m、D点:2.5個/m、E点:2.0個/mで、
平均で2.7個/mであり、この耐炎化糸を窒素中14
00℃で炭化処理して得られた炭素繊維の炭化収率は5
4%で強度446kgf/mm2 であった。
The number of fluffs generated in the obtained flame-resistant yarn is A
Point: 4.0 / m, Point B: 3.0 / m, Point C: 2.0
Pieces / m, D point: 2.5 pieces / m, E point: 2.0 pieces / m,
The average is 2.7 yarns / m, and this flame-resistant yarn is
Carbonization yield of carbon fiber obtained by carbonization at 00 ° C is 5
The strength was 446 kgf / mm 2 at 4%.

【0043】比較例1 PAN系のプリカーサ(単糸:1デニール、フィラメン
ト数:12,000本)を、糸条の走行速度を3m/
分、熱処理室内の平均熱風循環速度を3m/分、熱処理
室内平均温度を250℃、スリットシール部の間口が2
000mm、熱風吹き出しノズルには何も付加していな
い横型耐炎化炉を用いて耐炎化処理した。
Comparative Example 1 A PAN-based precursor (single yarn: 1 denier, number of filaments: 12,000) was fed at a running speed of 3 m / y.
Min, the average hot air circulation speed in the heat treatment room is 3 m / min, the average temperature in the heat treatment room is 250 ° C, and the width of the slit seal section is 2
000 mm, a hot-air blowing nozzle was subjected to a flame-proof treatment using a horizontal flame-proof furnace in which nothing was added.

【0044】熱風吹き出しノズルの吹き出し口から1m
離れた地点に、熱処理室の幅方向に5点、熱電対を配設
し、炉内の温度を測定した結果、A点:265℃、B
点:252℃、C点:249℃、D点:247℃、E
点:236℃となり、温度差は29℃となった。
1 m from the outlet of the hot air blowing nozzle
Five thermocouples were arranged at a distance in the width direction of the heat treatment chamber, and the temperature in the furnace was measured.
Point: 252 ° C, Point C: 249 ° C, Point D: 247 ° C, E
Point: 236 ° C., temperature difference was 29 ° C.

【0045】得られた耐炎化糸に発生した毛羽数は、B
点:3.5個/m、C点:2.0個/m、D点:2.0
個/m、E点:1.5個/mで、平均で2.3個/mで
あり、この耐炎化糸を窒素中1400℃で炭化処理して
得られた炭素繊維の炭化収率は55%で強度402kg
f/mm2 であった。ただし、処理室内の温度が高かっ
たA点周辺で熱処理しようとした糸条は、毛羽が多発
し、出側の炉外ロールに巻き付き、耐炎化糸を得ること
はできなかった。
The number of fluffs generated in the obtained oxidized yarn is B
Point: 3.5 pieces / m, Point C: 2.0 pieces / m, Point D: 2.0
Pcs / m, E point: 1.5 pcs / m, average 2.3 pcs / m, carbonization yield of carbon fiber obtained by carbonizing this oxidized yarn at 1400 ° C in nitrogen 402 kg strength at 55%
f / mm 2 . However, the yarn which was to be heat-treated around the point A where the temperature in the processing chamber was high had many fluffs and was wrapped around a roll outside the furnace on the delivery side, and thus it was not possible to obtain a flame-resistant yarn.

【0046】このように、熱処理室の幅方向の温度斑を
均一にすることによって、処理物を熱処理室の全幅にお
いて均一に処理することができ、毛羽発生によるロール
巻き付き等を防止し、安定した耐炎化処理ができる。
As described above, by making the temperature unevenness in the width direction of the heat treatment chamber uniform, the processed material can be uniformly processed over the entire width of the heat treatment chamber, and the roll is not wrapped due to the generation of fluff and the like. Can be treated for flame resistance.

【0047】実施例3〜4、比較例2〜5 熱風吹き出しノズル内にシーズヒータと制御用温度セン
サーを複数個配設した横型耐炎化炉を用いて、熱風吹き
出しノズルの吹き出し口から1m離れた地点に、熱処理
室の幅方向に5点、熱電対を配設し、炉内の温度差を変
化させてテストを行った(設定温度差30℃、25℃、
20℃、15℃、10℃、5℃の6水準)。
Examples 3-4, Comparative Examples 2-5 1 m away from the outlet of the hot air blow-off nozzle using a horizontal flame stabilization furnace in which a plurality of sheathed heaters and control temperature sensors are provided in the hot air blow-out nozzle. At the point, five thermocouples were arranged in the width direction of the heat treatment room, and the test was performed by changing the temperature difference in the furnace (set temperature difference 30 ° C, 25 ° C,
20 ° C, 15 ° C, 10 ° C, 5 ° C, 6 levels).

【0048】固定条件として、PAN系のプリカーサ
(単糸:1デニール、フィラメント数:12,000
本)、糸条処理数20本、糸条の走行速度を2m/分、
熱処理室内の平均熱風循環速度を3m/秒、熱処理室内
平均温度を245℃、スリットシール部の間口を200
0mmとした。また後工程での炭化炉は窒素雰囲気中で
1400℃で処理した。
As the fixing conditions, a PAN precursor (single yarn: 1 denier, filament number: 12,000)
Book), the number of yarns to be processed is 20, the running speed of the yarn is 2 m / min,
The average hot air circulation speed in the heat treatment chamber is 3 m / sec, the average temperature in the heat treatment chamber is 245 ° C, and the width of the slit seal section is 200
0 mm. Further, the carbonization furnace in the post-process was processed at 1400 ° C. in a nitrogen atmosphere.

【0049】評価パラメータとして、 1m当たりの炭素繊維の毛羽数(サンプル数20個の
平均) 処理時間10時間での耐炎化炉での糸切れ本数 処理時間10時間での後工程(炭化炉)での糸切れ本
数 とした。
As evaluation parameters, the number of fluffs of carbon fiber per meter (average of 20 samples) The number of yarn breaks in an oxidizing furnace after a treatment time of 10 hours In the post-process (carbonization furnace) after a treatment time of 10 hours The number of thread breaks

【0050】結果、表1に示すように、温度差10〜1
5℃の間で糸切れ本数に差が生じることが解った。ま
た、糸切れの前兆となる毛羽数も、設定温度差が広がる
ほどより高温となるA点側では耐炎化処理過多による糸
いたみが増加し、より低温となるE点側では耐炎化処理
不足により後工程で糸切断が増加している。したがっ
て、熱処理炉内の温度差を10℃以下にすることで、よ
り好ましくは5℃以下にすることで、実用的に優れた生
産設備となることが判る。
As a result, as shown in Table 1, the temperature difference was 10 to 1
It was found that there was a difference in the number of yarn breaks between 5 ° C. In addition, the number of fluffs, which is a precursor of yarn breakage, also increases as the set temperature difference spreads, and the yarn damage due to excessive flame-proofing treatment increases at the point A, where the temperature becomes higher. Thread cutting is increasing in the post-process. Therefore, it can be seen that by making the temperature difference in the heat treatment furnace 10 ° C. or less, more preferably 5 ° C. or less, the production equipment becomes practically excellent.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】以上説明したように、本発明の熱処理炉
及び炭素繊維の製造方法によるときは、熱風吹き出しノ
ズルの周囲を断熱材で覆うことにより、熱処理室内の温
度差を均一にすることができ、工程の安定性が確保され
るとともに、製品の品位が向上する。
As described above, according to the heat treatment furnace and the carbon fiber manufacturing method of the present invention, the temperature difference in the heat treatment chamber can be made uniform by covering the periphery of the hot air blowing nozzle with the heat insulating material. As a result, the stability of the process is ensured and the quality of the product is improved.

【0053】また、熱風吹き出しノズル内に温度調節手
段を設けることでも同様な効果が発揮される。
The same effect can be obtained by providing a temperature adjusting means in the hot air blowing nozzle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な熱処理炉の形態であるとともにに、本
発明の一実施形態に係る熱処理炉の概略構成図である。
FIG. 1 is a schematic configuration diagram of a heat treatment furnace according to an embodiment of the present invention, as well as a general heat treatment furnace.

【図2】一般的な熱処理炉の形態であるとともにに、本
発明の一実施形態に係る熱処理炉の部分概略構成図であ
る。
FIG. 2 is a partial schematic configuration diagram of a heat treatment furnace according to an embodiment of the present invention, in addition to a general heat treatment furnace.

【図3】本発明の一実施形態に係る熱処理炉の部分概略
構成図である。
FIG. 3 is a partial schematic configuration diagram of a heat treatment furnace according to an embodiment of the present invention.

【図4】本発明の一実施形態に係る熱処理炉の部分概略
構成図である。
FIG. 4 is a partial schematic configuration diagram of a heat treatment furnace according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 熱処理炉(耐炎化炉) 11 熱処理室 12 熱風吹き出しノズル 13 熱風吸い込みノズル 14 糸条 15 ガイドローラ 16 スリットシール構造の出入口 17 加熱用ヒータ 18 熱風循環用ファン 21 熱処理炉(耐炎化炉) 22 熱風吹き出しノズル 23 スリットシール構造の出入口 H1 スリットシール幅 H2 糸条処理幅 V1 循環熱風 V1a、V1b、V1c、V1d、V1e 局部的にみ
た循環熱風 V2 外気 V2a、V2b、V2c、V2d、V2e 熱処理炉内
に流入した外気 31 熱処理炉(耐炎化炉) 32 熱風吹き出しノズル 33 スリットシール構造の出入口 34 糸条 35 断熱材 Q1 放熱 41 熱処理炉(耐炎化炉) 42 熱風吹き出しノズル 43 スリットシール構造の出入口 44 温度調節機能を有する部品
REFERENCE SIGNS LIST 10 heat treatment furnace (flame-resistance furnace) 11 heat treatment chamber 12 hot-air blowing nozzle 13 hot-air suction nozzle 14 thread 15 guide roller 16 entrance of slit seal structure 17 heater for heating 18 fan for hot-air circulation 21 heat treatment furnace (flame-proof furnace) 22 hot air Blowing nozzle 23 Entrance and exit of slit seal structure H1 Slit seal width H2 Yarn processing width V1 Circulating hot air V1a, V1b, V1c, V1d, V1e Circulating hot air viewed locally V2 Outside air V2a, V2b, V2c, V2d, V2e Inside the heat treatment furnace Inflowing outside air 31 Heat treatment furnace (oxidizing furnace) 32 Hot air blowing nozzle 33 Entrance and exit of slit seal structure 34 Thread 35 Heat insulating material Q1 Radiation 41 Heat treatment furnace (oxidizing furnace) 42 Hot air blowing nozzle 43 Entrance and exit of slit seal structure 44 Temperature control Functional parts

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒金 秀行 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 Fターム(参考) 3K058 AA86 BA00 4K050 AA02 BA09 CA11 CD17 CF01 CF11 CG01 4L037 CS03 CT10 CT12 CT14 CT42 FA03 FA07 PA53 PC05 PS02 PS20  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hideyuki Arakane 1-1-1, Sonoyama, Otsu-shi, Shiga F-term in the Shiga Plant of Toray Industries (reference) 3K058 AA86 BA00 4K050 AA02 BA09 CA11 CD17 CF01 CF11 CG01 4L037 CS03 CT10 CT12 CT14 CT42 FA03 FA07 PA53 PC05 PS02 PS20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱処理室内に被処理物を出し入れするス
リットシール構造の出入口を有し、被処理物を熱処理す
るための熱風を循環する装置が組み込まれており、熱処
理室内の被処理物出入口近傍に被処理物の通過経路に沿
う方向へ熱風を吹き出すノズルを有する熱処理炉におい
て、該熱風吹き出しノズルの周囲を断熱材で覆ったこと
を特徴とする熱処理炉。
1. An inlet / outlet having a slit seal structure for taking in / out an object to be processed into / out of a heat treatment chamber, and a device for circulating hot air for heat treating the object to be processed is incorporated. A heat treatment furnace having a nozzle for blowing hot air in a direction along a passage path of an object to be processed, wherein a periphery of the hot air blowing nozzle is covered with a heat insulating material.
【請求項2】 前記熱処理炉が糸条を実質的に水平方向
に通過させる横型熱処理炉であり、該横型熱処理炉に、
前記複数個の熱風吹き出しノズルが糸条の上下に配設さ
れている、請求項1の熱処理炉。
2. The horizontal heat treatment furnace, wherein the heat treatment furnace is a horizontal heat treatment furnace for passing the yarn in a substantially horizontal direction.
The heat treatment furnace according to claim 1, wherein the plurality of hot air blowing nozzles are arranged above and below the yarn.
【請求項3】 前記熱処理炉が炭素繊維製造に用いられ
る耐炎化炉である、請求項1または2に記載の炭素繊維
用熱処理炉。
3. The heat treatment furnace for carbon fibers according to claim 1, wherein the heat treatment furnace is a stabilization furnace used for carbon fiber production.
【請求項4】 熱処理室内に被処理物を出し入れするス
リットシール構造の出入口を有し、被処理物を熱処理す
るための熱風を循環する装置が組み込まれており、熱処
理室内の被処理物出入口近傍に被処理物の通過経路に沿
う方向へ熱風を吹き出すノズルを有する熱処理炉におい
て、該熱風吹き出しノズルが吹き出し温度を制御する温
度調節機能を有することを特徴とする熱処理炉。
4. An apparatus having an entrance and exit of a slit seal structure for taking in and out an object to be processed into and out of the heat treatment chamber, and incorporating a device for circulating hot air for heat treating the object to be processed, in the vicinity of the entrance and exit of the object in the heat treatment chamber. A heat treatment furnace having a nozzle for blowing hot air in a direction along a passage of an object to be processed, wherein the hot air blowing nozzle has a temperature control function of controlling a blowing temperature.
【請求項5】 前記熱処理炉が糸条を実質的に水平方向
に通過させる横型熱処理炉であり、該横型熱処理炉に、
前記複数個の熱風吹き出しノズルが糸条の上下に配設さ
れている、請求項4の熱処理炉。
5. The heat treatment furnace according to claim 1, wherein the heat treatment furnace is a horizontal heat treatment furnace that passes the yarn in a substantially horizontal direction.
The heat treatment furnace according to claim 4, wherein the plurality of hot air blowing nozzles are disposed above and below the yarn.
【請求項6】 前記熱処理炉が炭素繊維製造に用いられ
る耐炎化炉である、請求項4または5に記載の炭素繊維
用熱処理炉。
6. The heat treatment furnace for carbon fibers according to claim 4, wherein the heat treatment furnace is a stabilization furnace used for carbon fiber production.
【請求項7】 請求項1〜6のいずれかに記載の熱処理
炉を用いて、該熱処理炉内に設けた熱風吹き出しノズル
から吹き出す熱風の温度を制御することを特徴とする炭
素繊維の製造方法。
7. A method for producing carbon fiber, comprising using the heat treatment furnace according to any one of claims 1 to 6 to control the temperature of hot air blown from a hot air blowing nozzle provided in the heat treatment furnace. .
【請求項8】 熱風吹き出しノズルから吹き出す熱風の
温度を、ノズルの幅方向で温度差10℃以内に制御する
ことを特徴とする、請求項7の炭素繊維の製造方法。
8. The method for producing carbon fibers according to claim 7, wherein the temperature of the hot air blown from the hot air blowing nozzle is controlled within a temperature difference of 10 ° C. in the width direction of the nozzle.
JP10270587A 1998-09-08 1998-09-08 Heat treatment furnace and manufacture of carbon fiber using it Pending JP2000088464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10270587A JP2000088464A (en) 1998-09-08 1998-09-08 Heat treatment furnace and manufacture of carbon fiber using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10270587A JP2000088464A (en) 1998-09-08 1998-09-08 Heat treatment furnace and manufacture of carbon fiber using it

Publications (1)

Publication Number Publication Date
JP2000088464A true JP2000088464A (en) 2000-03-31

Family

ID=17488207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10270587A Pending JP2000088464A (en) 1998-09-08 1998-09-08 Heat treatment furnace and manufacture of carbon fiber using it

Country Status (1)

Country Link
JP (1) JP2000088464A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115125A (en) * 2000-10-05 2002-04-19 Toray Ind Inc Heat treatment oven and method for producing carbon fiber using the same
JP2008280640A (en) * 2007-05-10 2008-11-20 Mitsubishi Rayon Co Ltd Flameproofing heat-treatment apparatus
WO2014007169A1 (en) 2012-07-02 2014-01-09 三菱レイヨン株式会社 Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle
WO2015012311A1 (en) * 2013-07-23 2015-01-29 三菱レイヨン株式会社 Gas supply blowout nozzle and method for producing carbon fibers and flameproofed fibers using same
WO2018234126A1 (en) * 2017-06-19 2018-12-27 Eisenmann Se Furnace
JPWO2020189029A1 (en) * 2019-03-19 2020-09-24
WO2021187518A1 (en) * 2020-03-18 2021-09-23 東レ株式会社 Flame resistant fiber bundles, carbon fiber bundle production method, and flame resistant furnace
EP3889326A4 (en) * 2018-11-26 2022-09-07 Toray Industries, Inc. Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572460B2 (en) * 2000-10-05 2010-11-04 東レ株式会社 Heat treatment furnace and method for producing carbon fiber using the same
JP2002115125A (en) * 2000-10-05 2002-04-19 Toray Ind Inc Heat treatment oven and method for producing carbon fiber using the same
JP2008280640A (en) * 2007-05-10 2008-11-20 Mitsubishi Rayon Co Ltd Flameproofing heat-treatment apparatus
KR20150015524A (en) 2012-07-02 2015-02-10 미쯔비시 레이온 가부시끼가이샤 Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle
WO2014007169A1 (en) 2012-07-02 2014-01-09 三菱レイヨン株式会社 Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle
US10472738B2 (en) 2013-07-23 2019-11-12 Mitsubishi Chemical Corporation Gas supply blowout nozzle and method of producing flame-proofed fiber and carbon fiber
EP3026151A4 (en) * 2013-07-23 2016-08-03 Mitsubishi Rayon Co Gas supply blowout nozzle and method for producing carbon fibers and flameproofed fibers using same
WO2015012311A1 (en) * 2013-07-23 2015-01-29 三菱レイヨン株式会社 Gas supply blowout nozzle and method for producing carbon fibers and flameproofed fibers using same
WO2018234126A1 (en) * 2017-06-19 2018-12-27 Eisenmann Se Furnace
CN110799797A (en) * 2017-06-19 2020-02-14 艾森曼欧洲公司 Furnace with a heat exchanger
US11603607B2 (en) 2017-06-19 2023-03-14 Eisenmann Se Furnace
EP3889326A4 (en) * 2018-11-26 2022-09-07 Toray Industries, Inc. Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle
JPWO2020189029A1 (en) * 2019-03-19 2020-09-24
JP7272347B2 (en) 2019-03-19 2023-05-12 東レ株式会社 Flame-resistant heat treatment furnace, method for producing flame-resistant fiber bundle and carbon fiber bundle
WO2021187518A1 (en) * 2020-03-18 2021-09-23 東レ株式会社 Flame resistant fiber bundles, carbon fiber bundle production method, and flame resistant furnace
CN115279958A (en) * 2020-03-18 2022-11-01 东丽株式会社 Flame-resistant fiber bundle, method for producing carbon fiber bundle, and flame-resistant furnace
CN115279958B (en) * 2020-03-18 2024-04-16 东丽株式会社 Flame-retardant fiber bundle, method for producing carbon fiber bundle, and flame-retardant furnace

Similar Documents

Publication Publication Date Title
JPH08311722A (en) Method and apparatus for manufacturing polydimensional sheetstructure consisting of polyacrylonitrile fiber
JP2010100967A (en) Heat-treatment furnace, flame retardant fiber bundle, and method for producing carbon fiber
JPH10237723A (en) The treatment furnace and production of carbon fiber
JP2007247130A (en) Heat-treating furnace and method for producing carbon fiber
JP2000088464A (en) Heat treatment furnace and manufacture of carbon fiber using it
JP5037978B2 (en) Flameproof furnace and flameproofing method
WO1990010101A1 (en) Flameproofing apparatus
JP2008138325A (en) Flame resistant furnace and method for producing flame resistant fiber bundle, and method for producing carbon fiber bundle
JP6729819B1 (en) Method for producing flame resistant fiber bundle and carbon fiber bundle, and flame resistant furnace
JP2007217835A (en) Flameproofing treatment oven
JP2008267794A (en) Heat treatment furnace and method of manufacturing heat treated object
JPH034832B2 (en)
JP2004124310A (en) Flameproofing furnace
JP2002194627A (en) Heat-treating oven and method for producing carbon fiber by use of the same
JP4236316B2 (en) Flame-resistant heat treatment equipment for yarn
JP4572460B2 (en) Heat treatment furnace and method for producing carbon fiber using the same
JP4241950B2 (en) Horizontal heat treatment furnace and heat treatment method
KR20220146497A (en) Flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and flame-resistant furnace
JP2000160435A (en) Continuous thermal treatment of acrylic fiber bundle
JPS6030762B2 (en) Hot air heating furnace for carbon fiber production
WO2015012311A1 (en) Gas supply blowout nozzle and method for producing carbon fibers and flameproofed fibers using same
JPH034834B2 (en)
JP5037977B2 (en) Flameproofing furnace and method for producing flameproofed fiber
JPH034833B2 (en)
JP2004197239A (en) Flame resisting treatment furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711