JP2000160435A - Continuous thermal treatment of acrylic fiber bundle - Google Patents
Continuous thermal treatment of acrylic fiber bundleInfo
- Publication number
- JP2000160435A JP2000160435A JP10336095A JP33609598A JP2000160435A JP 2000160435 A JP2000160435 A JP 2000160435A JP 10336095 A JP10336095 A JP 10336095A JP 33609598 A JP33609598 A JP 33609598A JP 2000160435 A JP2000160435 A JP 2000160435A
- Authority
- JP
- Japan
- Prior art keywords
- fiber bundle
- furnace
- fiber
- acrylic fiber
- acrylic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Inorganic Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、品質の高い耐炎化
繊維を効率よく生産することのできるアクリル系繊維束
の連続熱処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously heat-treating an acrylic fiber bundle capable of efficiently producing high-quality flame-resistant fibers.
【0002】[0002]
【従来の技術】炭素繊維は他の繊維に比較して優れた比
強度、及び比弾性率を具備し、又金属に比較して優れた
比抵抗、及び高い耐薬品性を有しており、これらの優れ
た各種の特性によって樹脂との複合材料の補強用繊維と
して使用されており、工業用途、スポーツ用途、航空宇
宙分野用途等に幅広く利用されている。2. Description of the Related Art Carbon fibers have excellent specific strength and specific elastic modulus as compared with other fibers, and also have excellent specific resistance and high chemical resistance as compared with metals. Due to these excellent various properties, it is used as a reinforcing fiber for a composite material with a resin, and is widely used in industrial applications, sports applications, aerospace applications, and the like.
【0003】炭素繊維は、一般的にはポリアクリロニト
リル、レーヨン、ピッチ類等の有機繊維を酸化性雰囲気
中にて200℃以上で熱処理する耐炎化工程によって耐
炎化繊維にした後、続いてこの耐炎化繊維を不活性雰囲
気中にて300℃以上で熱処理する炭素化工程を実施す
ることによって得られるが、炭素繊維を得るための工程
中の処理時間の最も長い耐炎化工程において酸化反応に
よる激しい発熱を伴うために、該耐炎化工程は通常除熱
サイドでの運転条件で行なわれる。[0003] In general, carbon fibers are converted into oxidized fibers by an oxidizing atmosphere in which an organic fiber such as polyacrylonitrile, rayon or pitch is heat-treated at 200 ° C or more in an oxidizing atmosphere. Is obtained by performing a carbonization step of heat-treating the oxidized fiber in an inert atmosphere at a temperature of 300 ° C. or higher. Therefore, the oxidation treatment is usually performed under operating conditions on the heat removal side.
【0004】炭素繊維の生産性の向上のためには、その
製造工程中の処理時間の最も長い耐炎化工程の生産性の
向上が必要であり、例えば耐炎化工程での反応時間の短
縮により耐炎化工程の生産性を向上させる手段として、
20vol.%以上の酸素を含有する酸化性雰囲気中に
て耐炎化工程を実施する法が、特開平2−154013
号公報に説明されている。[0004] In order to improve the productivity of carbon fibers, it is necessary to improve the productivity of the flame-proofing step which requires the longest processing time during the manufacturing process. As a means to improve the productivity of
20 vol. Japanese Patent Laid-Open No. 2-154013 discloses a method of performing a flame-proofing step in an oxidizing atmosphere containing at least
This is described in the official gazette.
【0005】しかしながら、上記の特開平2−1540
13号公報には、品質のよい炭素繊維の生産性を向上さ
せるために、耐炎化繊維にする耐炎化工程での生産性の
向上を達成すると共に、単繊維処理斑の小さい処理繊維
束からなる耐炎化繊維を炭素化工程に供給することがで
きるようするのに必要な耐炎化工程でのパラメータ、つ
まり耐炎化炉内の被熱処理繊維束の密度、耐炎化炉内の
風速、耐炎化工程での被熱処理繊維束の工程張力等の適
正化を図ることについては言及されていない。[0005] However, the above-mentioned Japanese Patent Application Laid-Open No. 2-1540 is disclosed.
No. 13 discloses that in order to improve the productivity of high-quality carbon fiber, while improving the productivity in the oxidization-resistant step of converting the oxidized fiber into a non-oxidized fiber, the single-filament treatment fiber bundle has a small spot. Parameters required in the oxidization process required to enable the oxidization fiber to be supplied to the carbonization process, that is, the density of the fiber bundle to be heat-treated in the oxidization furnace, the wind speed in the oxidization furnace, the oxidization process No attempt is made to optimize the process tension of the fiber bundle to be heat-treated.
【0006】又、耐炎化工程の生産性の向上を図る方法
としては、耐炎化炉内への被熱処理繊維束の投入量を増
大させ、耐炎化炉を高容積密度にして被熱処理繊維束を
熱処理する、つまり耐炎化炉の底面に対して平行する面
で隣接する繊維束同士の間の距離を小さくして耐炎化工
程を実施するか、或いは太い被熱処理繊維束を供給して
耐炎化工程を実施する等の方法が考えられる。[0006] As a method for improving the productivity of the oxidizing step, the amount of the fiber bundle to be heat-treated into the oxidizing furnace is increased, the oxidizing furnace is made to have a high volume density, and the fiber bundle to be heat-treated is increased. Heat-treating, that is, reducing the distance between adjacent fiber bundles in a plane parallel to the bottom surface of the stabilization furnace to perform the stabilization process, or supplying a thick fiber bundle to be heat-treated to perform the stabilization process And the like.
【0007】しかるに、隣接する繊維束同士の間の距離
を小さくすると、耐炎化炉内での酸化反応に伴う発熱量
の増大によって炉内の温度制御が困難になるだけでな
く、除熱不良により、有害ガスの発生につながるスモー
クも生じ易くなる。又、隣接する繊維束同士が発熱の影
響を相互に受けることになるために、熱処理温度を上げ
ることができなく、結果として生産性の向上を図ること
ができない。更に、耐炎化炉の底面に対して平行する面
で隣接する繊維束同士の接触により単糸切れが発生し、
これが炭素繊維の品質の低下を招くことになる。[0007] However, when the distance between adjacent fiber bundles is reduced, not only the temperature control in the furnace becomes difficult due to an increase in the amount of heat generated by the oxidation reaction in the oxidizing furnace, but also the heat removal becomes poor. In addition, smoke, which leads to generation of harmful gas, also easily occurs. In addition, since adjacent fiber bundles are mutually affected by heat generation, the heat treatment temperature cannot be increased, and as a result, productivity cannot be improved. Furthermore, single yarn breakage occurs due to contact between adjacent fiber bundles on a surface parallel to the bottom surface of the oxidation furnace,
This leads to a decrease in the quality of the carbon fiber.
【0008】又太い被熱処理繊維束を供給して耐炎化工
程を実施する場合でも、被熱処理繊維束を単に太くする
だけでは、耐炎化炉内での除熱不良がさらに顕著にな
り、有害ガスの発生につながるスモーク発生の要因とな
るだけでなく、熱処理温度を低くせざるを得ないため
に、結果として生産性の向上を図ることができない。[0008] Even in the case where a thick fiber bundle to be heat-treated is supplied and the oxidation treatment step is performed, simply increasing the thickness of the fiber bundle to be heat-treated makes the heat removal failure in the oxidation furnace more remarkable and causes harmful gas. This not only causes smoke to be generated, but also lowers the heat treatment temperature, so that productivity cannot be improved as a result.
【0009】仮に、被熱処理繊維束を太くし、しかも熱
処理時間の短縮を試みると、スモーク発生温度付近での
運転を余儀なくされるために、非常に厳しい温度管理が
要求されるだけでなく、単繊維処理斑の大きな耐炎化繊
維になるために、これが炭素繊維の品質低下を招くこと
になる。If an attempt is made to increase the thickness of the fiber bundle to be heat-treated and to shorten the heat-treatment time, the operation at a temperature near the smoke generation temperature is inevitable. This results in deterioration of the quality of the carbon fiber because the fiber becomes a flame-resistant fiber having a large unevenness in the fiber treatment.
【0010】[0010]
【発明が解決しようとする課題】従って本発明が解決し
ようとする課題は、品質の高い炭素繊維を高生産し得る
ことにつながるアクリル系繊維束の連続熱処理方法、つ
まり品質の良い耐炎化繊維を効率よく生産することので
きるアクリル系繊維束の連続熱処理方法を提供すること
にある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method of continuously heat-treating an acrylic fiber bundle which leads to high production of high-quality carbon fibers, that is, to provide a high-quality flame-resistant fiber. An object of the present invention is to provide a continuous heat treatment method for an acrylic fiber bundle that can be efficiently produced.
【0011】品質のよい炭素繊維の生産性を向上させる
ためには、耐炎化繊維にする耐炎化工程での生産性の向
上を達成すると共に、単繊維処理斑の小さい処理繊維束
からなる耐炎化繊維を炭素化工程に供給することであ
り、本発明が解決しようとする課題はそのために必要な
耐炎化工程でのパラメータである耐炎化炉内の被熱処理
繊維束の密度、耐炎化炉内の風速、耐炎化工程での被熱
処理繊維束の工程張力等の適正化を図ったアクリル系繊
維束の連続熱処理方法を提供することである。[0011] In order to improve the productivity of high quality carbon fibers, it is necessary to achieve an improvement in the productivity in the oxidization-resistant step of converting the oxidized fibers into oxidized fibers, and to improve the oxidization resistance of the treated fiber bundles having a small single fiber treatment spot. The problem to be solved by the present invention is to supply the fibers to the carbonization step, and the problem to be solved by the present invention is the density of the fiber bundle to be heat-treated in the oxidation furnace, An object of the present invention is to provide a method for continuously heat-treating an acrylic fiber bundle in which the wind speed and the process tension of the fiber bundle to be heat-treated in the flame-proofing step are optimized.
【0012】[0012]
【課題を解決するための手段】上記の課題は、以下に記
載する構成による本発明のアクリル系繊維束の連続熱処
理方法によって解決される。すなわち本第1の発明は、
アクリル系繊維束の多数本を引き揃えた繊維束シート状
物を、熱風循環型対流加熱炉からなる耐炎化炉内に走行
させながら熱処理することによって耐炎化繊維にするア
クリル系繊維束の連続熱処理方法において、耐炎化炉の
底面に対する耐炎化炉内に導入する繊維束シート状物の
面占有率を36〜65%にすると共に、耐炎化炉内の風
向きを繊維束シート状物に対して垂直にし、かつその風
速を0.3〜1.5m/secにし、しかも耐炎化炉内
を走行するアクリル系繊維束の工程張力を0.5〜2.
5g/texにするアクリル系繊維束の連続熱処理方法
からなる。The above-mentioned object is achieved by a method for continuously heat-treating an acrylic fiber bundle according to the present invention having the structure described below. That is, the first invention is
Continuous heat treatment of acrylic fiber bundles into oxidized fiber by heat-treating a fiber bundle sheet made up of many acrylic fiber bundles into an oxidizing furnace consisting of a hot air circulation type convection heating furnace In the method, the surface occupancy of the fiber bundle sheet introduced into the oxidation furnace with respect to the bottom surface of the oxidation furnace is set to 36 to 65%, and the wind direction in the oxidation furnace is perpendicular to the fiber bundle sheet. And the wind speed is set to 0.3 to 1.5 m / sec, and the process tension of the acrylic fiber bundle traveling in the oxidizing furnace is set to 0.5 to 2.
It consists of a continuous heat treatment method of an acrylic fiber bundle at 5 g / tex.
【0013】上記の構成を備えてなる本第1の発明のア
クリル系繊維束の連続熱処理方法においては、被熱処理
繊維束の走行路の規制を溝ローラーによって行なうこと
が好ましい。In the method for continuously heat-treating an acrylic fiber bundle according to the first aspect of the present invention having the above structure, it is preferable that the running path of the fiber bundle to be heat-treated is regulated by a groove roller.
【0014】又本第2の発明は、アクリル系繊維束の多
数本を引き揃えた繊維束シート状物を、熱風循環型対流
加熱炉からなる耐炎化炉内に走行させながら熱処理する
ことによって耐炎化繊維にするアクリル系繊維束の連続
熱処理方法において、耐炎化炉の底面に対する耐炎化炉
内に導入する繊維束シート状物の面占有率を36〜65
%にすると共に、耐炎化炉内の風向きを繊維束シート状
物に対して平行にし、かつその風速を1.5〜5m/s
ecにし、しかも耐炎化炉内を走行するアクリル系繊維
束の工程張力を0.5〜2.5g/texにするアクリ
ル系繊維束の連続熱処理方法からなる。[0014] The second invention also provides a flame-retardant material by heat-treating a fiber bundle sheet in which a large number of acrylic fiber bundles are aligned in a flame stabilization furnace comprising a hot air circulation type convection heating furnace. In the method for continuously heat-treating an acrylic fiber bundle to be oxidized fiber, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidization furnace with respect to the bottom surface of the oxidization furnace is set to 36 to 65.
% And the direction of the wind in the oxidation furnace is parallel to the fiber bundle sheet, and the wind speed is 1.5 to 5 m / s.
ec and a continuous heat treatment method of the acrylic fiber bundle in which the process tension of the acrylic fiber bundle traveling in the oxidizing furnace is set to 0.5 to 2.5 g / tex.
【0015】上記の構成を備えてなる本第2の発明のア
クリル系繊維束の連続熱処理方法においては、被熱処理
繊維束の走行路の規制を溝ローラーによって行なうこと
が好ましい。In the continuous heat treatment method for an acrylic fiber bundle according to the second aspect of the present invention having the above-described structure, it is preferable that the running path of the fiber bundle to be heat-treated is regulated by a groove roller.
【0016】上記の構成による本各発明のアクリル系繊
維束の連続熱処理方法において、耐炎化炉の底面に対す
る耐炎化炉内に導入する繊維束シート状物の面占有率
は、使用する耐炎化炉の有効炉長と有効炉幅との積(=
耐炎化炉の底面の有効面積)に対する耐炎化炉内に導入
する繊維束シート状物の平面積の比率である。In the continuous heat treatment method of the present invention, the surface occupancy of the fiber bundle sheet introduced into the oxidizing furnace with respect to the bottom of the oxidizing furnace depends on the oxidizing furnace used. Product of effective furnace length and effective furnace width (=
This is the ratio of the flat area of the fiber bundle sheet to be introduced into the oxidation furnace to the effective area of the bottom surface of the oxidation furnace.
【0017】耐炎化炉内に導入する繊維束シート状物の
平面積は、耐炎化炉内に繊維束シート状物を導入すると
きのローラー上で測定した単一の繊維束の巾×耐炎化炉
の有効炉長×アクリル系繊維束の本数であり、耐炎化炉
の底面に対する耐炎化炉内に導入する繊維束シート状物
の面占有率(%)=(単一のアクリル系繊維束の巾×ア
クリル系繊維束の本数×100/耐炎化炉の有効炉幅)
である。又、耐炎化炉内の風速は、常温時における測定
値である。The plane area of the fiber bundle sheet to be introduced into the oxidizing furnace is the width of a single fiber bundle measured on a roller when the fiber bundle sheet is introduced into the oxidizing furnace. The effective furnace length of the furnace × the number of acrylic fiber bundles, and the surface occupancy (%) of the fiber bundle sheet-like material introduced into the oxidizing furnace with respect to the bottom surface of the oxidizing furnace = (the single acrylic fiber bundle Width x number of acrylic fiber bundles x 100 / effective furnace width of flameproofing furnace)
It is. The wind speed in the flame-proof furnace is a measured value at normal temperature.
【0018】[0018]
【発明の実施の形態】本発明のアクリル系繊維束の連続
熱処理方法において被熱処理繊維束として使用するアク
リル系繊維束は、アクリロニトリル100%のアクリル
繊維、又はアクリロニトリルを90モル%以上含有する
アクリル共重合繊維が好適である。アクリル共重合繊維
における共重合成分としては、アクリル酸、メタクリル
酸、イタコン酸、及びこれらのアルカリ金属塩、アンモ
ニウム金属塩、アクリルアミド、アクリル酸メチル等が
好ましいが、被熱処理繊維束としてのアクリル系繊維束
の化学的性状、物理的性状、寸法等は特に制限されるも
のではない。BEST MODE FOR CARRYING OUT THE INVENTION In the continuous heat treatment method for an acrylic fiber bundle of the present invention, an acrylic fiber bundle to be used as a fiber bundle to be heat-treated is an acrylic fiber containing 100% acrylonitrile or an acrylic fiber containing 90% by mole or more of acrylonitrile. Polymeric fibers are preferred. Acrylic acid, methacrylic acid, itaconic acid, and alkali metal salts, ammonium metal salts, acrylamide, methyl acrylate, and the like thereof are preferable as the copolymer component in the acrylic copolymer fiber. The chemical properties, physical properties, dimensions, and the like of the bundle are not particularly limited.
【0019】アクリル系繊維束の耐炎化処理を行なう熱
風循環型対流加熱炉内を、200℃〜360℃の酸化性
雰囲気に維持し、この熱風循環型対流加熱炉内にアクリ
ル系繊維束の多数本を引き揃えた繊維束シート状物を導
入し、該シート状物を複数本のローラーを介して複数段
に亙って並行状態で走行させながら熱処理することによ
って耐炎化繊維にする。The inside of the hot air circulation type convection heating furnace for performing the flameproofing treatment of the acrylic fiber bundle is maintained in an oxidizing atmosphere at 200 ° C. to 360 ° C., and a large number of acrylic fiber bundles are placed in the hot air circulation type convection heating furnace. A fiber bundle sheet material in which books are aligned is introduced, and the sheet material is subjected to a heat treatment while being run in parallel over a plurality of stages via a plurality of rollers to be made into an oxidized fiber.
【0020】単一のチャンバーに対する繊維束シート状
物の段数は、被熱処理繊維束であるアクリル系繊維束の
性状、該アクリル系繊維束に付与すべき熱履歴、加熱炉
内の風向き、風量(風速)、熱風温度等によって異な
る。なお、整流効果及び安全性確保の面から、各段毎に
仕切を入れることもできる。The number of stages of the fiber bundle sheet in a single chamber depends on the properties of the acrylic fiber bundle as the fiber bundle to be heat-treated, the heat history to be given to the acrylic fiber bundle, the wind direction in the heating furnace, and the air volume ( Wind speed), hot air temperature, etc. It is to be noted that a partition can be provided for each stage from the viewpoint of rectifying effect and ensuring safety.
【0021】被熱処理繊維束の耐炎化反応を制御するう
えでの最も重要なパラメータは、発熱反応により生じる
繊維束内の蓄熱の除去であり、過剰蓄熱が生じた場合に
はスモークの発生、繊維束切れ、単糸間同士の間の融着
などの問題を生じる。The most important parameter in controlling the oxidizing reaction of the fiber bundle to be heat-treated is to remove the heat storage in the fiber bundle generated by the exothermic reaction. Problems such as breakage of bundles and fusion between single yarns occur.
【0022】つまり、繊維束シート状物を形成している
多数本の繊維束の全てに均一な風速と温度を与えること
によって前述の問題を回避することができ、工程安定性
を向上させることができる。このためには、耐炎化炉内
への被熱処理繊維束の投入量を少なくして、発熱反応に
より生じる繊維束内の蓄熱を無くすると共に、被熱処理
繊維束のバタツキによる相互干渉を無くせばよいが、こ
れには工程生産性の犠牲が伴う。That is, by giving uniform wind speed and temperature to all of a large number of fiber bundles forming a fiber bundle sheet, the above-mentioned problem can be avoided and the process stability can be improved. it can. For this purpose, it is only necessary to reduce the amount of the fiber bundle to be heat-treated into the oxidizing furnace, to eliminate the heat storage in the fiber bundle caused by the exothermic reaction, and to eliminate the mutual interference due to the fluttering of the fiber bundle to be heat-treated. However, this comes at the cost of process productivity.
【0023】しかるに、アクリル系繊維束の多数本を引
き揃えた繊維束シート状物を熱風循環型対流加熱炉から
なる耐炎化炉内に走行させながら連続熱処理する耐炎化
工程を、耐炎化炉の底面に対する耐炎化炉内に導入する
繊維束シート状物の面占有率を36〜65%にすると共
に、耐炎化炉内の風向きを繊維束シート状物に対して垂
直にし、かつその風速を0.3〜1.5m/secに
し、しかも耐炎化炉内を走行するアクリル系繊維束の工
程張力を0.5〜2.5g/texにして行なうことに
より、品質の良い耐炎化繊維を高い工程生産性の維持の
下に得ることができる。[0023] However, the oxidization-resistant fiber bundle sheet in which a large number of acrylic fiber bundles are aligned is subjected to a continuous heat treatment while running in an oxidization furnace of a hot air circulation type convection heating furnace. The surface occupancy of the fiber bundle sheet introduced into the oxidizing furnace with respect to the bottom surface is set to 36 to 65%, the wind direction in the oxidizing furnace is perpendicular to the fiber bundle sheet, and the wind speed is set to 0. By setting the tension of the acrylic fiber bundle traveling in the flameproofing furnace to 0.5 to 2.5 g / tex, the quality of the flameproofed fiber of high quality can be increased to 3 to 1.5 m / sec. It can be obtained while maintaining productivity.
【0024】又、耐炎化炉の底面に対する耐炎化炉内に
導入する繊維束シート状物の面占有率を36〜65%に
すると共に、耐炎化炉内の風向きを繊維束シート状物に
対して平行にし、かつその風速を1.5〜5m/sec
にし、しかも耐炎化炉内を走行するアクリル系繊維束の
工程張力を0.5〜2.5g/texにして行なうこと
により、品質の良い耐炎化繊維を高い工程生産性の維持
の下に得ることができる。In addition, the surface occupancy of the fiber bundle sheet introduced into the oxidation furnace with respect to the bottom surface of the oxidation furnace is set to 36 to 65%, and the wind direction in the oxidation furnace is adjusted with respect to the fiber bundle sheet. And make the wind speed 1.5 to 5 m / sec.
In addition, by carrying out the process tension of the acrylic fiber bundle traveling in the oxidizing furnace at a process tension of 0.5 to 2.5 g / tex, high-quality oxidizing fibers can be obtained while maintaining high process productivity. be able to.
【0025】なお、耐炎化炉内を走行する繊維束シート
状物の面占有率を36%未満にすると、工程安定性はよ
り向上する。しかしながら、耐炎化炉内へのアクリル系
繊維束からなる被熱処理繊維束の投入量の減少、及びユ
ーティリティーコストの増大によって工程生産性が著し
くダウンし、これによって耐炎化繊維の製造コストが増
大し、ひいては炭素繊維の製造コストの増大に繋がる。When the surface occupancy of the fiber bundle sheet running in the oxidizing furnace is less than 36%, the process stability is further improved. However, a decrease in the amount of the fiber bundle to be heat-treated consisting of an acrylic fiber bundle into the oxidizing furnace, and an increase in the utility cost significantly reduce the process productivity, thereby increasing the manufacturing cost of the oxidizing fiber, As a result, the production cost of the carbon fiber is increased.
【0026】又、耐炎化炉内を走行する繊維束シート状
物の面占有率を65%よりも高くすると、工程安定性が
急激に低下し、過剰蓄熱によるスモークの発生、糸切
れ、及び単糸同士の間の融着が発生するために、品質の
良い耐炎化繊維を得ることが難しくなり、これによって
品質のよい炭素繊維が得られなくなり、又歩留まりの低
下により工程生産性がダウンする。When the surface occupancy of the fiber bundle sheet running in the oxidizing furnace is higher than 65%, the process stability is sharply reduced, and the generation of smoke due to excessive heat storage, yarn breakage, and singularity occur. Since the fusion occurs between the yarns, it is difficult to obtain a high-quality flame-resistant fiber, which makes it impossible to obtain a high-quality carbon fiber, and lowers the yield to lower the process productivity.
【0027】更に本発明のアクリル系繊維束の連続熱処
理方法においては、耐炎化炉として熱風循環型対流加熱
炉を使用しており、対流加熱方式によって被熱処理繊維
束を加熱しているので、熱風によって被熱処理繊維束で
あるアクリル系繊維束を加熱して酸化反応及び環化反応
を促進させると同時に、被熱処理繊維束の蓄熱の除熱を
有効に行なえる。Further, in the continuous heat treatment method for the acrylic fiber bundle of the present invention, a hot air circulation type convection heating furnace is used as a flame-proofing furnace, and the fiber bundle to be heat-treated is heated by a convection heating method. By heating the acrylic fiber bundle which is the fiber bundle to be heat-treated, the oxidation reaction and the cyclization reaction are promoted, and at the same time, the heat storage of the fiber bundle to be heat-treated can be effectively removed.
【0028】本発明のアクリル系繊維束の連続熱処理方
法においては、熱風循環型対流加熱炉からなる耐炎化炉
内の風速を、風向きを繊維束シート状物に対して垂直に
する場合には、0.3m/sec〜1.5m/secの
範囲内にし、又風向きを繊維束シート状物に対して平行
にする場合には、1.5m/sec〜5m/secの範
囲内にすることが必要である。In the continuous heat treatment method for an acrylic fiber bundle according to the present invention, when the wind speed in an oxidation-resistant furnace comprising a hot air circulation type convection heating furnace is set such that the wind direction is perpendicular to the fiber bundle sheet, When it is in the range of 0.3 m / sec to 1.5 m / sec, and when the wind direction is parallel to the fiber bundle sheet, it should be in the range of 1.5 m / sec to 5 m / sec. is necessary.
【0029】つまり風向きを被熱処理繊維束であるアク
リル系繊維束の多数本を引き揃えた繊維束シート状物に
対して垂直にする場合に、その風速を0.3m/sec
未満にしたり、或いは風向きを被熱処理繊維束であるア
クリル系繊維束の多数本を引き揃えた繊維束シート状物
に対して平行にする場合に、その風速を1.5m/se
c未満にしたりすると、耐炎化炉内の風による被熱処理
繊維束の蓄熱の除熱作用が得られなくなり、除熱不良に
よるスモークを生じ易くなる。That is, when the wind direction is perpendicular to a fiber bundle sheet in which a large number of acrylic fiber bundles as heat treatment fiber bundles are aligned, the wind speed is 0.3 m / sec.
When the direction is set to be less than or the direction of the wind is made parallel to a fiber bundle sheet in which a large number of acrylic fiber bundles as heat treatment fiber bundles are aligned, the wind speed is 1.5 m / sec.
When it is less than c, the heat storage effect of the heat storage of the fiber bundle to be heat-treated by the wind in the oxidizing furnace cannot be obtained, and smoke due to poor heat removal is likely to occur.
【0030】又風向きを被熱処理繊維束であるアクリル
系繊維束の多数本を引き揃えた繊維束シート状物に対し
て垂直にする場合に、その風速が1.5m/secを超
えたり、或いは風向きを被熱処理繊維束であるアクリル
系繊維束の多数本を引き揃えた繊維束シート状物に対し
て平行にする場合に、その風速が5m/secを超えた
りすると、耐炎化炉内の風による繊維束のバタツキが大
きくなり、耐炎化炉の底面に対して平行する面で隣接す
る繊維束同士の接触による単糸切れを生じ、毛羽の多い
耐炎化繊維が得られ易くなる。When the wind direction is perpendicular to a fiber bundle sheet in which a large number of acrylic fiber bundles to be heat-treated are aligned, the wind speed exceeds 1.5 m / sec, or When the wind direction is parallel to a fiber bundle sheet in which a large number of acrylic fiber bundles as heat-treated fiber bundles are aligned, if the wind speed exceeds 5 m / sec, the wind in the oxidizing furnace The flutter of the fiber bundle due to the above becomes large, and a single yarn breakage occurs due to the contact between adjacent fiber bundles on a plane parallel to the bottom surface of the oxidizing furnace, so that the oxidizing fiber with many fluffs is easily obtained.
【0031】更に、熱風循環型対流加熱炉からなる耐炎
化炉内を走行するアクリル系繊維束の工程張力を0.5
g/tex未満にすると、被熱処理繊維束のバタツキに
よる単糸切れや、耐炎化炉の底面に対して平行する面で
隣接する繊維束同士の接触に伴なう単糸同士の間の融着
が生じやすくなり、更にローラーで規制した繊維束形状
が保持できなくなることがある。又、2.5g/tex
よりも高くすると、工程張力切れを起こしやすくなるだ
けでなく、耐炎化炉の出入り口での物理的接触に対する
被熱処理繊維束の耐久性が弱くなる。Further, the process tension of the acrylic fiber bundle traveling in the flame stabilization furnace comprising the hot air circulation type convection heating furnace is set to 0.5.
If the ratio is less than g / tex, single yarn breakage due to flapping of the fiber bundle to be heat-treated or fusion between single yarns due to contact between adjacent fiber bundles in a plane parallel to the bottom surface of the oxidizing furnace. And the fiber bundle shape regulated by the roller may not be maintained. 2.5g / tex
If it is higher than this, not only the process tension tends to be reduced, but also the durability of the fiber bundle to be heat-treated against physical contact at the entrance and exit of the oxidation furnace becomes weak.
【0032】アクリル系繊維束からなる被熱処理繊維束
を連続熱処理して耐炎化繊維にする本発明方法におい
て、被熱処理繊維束の走行路の規制やトウ幅の規制を行
なうための手段としては、例えばガイドを使用すること
ができ、何らの制限を受けるものではないが、溝ローラ
ーを使用するのが最も好ましい。この溝ローラーの溝の
断面形状は、図1に示すような平底型、図2に示すよう
な丸底型、図3に示すような波底型のいずれでもよく、
その溝形状や溝ピッチは被熱処理繊維束の総繊度、及び
ローラーの製作上の問題点を考慮した上で適宜決定され
る。In the method of the present invention, in which the fiber bundle to be heat-treated consisting of the acrylic fiber bundle is subjected to continuous heat treatment to obtain oxidized fiber, the means for regulating the running path of the fiber bundle to be heat-treated and the tow width include: For example, a guide can be used and is not subject to any restrictions, but it is most preferred to use a grooved roller. The cross-sectional shape of the groove of this groove roller may be any of a flat bottom type as shown in FIG. 1, a round bottom type as shown in FIG. 2, and a wave bottom type as shown in FIG.
The groove shape and the groove pitch are appropriately determined in consideration of the total fineness of the fiber bundle to be heat-treated and the problems in manufacturing the roller.
【0033】[0033]
【実施例】以下、本発明のアクリル系繊維束の連続熱処
理方法の具体的な構成を実施例に基づいて説明する。な
お、各実施例及び比較例において使用した被熱処理繊維
束及び耐炎化炉は、下記の通りのものである。 被熱処理繊維束:アクリロニトリル96モル%を含有す
るアクリル共重合体繊維による単糸テックス0.13の
アクリル系繊維束 耐炎化炉:熱風循環型対流加熱炉DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The concrete constitution of the continuous heat treatment method for an acrylic fiber bundle of the present invention will be described below based on examples. In addition, the fiber bundle to be heat-treated and the stabilization furnace used in each of Examples and Comparative Examples are as follows. Fiber bundle to be heat treated: Acrylic fiber bundle with single yarn tex 0.13 made of acrylic copolymer fiber containing acrylonitrile 96 mol% Flame-proofing furnace: Hot air circulation type convection heating furnace
【0034】実施例1 図4及び図5において、有効炉長L1 :10m、有効炉
幅L2 :1m、炉内の風向き:繊維束シート状物に対し
て垂直、炉内温度:230℃、炉内の風速:0.6m/
secの耐炎化炉1内に、フィラメント数36,000
の被熱処理繊維束Sの120本によって形成される繊維
束シート状物2を、3往復半に亙って走行させる連続熱
処理を行なうことにより耐炎化繊維3を得た。このとき
の耐炎化炉の底面に対する耐炎化炉内に導入する繊維束
シート状物の面占有率は43%である。Example 1 In FIGS. 4 and 5, the effective furnace length L 1 : 10 m, the effective furnace width L 2 : 1 m, the wind direction in the furnace: perpendicular to the fiber bundle sheet, the furnace temperature: 230 ° C. , Wind speed in the furnace: 0.6m /
The number of filaments is 36,000 in the oxidation furnace 1 for 2 sec.
The heat-treated fiber bundle S formed by 120 fiber bundles S to be heat-treated was subjected to a continuous heat treatment in which the fiber bundle sheet material 2 was run for three reciprocating halves to obtain the oxidized fiber 3. At this time, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidization furnace with respect to the bottom surface of the oxidization furnace is 43%.
【0035】なお、上記のアクリル系繊維束の連続熱処
理においては、耐炎化炉1内に導入する1本当たりの被
熱処理繊維束Sの幅を、溝ローラー4によって3.6m
mに規制し、繊維束S,S同士のピッチ、すなわち耐炎
化炉1内に耐炎化炉の底面に対して平行する面で並列さ
せて導入する被熱処理繊維束Sの中心から隣接する被熱
処理繊維束Sの中心迄の距離を8.0mmに規制した。
又耐炎化炉内を走行するアクリル系繊維束の工程張力を
1.4g/tex(1本当たり6kg)にした。In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle S to be heat-treated per fiber introduced into the oxidizing furnace 1 is adjusted to 3.6 m by the groove roller 4.
m, the pitch between the fiber bundles S, that is, the heat treatment adjacent to the center of the fiber bundle S to be introduced into the oxidization furnace 1 in parallel with a plane parallel to the bottom surface of the oxidization furnace. The distance to the center of the fiber bundle S was regulated to 8.0 mm.
Further, the process tension of the acrylic fiber bundle traveling in the oxidizing furnace was set to 1.4 g / tex (6 kg per fiber).
【0036】上記のアクリル系繊維束の連続熱処理工程
中には、暴走反応によるスモークの発生がなく安定した
連続運転ができた。又、耐炎化炉内で隣接する繊維束同
士の接触による単糸切れ、単糸間の融着、繊維表面の汚
染等がなく、繊維束シート状物の幅方向の処理斑や単糸
処理斑の少ない耐炎化繊維が得られた。この連続熱処理
によるアクリル系繊維の耐炎化密度上昇度は0.06g
/cm3 /17min.であった。During the continuous heat treatment step of the acrylic fiber bundle, stable continuous operation was possible without generation of smoke due to runaway reaction. Further, there is no breakage of single yarn due to contact between adjacent fiber bundles in the oxidizing furnace, no fusion between single yarns, no contamination of the fiber surface, etc. And a flame-resistant fiber having a low level of resistance was obtained. The degree of increase in the oxidized density of the acrylic fiber by this continuous heat treatment is 0.06 g.
/ Cm 3 / 17min. Met.
【0037】実施例2 有効炉長:14m、有効炉幅:1m、炉内の風向き:繊
維束シート状物に対して垂直、炉内温度:240℃、炉
内の風速:1.0m/secの耐炎化炉内に、フィラメ
ント数12,000の被熱処理繊維束の200本からな
る繊維束シート状物を通してアクリル系繊維束の連続熱
処理を行なうことにより、耐炎化繊維を得た。このとき
の耐炎化炉の底面に対する耐炎化炉内に導入する繊維束
シート状物の面占有率は40%である。Example 2 Effective furnace length: 14 m, effective furnace width: 1 m, wind direction in furnace: perpendicular to fiber bundle sheet, furnace temperature: 240 ° C., wind speed in furnace: 1.0 m / sec The acryl-based fiber bundle was subjected to continuous heat treatment through a fiber bundle sheet made of 200 fiber bundles to be heat-treated having a number of filaments of 12,000 in the flame-resistant furnace. At this time, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidizing furnace with respect to the bottom surface of the oxidizing furnace is 40%.
【0038】なお、上記のアクリル系繊維束の連続熱処
理においては、溝ローラーによって1本当たりの被熱処
理繊維束の幅を2.0mm、繊維束同士のピッチを5.
0mmに規制し、又耐炎化炉内を走行するアクリル系繊
維束の工程張力を0.8g/tex(1本当たり1.2
kg)にした。In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat-treated per fiber is 2.0 mm and the pitch between the fiber bundles is 5.
0 mm, and the process tension of the acrylic fiber bundle running in the oxidizing furnace is 0.8 g / tex (1.2 per fiber).
kg).
【0039】上記のアクリル系繊維束の連続熱処理工程
中には、暴走反応によるスモークの発生がなく安定した
連続運転ができた。又、隣接する繊維束同士の接触によ
る単糸切れ、単糸間の融着、繊維表面の汚染等がなく、
繊維束シート状物の幅方向の処理斑や単糸処理斑の少な
い耐炎化繊維が得られた。この連続熱処理によるアクリ
ル系繊維の耐炎化密度上昇度は0.06g/cm3 /1
5min.であった。During the continuous heat treatment step of the acrylic fiber bundle, stable continuous operation was possible without generation of smoke due to runaway reaction. Also, there is no single yarn breakage due to contact between adjacent fiber bundles, fusion between single yarns, contamination of the fiber surface, etc.
Oxidized fibers with less processing unevenness in the width direction of the fiber bundle sheet and processing unevenness of the single yarn were obtained. Oxidization density increase of the acrylic fiber according to the continuous heat treatment is 0.06g / cm 3/1
5 min. Met.
【0040】実施例3 有効炉長:10m、有効炉幅:1m、炉内の風向き:繊
維束シート状物に対して垂直、炉内温度:220℃、炉
内の風速:0.5m/secの耐炎化炉内に、フィラメ
ント数72,000の被熱処理繊維束の60本からなる
繊維束シート状物を通してアクリル系繊維束の連続熱処
理を行なうことにより、耐炎化繊維を得た。このときの
耐炎化炉の底面に対する耐炎化炉内に導入する繊維束シ
ート状物の面占有率は48%である。Example 3 Effective furnace length: 10 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 220 ° C., wind speed in the furnace: 0.5 m / sec The acryl-based fiber bundle was subjected to continuous heat treatment by passing a fiber bundle sheet made of 60 fiber bundles to be heat-treated with 72,000 filaments into the flame-resistant furnace of No. 1 to obtain flame-resistant fiber. At this time, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidizing furnace with respect to the bottom surface of the oxidizing furnace is 48%.
【0041】なお、上記のアクリル系繊維束の連続熱処
理においては、溝ローラーによって1本当たりの被熱処
理繊維束の幅を8.0mm、繊維束同士のピッチを1
6.0mmに規制し、又耐炎化炉内を走行するアクリル
系繊維束の工程張力を1.4g/tex(1本当たり1
2kg)にした。In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat-treated is 8.0 mm and the pitch between the fiber bundles is 1 by a groove roller.
6.0 mm, and the process tension of the acrylic fiber bundle traveling in the oxidizing furnace is 1.4 g / tex (1 per fiber).
2 kg).
【0042】上記のアクリル系繊維束の連続熱処理工程
中には、暴走反応によるスモークの発生がなく安定した
連続運転ができた。又、隣接する繊維束同士の接触によ
る単糸切れ、単糸間の融着、繊維表面の汚染等がなく、
繊維束シート状物の幅方向の処理斑や単糸処理斑の少な
い耐炎化繊維が得られた。この連続熱処理によるアクリ
ル系繊維の耐炎化密度上昇度は0.06g/cm3 /2
4min.であった。During the continuous heat treatment step of the acrylic fiber bundle, stable continuous operation was possible without generation of smoke due to runaway reaction. Also, there is no single yarn breakage due to contact between adjacent fiber bundles, fusion between single yarns, contamination of the fiber surface, etc.
Oxidized fibers with less processing unevenness in the width direction of the fiber bundle sheet and processing unevenness of the single yarn were obtained. Oxidization density increase of the acrylic fiber according to the continuous heat treatment is 0.06g / cm 3/2
4 min. Met.
【0043】実施例4 有効炉長:14m、有効炉幅:1.5m、炉内の風向
き:繊維束シート状物に対して平行、炉内温度:220
℃、炉内の風速:2.8m/secの耐炎化炉内に、フ
ィラメント数72,000の被熱処理繊維束の90本か
らなる繊維束シート状物を通して、アクリル系繊維束の
連続熱処理を行なうことにより耐炎化繊維を得た。この
ときの耐炎化炉の底面に対する耐炎化炉内に導入する繊
維束シート状物の面占有率は48%である。Example 4 Effective furnace length: 14 m, effective furnace width: 1.5 m, wind direction in the furnace: parallel to the fiber bundle sheet, furnace temperature: 220
A continuous heat treatment of an acrylic fiber bundle is carried out by passing a fiber bundle sheet made of 90 pieces of a fiber bundle to be heat treated having 72,000 filaments into an oxidizing furnace having an air temperature of 2.8 m / sec. Thus, an oxidized fiber was obtained. At this time, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidizing furnace with respect to the bottom surface of the oxidizing furnace is 48%.
【0044】なお、上記のアクリル系繊維束の連続熱処
理においては、溝ローラーによって1本当たりの被熱処
理繊維束の幅を8.0mm、繊維束同士のピッチを1
6.0mmに規制し、又耐炎化炉内を走行するアクリル
系繊維束の工程張力を1.0g/tex(1本当たり9
kg)にした。In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat-treated is 8.0 mm and the pitch between the fiber bundles is 1 by a groove roller.
6.0 mm, and the process tension of the acrylic fiber bundle traveling in the oxidizing furnace is 1.0 g / tex (9 per fiber).
kg).
【0045】上記のアクリル系繊維束の連続熱処理工程
中には、暴走反応によるスモークの発生がなく安定した
連続運転ができた。又、隣接する繊維束同士の接触によ
る単糸切れ、単糸間の融着、繊維表面の汚染等のない耐
炎化繊維が得られた。なお、若干の単糸処理斑が確認さ
れたが、繊維束シート状物の幅方向の処理斑は小さく、
十分に満足し得る耐炎化繊維になった。この連続熱処理
によるアクリル系繊維の耐炎化密度上昇度は0.06g
/cm3 /20min.であった。During the continuous heat treatment step of the acrylic fiber bundle, stable continuous operation was possible without generation of smoke due to runaway reaction. In addition, oxidized fibers without breakage of single yarn due to contact between adjacent fiber bundles, fusion between single yarns, and contamination of the fiber surface were obtained. Although some single yarn processing unevenness was confirmed, the processing unevenness in the width direction of the fiber bundle sheet was small,
A fully satisfactory flame resistant fiber was obtained. The degree of increase in the oxidized density of the acrylic fiber by this continuous heat treatment is 0.06 g.
/ Cm 3 / 20min. Met.
【0046】実施例5 有効炉長:14m、有効炉幅:1.5m、炉内の風向
き:繊維束シート状物に対して平行、炉内温度:215
℃、炉内の風速:2.8m/secの耐炎化炉内に、フ
ィラメント数72,000の被熱処理繊維束の90本か
らなる繊維束シート状物を通してアクリル系繊維束の連
続熱処理を行なうことにより、耐炎化繊維を得た。この
ときの耐炎化炉の底面に対する耐炎化炉内に導入する繊
維束シート状物の面占有率は56%である。Example 5 Effective furnace length: 14 m, effective furnace width: 1.5 m, wind direction in the furnace: parallel to the fiber bundle sheet, furnace temperature: 215
A continuous heat treatment of an acrylic fiber bundle is carried out by passing a fiber bundle sheet made of 90 pieces of a fiber bundle to be heat treated having 72,000 filaments into an oxidizing furnace having a furnace temperature of 2.8 m / sec and a wind speed of 2.8 m / sec. As a result, an oxidized fiber was obtained. At this time, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidization furnace with respect to the bottom surface of the oxidization furnace is 56%.
【0047】なお、上記のアクリル系繊維束の連続熱処
理においては、平ローラーとコームガイドとによって1
本当たりの被熱処理繊維束の幅を10.5mm、繊維束
同士のピッチを17.0mmに規制し、又耐炎化炉内を
走行するアクリル系繊維束の工程張力を1.4g/te
x(1本当たり2kg)にした。In the above-described continuous heat treatment of the acrylic fiber bundle, one flat roller and a comb guide are used.
The width of the fiber bundle to be heat-treated is regulated to 10.5 mm, the pitch between the fiber bundles is regulated to 17.0 mm, and the process tension of the acrylic fiber bundle traveling in the oxidizing furnace is 1.4 g / te.
x (2 kg per line).
【0048】上記のアクリル系繊維束の連続熱処理工程
中には、暴走反応によるスモークの発生がなく安定した
連続運転ができた。又、隣接する繊維束同士の接触によ
る単糸切れ、単糸間の融着、繊維表面の汚染等のない耐
炎化繊維が得られた。なお、若干の単糸処理斑が確認さ
れたが、繊維束シート状物の幅方向の処理斑は小さく、
十分に満足し得る耐炎化繊維になった。この連続熱処理
によるアクリル系繊維の耐炎化密度上昇度は0.06g
/cm3 /27min.であった。During the continuous heat treatment step of the acrylic fiber bundle, stable continuous operation was possible without generation of smoke due to runaway reaction. In addition, oxidized fibers without breakage of single yarn due to contact between adjacent fiber bundles, fusion between single yarns, and contamination of the fiber surface were obtained. Although some single yarn processing unevenness was confirmed, the processing unevenness in the width direction of the fiber bundle sheet was small,
A fully satisfactory flame resistant fiber was obtained. The degree of increase in the oxidized density of the acrylic fiber by this continuous heat treatment is 0.06 g.
/ Cm 3 / 27min. Met.
【0049】比較例1 有効炉長:10m、有効炉幅:1m、炉内の風向き:繊
維束シート状物に対して垂直、炉内温度:230℃、炉
内の風速:0.6m/secの耐炎化炉内に、フィラメ
ント数36,000の被熱処理繊維束の50本からなる
繊維束シート状物を通してアクリル系繊維束の連続熱処
理を行なった。このときの耐炎化炉の底面に対する耐炎
化炉内に導入する繊維束シート状物の面占有率は30%
である。Comparative Example 1 Effective furnace length: 10 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 230 ° C., wind speed in the furnace: 0.6 m / sec The acryl-based fiber bundle was subjected to continuous heat treatment through a fiber bundle sheet made of fifty fiber bundles to be heat-treated having 36,000 filaments in the oxidizing furnace. At this time, the area occupancy of the fiber bundle sheet-like material introduced into the oxidization furnace with respect to the bottom surface of the oxidization furnace is 30%.
It is.
【0050】なお、上記のアクリル系繊維束の連続熱処
理においては、溝ローラーによって1本当たりの被熱処
理繊維束の幅を6.0mm、繊維束同士のピッチを1
4.0mmに規制し、又耐炎化炉内を走行するアクリル
系繊維束の工程張力を1.4g/tex(1本当たり6
kg)にした。In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat-treated per fiber is 6.0 mm and the pitch between the fiber bundles is 1 by a groove roller.
It is regulated to 4.0 mm, and the process tension of the acrylic fiber bundle traveling in the oxidation furnace is 1.4 g / tex (6 per fiber).
kg).
【0051】上記のアクリル系繊維束の連続熱処理工程
中には、暴走反応によるスモークの発生がなく安定した
連続運転ができた。又、隣接する繊維束同士の接触によ
る単糸切れ、単糸間の融着、繊維表面の汚染等がなく、
繊維束シート状物の幅方向の処理斑や単糸処理斑の少な
い耐炎化繊維が得られた。この連続熱処理によるアクリ
ル系繊維の耐炎化密度上昇度は0.06g/cm3 /1
7min.であり、耐炎化炉の底面に対する耐炎化炉内
に導入する繊維束シート状物の面占有率の低下をアクリ
ル系繊維の耐炎化密度上昇度でカバーすることはできな
かった。During the continuous heat treatment step of the acrylic fiber bundle, stable continuous operation was possible without generation of smoke due to runaway reaction. Also, there is no single yarn breakage due to contact between adjacent fiber bundles, fusion between single yarns, contamination of the fiber surface, etc.
Oxidized fibers with less processing unevenness in the width direction of the fiber bundle sheet and processing unevenness of the single yarn were obtained. Oxidization density increase of the acrylic fiber according to the continuous heat treatment is 0.06g / cm 3/1
7 min. Thus, the decrease in the surface occupancy of the fiber bundle sheet introduced into the oxidizing furnace relative to the bottom surface of the oxidizing furnace could not be covered by the increase in the oxidizing resistance of the acrylic fibers.
【0052】比較例2 有効炉長:10m、有効炉幅:1m、炉内の風向き:繊
維束シート状物に対して垂直、炉内温度:230℃、炉
内の風速:0.6m/secの耐炎化炉内に、フィラメ
ント数36,000の被熱処理繊維束の120本からな
る繊維束シート状物を通してアクリル系繊維束の連続熱
処理を行なった。このときの耐炎化炉の底面に対する耐
炎化炉内に導入する繊維束シート状物の面占有率は72
%である。Comparative Example 2 Effective furnace length: 10 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 230 ° C., wind speed in the furnace: 0.6 m / sec Acrylic fiber bundles were subjected to continuous heat treatment through a fiber bundle sheet made of 120 fiber bundles to be heat-treated having 36,000 filaments in the oxidizing furnace. At this time, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidization furnace with respect to the bottom surface of the oxidization furnace is 72.
%.
【0053】なお、上記のアクリル系繊維束の連続熱処
理においては、溝ローラーによって1本当たりの被熱処
理繊維束の幅を6.0mm、繊維束同士のピッチを8.
0mmに規制し、又耐炎化炉内を走行するアクリル系繊
維束の工程張力を1.4g/tex(1本当たり6k
g)にした。In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat-treated per groove is 6.0 mm and the pitch between the fiber bundles is 8.
0 mm, and the process tension of the acrylic fiber bundle traveling in the oxidizing furnace is 1.4 g / tex (6 k / tube).
g).
【0054】上記のアクリル系繊維束の連続熱処理工程
中には、耐炎化炉の底面に対して平行する面で隣接する
繊維束同士の接触による単糸切れが多発し、しかも繊維
束内の単糸処理斑の多い耐炎化繊維が得られた。この連
続熱処理によるアクリル系繊維の耐炎化密度上昇度は
0.06g/cm3 /17min.であり、工程安定性
が非常に悪かった。During the continuous heat treatment of the acrylic fiber bundle, single yarn breakage occurs frequently due to contact between adjacent fiber bundles on a plane parallel to the bottom surface of the oxidizing furnace, An oxidized fiber with many yarn treatment spots was obtained. Oxidization density increase of the acrylic fiber according to the continuous heat treatment is 0.06g / cm 3 / 17min. And the process stability was very poor.
【0055】比較例3 有効炉長:14m、有効炉幅:1m、炉内の風向き:繊
維束シート状物に対して垂直、炉内温度:240℃、炉
内の風速:1.0m/secの耐炎化炉内に、フィラメ
ント数12,000の被熱処理繊維束の200本からな
る繊維束シート状物を通してアクリル系繊維束の連続熱
処理を行なった。このときの耐炎化炉の底面に対する耐
炎化炉内に導入する繊維束シート状物の面占有率は40
%である。Comparative Example 3 Effective furnace length: 14 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 240 ° C., wind speed in the furnace: 1.0 m / sec Acrylic fiber bundles were subjected to continuous heat treatment through a fiber bundle sheet consisting of 200 fiber bundles to be heat-treated having 12,000 filaments in the oxidizing furnace. At this time, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidizing furnace with respect to the bottom surface of the oxidizing furnace is 40.
%.
【0056】なお、上記のアクリル系繊維束の連続熱処
理においては、溝ローラーによって1本当たりの被熱処
理繊維束の幅を2.0mm、繊維束同士のピッチを5.
0mmに規制し、又耐炎化炉内を走行するアクリル系繊
維束の工程張力を0.3g/tex(1本当たり0.5
kg)にした。In the above-described continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat-treated per fiber is 2.0 mm and the pitch between the fiber bundles is 5.
0 mm, and the process tension of the acrylic fiber bundle running in the oxidizing furnace is 0.3 g / tex (0.5 g / tex).
kg).
【0057】上記のアクリル系繊維束の連続熱処理工程
中に、耐炎化炉の底面に対して平行する面で隣接する繊
維束同士の接触による束切れ発生した。この連続熱処理
によるアクリル系繊維の耐炎化密度上昇度は0.06g
/cm3 /15min.であり、工程安定性が非常に悪
かった。During the above-mentioned continuous heat treatment of the acrylic fiber bundle, the bundle was broken due to the contact between adjacent fiber bundles on a plane parallel to the bottom surface of the oxidizing furnace. The degree of increase in the oxidized density of the acrylic fiber by this continuous heat treatment is 0.06 g.
/ Cm 3 / 15min. And the process stability was very poor.
【0058】比較例4 有効炉長:14m、有効炉幅:1m、炉内の風向き:繊
維束シート状物に対して垂直、炉内温度:240℃、炉
内の風速:2.0m/secの耐炎化炉内に、フィラメ
ント数12,000の被熱処理繊維束の200本からな
る繊維束シート状物を通してアクリル系繊維束の連続熱
処理を行なった。このときの耐炎化炉の底面に対する耐
炎化炉内に導入する繊維束シート状物の面占有率は40
%である。Comparative Example 4 Effective furnace length: 14 m, effective furnace width: 1 m, wind direction in the furnace: perpendicular to the fiber bundle sheet, furnace temperature: 240 ° C., wind speed in the furnace: 2.0 m / sec Acrylic fiber bundles were subjected to continuous heat treatment through a fiber bundle sheet consisting of 200 fiber bundles to be heat-treated having 12,000 filaments in the oxidizing furnace. At this time, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidizing furnace with respect to the bottom surface of the oxidizing furnace is 40.
%.
【0059】なお、上記のアクリル系繊維束の連続熱処
理においては、溝ローラーによって1本当たりの被熱処
理繊維束の幅を2.0mm、繊維束同士のピッチを5.
0mmに規制し、又耐炎化炉内を走行するアクリル系繊
維束の工程張力を0.3g/tex(1本当たり0.5
kg)にした。In the above-mentioned continuous heat treatment of the acrylic fiber bundle, the width of the fiber bundle to be heat treated per fiber is 2.0 mm and the pitch between the fiber bundles is 5.
0 mm, and the process tension of the acrylic fiber bundle running in the oxidizing furnace is 0.3 g / tex (0.5 g / tex).
kg).
【0060】上記のアクリル系繊維束の連続熱処理工程
中には、暴走反応によるスモークの発生はなかったが、
耐炎化炉内の風からなる繊維束のバタツキが大きく、耐
炎化炉の底面に対して平行する面で隣接する繊維束同士
の接触による単糸切れを生じ、毛羽の多い耐炎化繊維が
得られた。この連続熱処理によるアクリル系繊維の耐炎
化密度上昇度は0.06g/cm3 /15min.であ
った。During the continuous heat treatment step of the acrylic fiber bundle, no smoke was generated due to the runaway reaction.
The flapping of the fiber bundle composed of the wind in the oxidizing furnace is large, and the single fiber break occurs due to the contact between adjacent fiber bundles on the surface parallel to the bottom surface of the oxidizing furnace, and the oxidizing fiber with many fluff is obtained. Was. Oxidization density increase of the acrylic fiber according to the continuous heat treatment is 0.06g / cm 3 / 15min. Met.
【0061】比較例5 有効炉長:14m、有効炉幅:1.5m、炉内の風向
き:繊維束シート状物に対して平行、炉内温度:215
℃、炉内の風速:1.0m/secの耐炎化炉内に、フ
ィラメント数72,000の被熱処理繊維束の90本か
らなる繊維束シート状物を通してアクリル系繊維束の連
続熱処理を行なった。このときの耐炎化炉の底面に対す
る耐炎化炉内に導入する繊維束シート状物の面占有率は
56%である。Comparative Example 5 Effective furnace length: 14 m, effective furnace width: 1.5 m, wind direction in the furnace: parallel to the fiber bundle sheet, furnace temperature: 215
A continuous heat treatment of an acrylic fiber bundle was performed by passing a fiber bundle sheet made of 90 pieces of a fiber bundle to be heat treated having 72,000 filaments into an oxidation-resistant furnace having a furnace temperature of 1.0 ° C. and a wind speed of 1.0 m / sec. . At this time, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidization furnace with respect to the bottom surface of the oxidization furnace is 56%.
【0062】なお、上記のアクリル系繊維束の連続熱処
理においては、平ローラーとコームガイドとによって1
本当たりの被熱処理繊維束の幅を10.5mm、繊維束
同士のピッチを17.0mmに規制し、又耐炎化炉内を
走行するアクリル系繊維束の工程張力を1.4g/te
x(1本当たり2.0kg)にした。In the above-described continuous heat treatment of the acrylic fiber bundle, one flat roller and a comb guide are used.
The width of the fiber bundle to be heat-treated is regulated to 10.5 mm, the pitch between the fiber bundles is regulated to 17.0 mm, and the process tension of the acrylic fiber bundle traveling in the oxidizing furnace is 1.4 g / te.
x (2.0 kg per line).
【0063】上記のアクリル系繊維束の連続熱処理工程
中には、除熱不良からなるスモークの発生があった。
又、この熱処理によるアクリル系繊維の耐炎化密度上昇
度は0.06g/cm3 /27min.であった。During the continuous heat treatment step of the acrylic fiber bundle, smoke was generated due to poor heat removal.
Further, oxidization density increase of the acrylic fiber by the heat treatment is 0.06g / cm 3 / 27min. Met.
【0064】以上の実施例及び比較例における耐炎化炉
の底面に対する耐炎化炉内に導入する繊維束シート状物
の面占有率、工程生産性、及び得られた耐炎化繊維の目
視による性状をまとめて表1に示す。In the above Examples and Comparative Examples, the surface occupancy, the process productivity, and the visual properties of the obtained fiber oxidized fibers with respect to the bottom surface of the gas oxidized furnace with respect to the bottom surface of the gas oxidized furnace were measured. The results are shown in Table 1.
【0065】[0065]
【表1】 [Table 1]
【0066】[0066]
【発明の効果】本発明のアクリル系繊維束の連続熱処理
方法によれば、品質の良い耐炎化繊維を効率よく生産す
ることができるので、高品質の炭素繊維を高生産するこ
とが可能になり、炭素繊維製造のためのコストの低減を
図ることができる。According to the method for continuously heat-treating acrylic fiber bundles of the present invention, it is possible to efficiently produce high-quality oxidized fibers, which makes it possible to produce high-quality carbon fibers. In addition, the cost for producing carbon fibers can be reduced.
【図1】平底型溝ロールの溝の概略形状を示す切断端面
図である。FIG. 1 is a cut end view showing a schematic shape of a groove of a flat bottom type groove roll.
【図2】丸底型溝ロールの溝の概略形状を示す切断端面
図である。FIG. 2 is a cut end view showing a schematic shape of a groove of a round bottom type groove roll.
【図3】波底型溝ロールの溝の概略形状を示す切断端面
図である。FIG. 3 is a cut end view showing a schematic shape of a groove of a corrugated bottom groove roll.
【図4】耐炎化炉内を走行する繊維束シート状物の状態
を示す耐炎化炉の縦断面略示図である。FIG. 4 is a schematic vertical sectional view of the oxidizing furnace showing a state of a fiber bundle sheet running in the oxidizing furnace.
【図5】図4の耐炎化炉のX−Y線断面略示図である。FIG. 5 is a schematic cross-sectional view of the oxidizing furnace of FIG. 4 taken along line XY.
1・・・・耐炎化炉 2・・・・繊維束シート状物 3・・・・耐炎化繊維 4・・・・溝ローラー S・・・・被熱処理繊維束 L1・・・有効炉長 L2・・・有効炉幅1 ··· Oxidation furnace 2 ··· Fiber bundle sheet 3 ··· Oxidation resistant fiber 4 ··· Groove roller S ··· Heat treated fiber bundle L 1 · Effective furnace length L 2 ··· effective furnace width
Claims (3)
繊維束シート状物を、熱風循環型対流加熱炉からなる耐
炎化炉内に走行させながら熱処理することによって耐炎
化繊維にするアクリル系繊維束の連続熱処理方法におい
て、耐炎化炉の底面に対する耐炎化炉内に導入する繊維
束シート状物の面占有率を36〜65%にすると共に、
耐炎化炉内の風向きを繊維束シート状物に対して垂直に
し、かつその風速を0.3〜1.5m/secにし、し
かも耐炎化炉内を走行するアクリル系繊維束の工程張力
を0.5〜2.5g/texにすることを特徴とするア
クリル系繊維束の連続熱処理方法。1. An acrylic fiber fiber sheet made by heat-treating a fiber bundle sheet in which a large number of acrylic fiber bundles are aligned in a flame stabilization furnace comprising a hot air circulation type convection heating furnace. In the continuous heat treatment method for a fiber bundle, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidization furnace with respect to the bottom surface of the oxidization furnace is set to 36 to 65%,
The wind direction in the oxidizing furnace is perpendicular to the fiber bundle sheet, the wind speed is 0.3 to 1.5 m / sec, and the process tension of the acrylic fiber bundle running in the oxidizing furnace is 0. A method for continuously heat-treating an acrylic fiber bundle, wherein the heat treatment is performed at 0.5 to 2.5 g / tex.
繊維束シート状物を、熱風循環型対流加熱炉からなる耐
炎化炉内に走行させながら熱処理することによって耐炎
化繊維にするアクリル系繊維束の連続熱処理方法におい
て、耐炎化炉の底面に対する耐炎化炉内に導入する繊維
束シート状物の面占有率を36〜65%にすると共に、
耐炎化炉内の風向きを繊維束シート状物に対して平行に
し、かつその風速を1.5〜5m/secにし、しかも
耐炎化炉内を走行するアクリル系繊維束の工程張力を
0.5〜2.5g/texにすることを特徴とするアク
リル系繊維束の連続熱処理方法。2. An acrylic fiber fiber sheet obtained by heat-treating a fiber bundle sheet obtained by aligning a large number of acrylic fiber bundles in a flame stabilization furnace comprising a hot air circulation type convection heating furnace. In the continuous heat treatment method for a fiber bundle, the surface occupancy of the fiber bundle sheet-like material introduced into the oxidization furnace with respect to the bottom surface of the oxidization furnace is set to 36 to 65%,
The wind direction in the oxidizing furnace is parallel to the fiber bundle sheet, the wind speed is 1.5 to 5 m / sec, and the process tension of the acrylic fiber bundle running in the oxidizing furnace is 0.5. A method for continuously heat-treating an acrylic fiber bundle, wherein the heat treatment is performed at 2.5 g / tex.
ラーによって行なうことを特徴とする請求項1又は請求
項2に記載のアクリル系繊維束の連続熱処理方法。3. The continuous heat treatment method for an acrylic fiber bundle according to claim 1, wherein the running path of the fiber bundle to be heat treated is regulated by a groove roller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33609598A JP4017772B2 (en) | 1998-11-26 | 1998-11-26 | Continuous heat treatment method for acrylic fiber bundles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33609598A JP4017772B2 (en) | 1998-11-26 | 1998-11-26 | Continuous heat treatment method for acrylic fiber bundles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000160435A true JP2000160435A (en) | 2000-06-13 |
JP4017772B2 JP4017772B2 (en) | 2007-12-05 |
Family
ID=18295652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33609598A Expired - Lifetime JP4017772B2 (en) | 1998-11-26 | 1998-11-26 | Continuous heat treatment method for acrylic fiber bundles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4017772B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008150733A (en) * | 2006-12-15 | 2008-07-03 | Mitsubishi Rayon Co Ltd | Method for treating carbon fiber precursor as flame retardant |
JP2011127264A (en) * | 2009-12-21 | 2011-06-30 | Mitsubishi Rayon Co Ltd | Method for producing flame-proof fiber |
WO2020066653A1 (en) | 2018-09-28 | 2020-04-02 | 東レ株式会社 | Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle |
JP6680417B1 (en) * | 2018-11-26 | 2020-04-15 | 東レ株式会社 | Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle |
WO2020100714A1 (en) * | 2018-11-12 | 2020-05-22 | 東レ株式会社 | Method for producing flame-resistant fiber bundle and carbon fiber bundle and flameproofing furnace |
WO2020110632A1 (en) * | 2018-11-26 | 2020-06-04 | 東レ株式会社 | Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle |
WO2021187518A1 (en) * | 2020-03-18 | 2021-09-23 | 東レ株式会社 | Flame resistant fiber bundles, carbon fiber bundle production method, and flame resistant furnace |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102767058A (en) * | 2012-07-03 | 2012-11-07 | 镇江奥立特机械制造有限公司 | Driving roller of carbon fiber softening machine |
-
1998
- 1998-11-26 JP JP33609598A patent/JP4017772B2/en not_active Expired - Lifetime
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008150733A (en) * | 2006-12-15 | 2008-07-03 | Mitsubishi Rayon Co Ltd | Method for treating carbon fiber precursor as flame retardant |
JP2011127264A (en) * | 2009-12-21 | 2011-06-30 | Mitsubishi Rayon Co Ltd | Method for producing flame-proof fiber |
JP7354840B2 (en) | 2018-09-28 | 2023-10-03 | 東レ株式会社 | Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles |
KR20210063328A (en) | 2018-09-28 | 2021-06-01 | 도레이 카부시키가이샤 | Method for producing flame-resistant fiber bundles and methods for producing carbon fiber bundles |
WO2020066653A1 (en) | 2018-09-28 | 2020-04-02 | 東レ株式会社 | Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle |
EP3859060A4 (en) * | 2018-09-28 | 2022-07-06 | Toray Industries, Inc. | Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle |
JPWO2020066653A1 (en) * | 2018-09-28 | 2021-08-30 | 東レ株式会社 | Method for manufacturing flame-resistant fiber bundle and method for manufacturing carbon fiber bundle |
JP6729819B1 (en) * | 2018-11-12 | 2020-07-22 | 東レ株式会社 | Method for producing flame resistant fiber bundle and carbon fiber bundle, and flame resistant furnace |
WO2020100714A1 (en) * | 2018-11-12 | 2020-05-22 | 東レ株式会社 | Method for producing flame-resistant fiber bundle and carbon fiber bundle and flameproofing furnace |
US12060659B2 (en) | 2018-11-12 | 2024-08-13 | Toray Industries, Inc. | Method of producing flame-resistant fiber bundle and carbon fiber bundle and flameproofing furnace |
JP6680417B1 (en) * | 2018-11-26 | 2020-04-15 | 東レ株式会社 | Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle |
WO2020110632A1 (en) * | 2018-11-26 | 2020-06-04 | 東レ株式会社 | Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle |
US12012671B2 (en) | 2018-11-26 | 2024-06-18 | Toray Industries, Inc. | Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle |
WO2021187518A1 (en) * | 2020-03-18 | 2021-09-23 | 東レ株式会社 | Flame resistant fiber bundles, carbon fiber bundle production method, and flame resistant furnace |
CN115279958A (en) * | 2020-03-18 | 2022-11-01 | 东丽株式会社 | Flame-resistant fiber bundle, method for producing carbon fiber bundle, and flame-resistant furnace |
CN115279958B (en) * | 2020-03-18 | 2024-04-16 | 东丽株式会社 | Flame-retardant fiber bundle, method for producing carbon fiber bundle, and flame-retardant furnace |
Also Published As
Publication number | Publication date |
---|---|
JP4017772B2 (en) | 2007-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0848090A3 (en) | A heat treatment furnace for fiber and a yarn guide roller for the same | |
JP5496214B2 (en) | Carbon fiber bundle manufacturing method | |
JP2000160435A (en) | Continuous thermal treatment of acrylic fiber bundle | |
JP5556994B2 (en) | Method for producing flame resistant fiber | |
JP2009138313A (en) | Carbon fiber bundle and production method thereof | |
CN115279958B (en) | Flame-retardant fiber bundle, method for producing carbon fiber bundle, and flame-retardant furnace | |
JP5081409B2 (en) | Carbon fiber manufacturing method | |
JP2001073232A (en) | Flameproofing of carbon filament bundle precursor and apparatus for flameproofing | |
JP3733688B2 (en) | Carbon fiber manufacturing method | |
JPH06294020A (en) | Production of carbon fiber | |
JPH0681223A (en) | Production of carbon fiber | |
JP4021972B2 (en) | Carbon fiber manufacturing method | |
JP2005060871A (en) | Method for producing flame-proofed fiber and method for producing carbon fiber | |
JP2001020140A (en) | Device for driving carbon fiber precursor | |
WO1987002391A1 (en) | Process for producing carbon fibers | |
JP2971498B2 (en) | Flame-resistant treatment equipment | |
JPH026625A (en) | Production of flame-resistant fiber | |
JP2002105766A (en) | Method for flame resisting | |
JP2004197239A (en) | Flame resisting treatment furnace | |
JP3899649B2 (en) | Carbon fiber manufacturing method | |
JP2002115125A (en) | Heat treatment oven and method for producing carbon fiber using the same | |
JPS62257424A (en) | Production of carbon fiber having high strength and elastic modulus | |
JPS6285029A (en) | Production of carbon fiber | |
JP2010144274A (en) | Method for producing carbon fiber | |
JPH02191723A (en) | Production of fire-resistant yarn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070813 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070918 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070919 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |