JPH02191723A - Production of fire-resistant yarn - Google Patents

Production of fire-resistant yarn

Info

Publication number
JPH02191723A
JPH02191723A JP929789A JP929789A JPH02191723A JP H02191723 A JPH02191723 A JP H02191723A JP 929789 A JP929789 A JP 929789A JP 929789 A JP929789 A JP 929789A JP H02191723 A JPH02191723 A JP H02191723A
Authority
JP
Japan
Prior art keywords
yarn
temperature
fibers
flame
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP929789A
Other languages
Japanese (ja)
Inventor
Kinji Omiya
大宮 勤司
Yoshitaka Imai
今井 義隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP929789A priority Critical patent/JPH02191723A/en
Publication of JPH02191723A publication Critical patent/JPH02191723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the title yarn at high speed, stably and efficiently by making acrylonitrile-based yarn fire-resistant in an oxidizing atmosphere at a specific temperature while repeatedly bringing the yarn into contact with a roller type treating device under a specific condition. CONSTITUTION:Acrylonitrile-based yarn (preferably one having 0.7-1.25 denier of single yarn) is made fire-resistant while repeatedly being brought into contact with a roller type treating device in an oxidizing atmosphere at 200-300 deg.C under a condition wherein passing time of the yarn of non-contact part between the rollers in one time is <=20 seconds in the case of <1.28-1.30g/cm<3> density of fire-resistant yarn and <=1 minute in the case of >=1.28-1.30 density of fire- resistant yarn to give the aimed yarn. The temperature in the surroundings of the rollers wherein the yarn is brought into contact with the rollers is preferably 20-50 deg.C lower than the temperature of the non-contact part between the rollers. The rollers are equipped with several slits in the length direction, from which hot air 20-50 deg.C lower than the temperature of the non-contact part is preferably sprayed at <=5m/second speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規な耐炎化繊維の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel method for producing flame-resistant fibers.

〔従来の技術〕[Conventional technology]

従来の炭素繊維の製造法に於ける耐炎化処理工程は、2
00〜300℃に加熱された酸化性気体が循環する耐炎
化炉内に多数のローラーを設け、前駆体繊維束を多数回
往復させながら処理するものであった。この方法では生
産性を上げるために耐炎化炉内に導入する繊維束の量を
増やしたり、耐炎化炉内の雰囲気温度を高温化したりす
ると酸化反応に伴う発熱が繊維内に蓄積し易くなるため
、繊維温度が急上昇し繊維が燃焼・切断する暴走反応を
起こし易いという問題があった。従ってこの問題を解決
するために従来の耐炎化処理工程に於いては比較的低温
である200〜250℃前後で60〜200分間もの長
い間処理するという極めて低い生産性で製造しなければ
ならなかった。そのため、炭素繊維製造プロセスの生産
性は低(な9、最終的に得られる炭素繊維はかなり高価
なものとなっている。
The flame-retardant treatment process in the conventional carbon fiber manufacturing method is 2.
A large number of rollers were installed in a flameproofing furnace in which an oxidizing gas heated to 00 to 300° C. was circulated, and the precursor fiber bundle was processed while being reciprocated many times. In this method, in order to increase productivity, if the amount of fiber bundles introduced into the flameproofing furnace is increased or the atmospheric temperature in the flameproofing furnace is raised, the heat generated by the oxidation reaction tends to accumulate in the fibers. However, there was a problem in that the temperature of the fibers increased rapidly, causing a runaway reaction in which the fibers were burned and cut. Therefore, in order to solve this problem, in the conventional flame-retardant treatment process, it was necessary to manufacture at extremely low productivity by treating at a relatively low temperature of around 200 to 250 degrees Celsius for a long time of 60 to 200 minutes. Ta. As a result, the productivity of the carbon fiber manufacturing process is low (9), and the carbon fibers that are finally obtained are quite expensive.

そこでこの欠点を克服するために、例えば特公昭55−
21596号公報には200〜400℃に加熱したロー
ラーに前駆体繊維を間欠的に接触させて耐炎化処理を行
い、耐炎化処理時間を20〜30分の短時間とすること
が記載されている。この方法は従来の耐炎化処理方法と
は異なり、加熱方式として伝導加熱方式をとっているた
め繊維内に反応熱が蓄積し難く、かなりの高温でも暴走
反応が起こらないので耐炎化処理時間の短縮KFi有効
である。しかし、礒雑を加熱したローラーに直接接触さ
せるために耐炎化処理中に繊維の融着を生じ易く、又処
理面が片側のみとなるため厚み方向に処理斑が出来易い
。このためこのような耐炎化繊維から得られる炭素繊維
は十分な性能を有するものになり得ない。
Therefore, in order to overcome this drawback, for example,
Publication No. 21596 describes that flame-retardant treatment is performed by intermittently bringing precursor fibers into contact with a roller heated to 200 to 400°C, and that the flame-retardant treatment time is shortened to 20 to 30 minutes. . This method differs from conventional flame-retardant treatment methods because it uses a conduction heating method, which prevents reaction heat from accumulating within the fibers and prevents runaway reactions from occurring even at extremely high temperatures, reducing the flame-retardant treatment time. KFi is valid. However, since the soybean material is brought into direct contact with a heated roller, fibers tend to fuse together during the flame-retardant treatment, and since the treated surface is only on one side, treatment unevenness tends to occur in the thickness direction. Therefore, carbon fibers obtained from such flame-resistant fibers cannot have sufficient performance.

又以上のような欠点を克服するために、例えば特開昭6
1−167025号公報には繊維を予め酸化性雰囲気中
で予備酸化処理し、次いで高温処理ゾーンIとして25
0〜550℃に加熱された加熱体に繰り返し断続的に接
触させ、最後に高温処理ゾーン■として酸化性雰囲気中
250〜350℃で処理する5段処理方法により10〜
30分間という短時間で耐炎化を行うことが提案されて
いる。この3段処理法は、従来の雰囲気加熱方式に比べ
ては耐炎化時間の短縮という点で、又加熱ローラ一方式
に比べては融着の防止及び処理斑の解消という点で有利
である。
In addition, in order to overcome the above-mentioned drawbacks, for example,
No. 1-167025 discloses that the fibers are pre-oxidized in an oxidizing atmosphere and then treated in a high temperature treatment zone I of 25
A five-step treatment method in which the heating element heated to 0 to 550°C is brought into repeated and intermittent contact, and finally the high temperature treatment zone (2) is treated at 250 to 350°C in an oxidizing atmosphere.
It has been proposed that flame resistance be achieved in a short period of 30 minutes. This three-stage treatment method is advantageous in that it shortens the flame-retardant time compared to the conventional atmosphere heating method, and in that it prevents fusion and eliminates processing unevenness compared to the single-heat roller method.

しかし表から、このような処理を行った繊維は耐炎性繊
維としては充分使用に耐えるものであっても、炭素繊維
を製造する際に用いられる耐炎化繊維として炭素化処理
を行うと糸切れを多発し工程上のドブプルを生じ易い。
However, the table shows that even though the fibers treated in this way can be used as flame-resistant fibers, if they are carbonized as flame-resistant fibers used in the production of carbon fibers, they will not break. It occurs frequently and tends to cause problems in the process.

このことは耐炎化処理時間が短くなればなるほど顕著に
なり、特に十数分程度からそれ以下のものに著しい。本
発明者らの検討によれば、これは繊維断面方向に生じる
構造斑に起因するものであることが判った。耐炎化に続
く炭素化工程に耐え得る熱的に安定な耐炎化糸構造を形
成する上で非常に重要な役割を果たす酸素は、繊維の断
面方向へ時間と共に拡散するため、このような擺めて短
時間の処理では繊維内への酸素の拡散が追いつかず、繊
維は表面層のみが耐炎化された2重構造をとるようにな
る。このような構造を有する耐炎化繊維は、炭素化工程
で用いられるような温度条件で処理すると、この構造斑
に起因する反応性の違いKよって繊維が破断するような
ドブプルを発生し易く、安定K 、flつ十分な性能を
有する炭素繊維を製造することが困難である。
This becomes more noticeable as the flameproofing treatment time becomes shorter, and is particularly noticeable when the flameproofing treatment time is from about ten minutes to less than that. According to studies conducted by the present inventors, it has been found that this is caused by structural unevenness occurring in the cross-sectional direction of the fibers. Oxygen, which plays a very important role in forming a thermally stable flame-resistant yarn structure that can withstand the carbonization process that follows flame-proofing, diffuses over time in the cross-sectional direction of the fiber, If the treatment is carried out for a short time, the diffusion of oxygen into the fibers will not be able to catch up, and the fibers will take on a double structure with only the surface layer made flame resistant. When flame-resistant fibers with such a structure are treated under the temperature conditions used in the carbonization process, they tend to cause doubling, which causes the fibers to break due to the difference in reactivity K caused by the structural unevenness, resulting in unstable stability. It is difficult to produce carbon fibers with sufficient performance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は上記欠点を克服する耐炎化繊維の製造法
、具体的には炭素繊維を製造するに当り、非常に効率の
良い、安全な耐炎化方法で且つそれによって得られる耐
炎化繊維からは十分な性能を有する炭素繊維を製造する
ことが可能な耐炎化処理方法を提供することにある。
The object of the present invention is to provide a method for producing flame-resistant fibers that overcomes the above-mentioned drawbacks, and specifically, to provide a highly efficient and safe flame-resistant method for producing carbon fibers, and from the flame-resistant fibers obtained thereby. The object of the present invention is to provide a flame-retardant treatment method that can produce carbon fibers with sufficient performance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨とするところは、単糸デニールα7〜1.
25のアクリロニトリル系繊維束を200〜300℃の
酸化性雰囲気中ローフ式処理装置に繰返し接触させなが
ら耐炎化するに際し、ローブ間の非接触部を通過する時
間が耐炎化糸密度1.28〜1.3017cm”未満で
は20秒以下、1.28〜15 G r/cm’以上で
Fi、1分以下であり、且つ繊維がローラーと接触する
付近の温度は非接触部の温度よりも20〜50℃低い温
度とすると同時にローラーに設けたスリットよりその温
度の加熱空気を5m/秒以下の速度で吹出すような数理
装置で耐炎化繊維を製造することにある。
The gist of the present invention is that the single yarn denier α7-1.
When making the acrylonitrile fiber bundles of No. 25 flame resistant by repeatedly contacting them with a loaf-type processing device in an oxidizing atmosphere at 200 to 300°C, the time it takes to pass through the non-contact area between the lobes is 1.28 to 1. Fi is less than 20 seconds when the fiber is less than .3017 cm", Fi is less than 1 minute when it is 1.28 to 15 Gr/cm' or more, and the temperature near where the fiber contacts the roller is 20 to 50 times lower than the temperature of the non-contact area. The objective is to produce flame-resistant fibers using a mathematical device that lowers the temperature by 0.degree. C. and at the same time blows heated air at that temperature through slits provided in a roller at a speed of 5 m/sec or less.

本発明者らの検討によると耐炎化反応は主に(i)暴走
反応による処理温度の制限と(li)繊維間及び繊維内
の酸化性気体の拡散速度に支配されており、耐炎化反応
を短時間で完結させるためにはこの2つの因子をうまく
制御する必要があることが判った。このことを具体的に
説明すると、耐炎化処理時間を短縮するためには、まず
処理温度を上げて環化及び酸化反応の速度を上げること
が必要であるが、通常の雰囲気加熱方式を採用した耐炎
化炉に於いて、このような処理方式をとると酸化反応に
伴う急激な発熱のために繊維内温度が急上昇し、繊維束
の燃焼・切断を引起こす暴走反応を発生し易くなる。又
繊維束中のブイツメント数を減らしたり、繊維間の空隙
を広げることでこのような暴走反応はかなり防ぐことが
可能であり、この場合繊維の密度をかなりの短時間のう
ちに耐炎化糸として必要な密度に上げることができるが
、繊維が酸素を消費する速度が大きく、繊維内部への酸
化性気体の拡散速度が小さいために酸化反応が表層のみ
で起こり、断面方向に非常に大きい密度斑を有する耐炎
化繊維となってしまう。このような耐炎化繊維は、その
2重構造のために炭素化処理工程に於いて切断し易く、
安定して高品質の炭素繊維を製造することが困難である
According to the studies conducted by the present inventors, the flame-retardant reaction is mainly controlled by (i) the limitation of the treatment temperature due to runaway reaction, and (li) the diffusion rate of oxidizing gas between and within the fibers. It was found that these two factors needed to be well controlled in order to complete the process in a short time. To explain this more specifically, in order to shorten the flameproofing treatment time, it is first necessary to raise the treatment temperature to increase the speed of the cyclization and oxidation reactions. When such a treatment method is used in a flameproofing furnace, the temperature within the fibers rises rapidly due to the rapid heat generation accompanying the oxidation reaction, which tends to cause a runaway reaction that causes burning and cutting of the fiber bundles. In addition, by reducing the number of components in the fiber bundle or widening the voids between the fibers, it is possible to prevent such runaway reactions to a large extent, and in this case, the density of the fibers can be reduced within a fairly short period of time to become a flame-resistant yarn. It is possible to increase the density to the required level, but because the fiber consumes oxygen at a high rate and the diffusion rate of oxidizing gas into the fiber is low, the oxidation reaction occurs only in the surface layer, resulting in very large density unevenness in the cross-sectional direction. This results in a flame-resistant fiber with Such flame-resistant fibers are easy to cut during the carbonization process due to their double structure.
It is difficult to consistently produce high quality carbon fiber.

そこで本発明者らは上記の暴走反応及び酸化性気体の拡
散という2つの問題を克服すべく検討を重ねた結果、本
発明の方法に到達したものである。暴走反応の発生温度
は繊維の酸化が進むと発熱量が減少するため処理の程度
が上がるにつれて高温側ヘシフトしていくが、この上昇
傾向は単調増加ではなく、繊維密度1.28〜j、 5
0 ?/cs”を境にして急激に増加する傾向にある。
The inventors of the present invention have conducted repeated studies to overcome the two problems of the runaway reaction and the diffusion of oxidizing gas, and as a result, they have arrived at the method of the present invention. The temperature at which the runaway reaction occurs shifts to a higher temperature side as the degree of treatment increases because the calorific value decreases as the oxidation of the fiber progresses, but this upward trend is not a monotonous increase, and the fiber density is 1.28 to 5.
0? /cs", it tends to increase rapidly.

これ以上の繊維密度領域では処理温度をポリアクリロニ
トリルの分解温度程度にまで高めないと暴走反応を起さ
なくなる。又、これ以下の領域に於いても(1,28〜
1.3017cm”以下)、繊維の蓄熱には少々の時間
を要するだめ、繊維の分解温度に温度が上昇する前に除
熱を行ってやると暴走反応をかなり効果的に抑制できる
。この蓄熱に要する時間は、本発明者らの検討によると
、単糸デニーA/ 1.25 dpfのフィラメントを
幅3−当り12000本含んだシート状物の場合約10
〜20秒程度である。この時間Kmする前までに除勢を
行ってやると暴走反応は起らなくなる。しかしながら、
この時酸化反応により発生する熱量はかなり膨大なもの
であり、この熱量を通常の耐炎化炉に使用される程度の
ローラー(30cm程度)では接触によりこの熱量を除
去することは不可能であり、もし、何らかの冷却手段を
講じなければローラー表面温度が上昇するため繊維の融
着を生じ、炭素繊維製造に適した耐炎化糸とすることが
できない。これに関する本発明者らの検討によれば、ロ
ーラー接触式の除熱手段に於いてはローラー接触時間を
3〜5秒程度とするとポリアクリロニトリル系繊維は2
40℃程度で融着現象を示す。この繊維の融着温度も暴
走温度と同様に耐炎化処理の進行に従って上昇し、繊維
密度1.28〜t s o t/、−を越えると融着現
象は発生しなくなる。そのため少くとも初段の処理に於
いてはローラー周辺の温度は240℃以下にする必要が
ある。これに必要なローラー及びローラー周辺の冷却方
式としてはローラー室の分離とスリット式ローラーから
の空気の噴出が有効である。この方式をとれば通常のロ
ーラー径でも繊維の発生する熱量を十分除去することが
出来る。
In a fiber density range higher than this, a runaway reaction will not occur unless the processing temperature is raised to about the decomposition temperature of polyacrylonitrile. Also, even in areas below this (1,28~
1.3017 cm" or less), it takes some time for heat to accumulate in the fibers, so if heat is removed before the temperature rises to the decomposition temperature of the fibers, runaway reactions can be suppressed quite effectively. According to studies by the present inventors, the time required is approximately 10 minutes for a sheet containing 12,000 single Denny A/1.25 dpf filaments per width.
~20 seconds. If neutering is performed before this time Km, a runaway reaction will not occur. however,
The amount of heat generated by the oxidation reaction at this time is quite enormous, and it is impossible to remove this amount of heat by contact with rollers (about 30 cm) used in ordinary flameproofing furnaces. If some kind of cooling means is not taken, the roller surface temperature will rise, causing fiber fusion, making it impossible to obtain a flame-resistant yarn suitable for producing carbon fibers. According to the studies of the present inventors regarding this, in a roller contact type heat removal means, if the roller contact time is about 3 to 5 seconds, polyacrylonitrile fibers
A fusion phenomenon occurs at about 40°C. Like the runaway temperature, the fusion temperature of the fibers also increases as the flame-retardant treatment progresses, and when the fiber density exceeds 1.28 to t s o t/, -, the fusion phenomenon no longer occurs. Therefore, at least in the first stage of processing, the temperature around the roller needs to be 240° C. or lower. As a method for cooling the roller and its surrounding area, it is effective to separate the roller chamber and blow out air from a slit-type roller. If this method is adopted, the amount of heat generated by the fibers can be sufficiently removed even with a roller of a normal diameter.

又、スリット式ローラーには耐炎化処理中に発生する繊
維のローラーへの巻き付きを有効に防止できるというメ
リットもある。
Furthermore, the slit type roller has the advantage that it can effectively prevent fibers from being wrapped around the roller during flameproofing treatment.

これによってローラーへの繊維の巻き付きの除去という
作業がなくなるためローラーを密閉系の中に入れること
が可能となり、高温短時間処理用の炉を作ることが出来
るのである。以上の検討結果より導き出した本発明の方
法による耐炎化炉を具体的に示したものが第1図である
This eliminates the work of removing the fibers from wrapping around the rollers, making it possible to place the rollers in a closed system, making it possible to create a furnace for high-temperature, short-time processing. FIG. 1 specifically shows a flameproofing furnace according to the method of the present invention derived from the above study results.

この炉は伝導による反応熱の除去と対流による加熱処理
を有効に組み合わせたものであり、これによれば暴走反
応を有効に防止しながら、高温短時間で耐炎化処理する
ことが可能である。
This furnace effectively combines the removal of reaction heat by conduction and the heat treatment by convection, and with this, it is possible to perform flameproofing treatment at high temperatures and in a short time while effectively preventing runaway reactions.

次に繊維間及び繊維内の拡散速度について述べる。la
m間の拡散速度は耐炎化処理の高密度化に伴って問題と
なるがこれは対流加熱処理時の風速によってかなり促進
することが可能であり、第1図に示した耐炎化炉に、於
いては糸に対して垂直に2〜5m1秒の速度で熱風を当
てることで十分高密度化に対応できることが判った。し
かし繊維内の拡散については通常の空気中の酸素濃度で
はいくら風速を上げても促進効果は認められず、その速
度は時間にのみ依存していることが判った。この速度は
260℃以上の高温処理ではかなり遅く、単糸デニ−A
/1.25dの繊維を260〜290℃で10〜20分
間処理した時の断面積に対する酸化層面積の割合は約6
0〜704にすぎなかった。この割合は耐炎化糸構造と
しては限界点に近く、これ以下に割合が低下するといく
ら全体としての密度が高くなっていても次の炭素化工程
に於いて毛羽、糸切れを生じ易く、得られる炭素繊維の
性能も相当低いものとなる。従って処理するアクリロニ
) 17〜系繊維の径はこれ以上に太くすることはでき
ない。又1.25 dより繊維径を細くすると表面積の
増大化のため酸化層の割合が多くなり、構造斑の少い炭
素繊維製造のためKは好ましい耐炎化繊維となるが、α
7dよりも細い繊維径のものは紡糸の歩留りが悪(なる
ために、コストが高いものとなり、結果として安価な耐
炎化繊維とはなり蝿い。そのために使われるアクリロニ
トリル系繊維の径は07〜1.25 (lが好ましい。
Next, the diffusion rates between and within fibers will be described. la
The diffusion rate between m becomes a problem as the flame retardant treatment becomes more dense, but this can be considerably accelerated by the wind speed during the convection heat treatment. It has been found that applying hot air perpendicularly to the yarn at a speed of 2 to 5 m/sec is sufficient to achieve high density. However, no matter how much the wind speed was increased, no promoting effect was observed for diffusion within the fibers at normal oxygen concentrations in the air, and it was found that the speed was dependent only on time. This speed is quite slow in high-temperature treatment above 260°C, and single yarn DennyA
/1.25d fiber is treated at 260-290°C for 10-20 minutes, the ratio of the oxidized layer area to the cross-sectional area is approximately 6
It was only 0-704. This ratio is close to the limit for a flame-resistant yarn structure, and if the ratio decreases below this, no matter how high the overall density is, fluff and yarn breakage are likely to occur in the next carbonization process, and the resulting The performance of carbon fiber is also considerably lower. Therefore, the diameter of the acrylonitrile 17~ type fibers to be treated cannot be made larger than this. Furthermore, when the fiber diameter is made thinner than 1.25 d, the proportion of oxidized layer increases due to the increase in surface area, and K becomes a preferable flame-resistant fiber to produce carbon fiber with less structural unevenness, but α
Fibers with a diameter smaller than 7d have a poor spinning yield, resulting in high costs and, as a result, are not cheap flame-resistant fibers.Acrylonitrile fibers used for this purpose have a diameter of 07~ 1.25 (l is preferred.

本発明の方法によれば、1.25 (lのアクリロニト
リル系繊維を3−当り12000本含むシート状物を1
0〜20分間耐炎化処理することによって繊維断面積の
60嗟以上が酸化された耐炎化糸束とすることが可能で
ある。通常の耐炎化炉では暴走反応発生のため処理時間
を40〜60分以下にすることが不可能なことから本発
明の方法は処理速度を2〜6倍程度にまで上げることが
可能となり、安価な耐炎化糸を大量に、ひいては安価で
高性能な戻素倣維を大量に製造することが出来るように
なる。
According to the method of the present invention, a sheet material containing 12,000 acrylonitrile fibers per 1.25 (l)
By carrying out the flame-retardant treatment for 0 to 20 minutes, it is possible to obtain a flame-retardant yarn bundle in which 60 mm or more of the cross-sectional area of the fibers is oxidized. Since it is impossible to reduce the processing time to less than 40 to 60 minutes in a normal flameproofing furnace due to the occurrence of runaway reactions, the method of the present invention can increase the processing speed by about 2 to 6 times and is inexpensive. This makes it possible to produce a large amount of flame-resistant yarn and, by extension, a large amount of cheap, high-performance recombinant fiber.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

実施例1 単糸デニー/L’ 1.25 cl 、フィラメント数
12000本のアクリロニトリル系繊維束を20本、5
1IIlK間隔で並べたシート状物を第1図に示したよ
うな処理装置により耐炎化処理を行った。尚、対流加熱
ゾーンでけ260〜270℃の熱風を3m/秒の速度で
繊維束に直角に当て、ロール室及びローラーから吹出す
熱風の温度は第1段では220〜230’C1第2段で
は240〜250℃とした。第1段の処理時間10分(
1パスの処理時flfi f 5秒)、第2F9の処理
時間5分(1バスの処理時間30秒)のドータ/I/1
5分の処理後の耐炎化密度は1.58 f/crs”に
達していた。この耐炎化繊維の断面を顕微鏡で観察した
ところ酸化層の割合は全断面積の80〜85畳であった
。同繊維を窒素雰囲気中300〜600℃の勾配を有す
る炉中で前炭素化処理した後、窒素雰囲気中1400℃
で炭素化した所、糸切れ、毛羽等のトフプルもなく工程
を安定に通過し、引張強度570に97w”、弾性率2
5 ton/m”の炭素繊維が得られた。
Example 1 Single yarn Denny/L' 1.25 cl, 20 acrylonitrile fiber bundles with 12,000 filaments, 5
The sheet-like materials arranged at 1II1K intervals were subjected to flame-retardant treatment using a treatment apparatus as shown in FIG. In addition, in the convection heating zone, hot air of 260 to 270°C is applied perpendicularly to the fiber bundle at a speed of 3 m/sec, and the temperature of the hot air blown from the roll chamber and rollers is 220 to 230°C in the first stage. In this case, the temperature was set at 240 to 250°C. Processing time for the first stage is 10 minutes (
1 pass processing time flfi f 5 seconds), 2nd F9 processing time 5 minutes (1 bus processing time 30 seconds) daughter/I/1
After 5 minutes of treatment, the flame-retardant density reached 1.58 f/crs. When the cross-section of this flame-retardant fiber was observed under a microscope, the proportion of the oxidized layer was 80 to 85 tatami of the total cross-sectional area. The same fiber was pre-carbonized in a furnace with a gradient of 300 to 600°C in a nitrogen atmosphere, and then heated at 1400°C in a nitrogen atmosphere.
The carbonized area passed through the process stably without thread breakage, fluff, etc., and the tensile strength was 570, 97W'', and the elastic modulus was 2.
5 ton/m" of carbon fiber was obtained.

比較例1 第1図に示した処理装置を用い、ローラー室及びローラ
ーから吹出す熱風の温度を第1段、第2段とも対流加熱
ゾーンと同じ260〜270℃とした他は実施例1と同
様な条件で処理を行った。得られた耐炎化糸は融着がひ
どく、かなりもろいものとなっていた。同繊維を実施例
1と同条件で炭素化し九所毛羽、東切れが多発し、得ら
れた炭素繊維の性能も引張強度270kp/−雪、弾性
率18 totx/+w”と低い本のであった。
Comparative Example 1 The processing apparatus shown in Fig. 1 was used, and the temperature of the hot air blown from the roller chamber and rollers was set to 260 to 270°C, the same as that of the convection heating zone in both the first and second stages. Treatment was performed under similar conditions. The obtained flame-resistant yarn was severely fused and was quite brittle. When the same fiber was carbonized under the same conditions as in Example 1, fuzzing at nine places and edge breakage occurred frequently, and the performance of the obtained carbon fiber was low, with a tensile strength of 270 kp/- snow and an elastic modulus of 18 totx/+w. .

比較例2 使用したアクリロニトリル系繊維の径を1.32dとし
た他は実施例1と同様々条件で処理を行った。得られた
耐炎化糸は融着かなく、非常にしなやかなものであった
が、繊維の密度1.37f 7cm”でも酸化層の割合
は40〜50憾であった。同繊維を実施例1と同様な条
件で炭素化した所、炉内で繊維が切断し、炭素繊維とす
ることが出来なかった。
Comparative Example 2 The treatment was carried out under the same conditions as in Example 1, except that the diameter of the acrylonitrile fiber used was 1.32 d. The obtained flame-resistant yarn did not fuse and was very flexible, but even with a fiber density of 1.37 f 7 cm, the proportion of oxidized layer was 40 to 50. The same fiber was used in Example 1. When carbonized under the same conditions as above, the fibers were cut in the furnace and could not be made into carbon fibers.

実施例2 使用したアクリロニトリル系繊維の径をCL9dとした
他は実施例1と同様な条件で処理を行った。得られた耐
炎化糸の断面中の酸化層の割合は954、密度は1.5
7 f/am”であった。同咄碓を実施例1と同様な条
件で炭素化した所、引張強度580に97wx” 、弾
性率26 ton/m”の炭素繊維が得られた。
Example 2 The treatment was carried out under the same conditions as in Example 1, except that the diameter of the acrylonitrile fiber used was CL9d. The ratio of the oxidized layer in the cross section of the obtained flame-resistant yarn was 954, and the density was 1.5.
7 f/am''. When the same was carbonized under the same conditions as in Example 1, carbon fibers with a tensile strength of 580, 97 wx'' and an elastic modulus of 26 ton/m'' were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するのに好適な耐炎化炉の概
念図を示す。
FIG. 1 shows a conceptual diagram of a flameproofing furnace suitable for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】 1 アクリロニトリル系繊維を200℃〜300℃の酸
化性雰囲気中ローラー式処理装置に繰返し接触させなが
ら耐炎化するに際し、ローラー間の非接触部1回を通過
する時間が、耐炎化糸密度1.28〜1.30g/cm
^3未満では20秒以下、1.28〜1.30g/cm
^3以上では1分以下であることを特徴とする耐炎化繊
維の製造方法。 2 繊維がローラーと接触するローラー周辺の温度は、
ローラー間の非接触部の温度よりも20〜50℃低いも
のとする請求項1記載の方法。 3 ローラーには長さ方向に数本のスリットを設け、そ
こから非接触部の温度よりも20〜50℃低い加熱空気
を5m/秒以下の速度で吹出す請求項1記載の方法。 4 アクリロニトリル系繊維が、単糸デニール0.7〜
1.25である請求項1記載の方法。
[Claims] 1. When making acrylonitrile fibers flame resistant by repeatedly contacting them with a roller treatment device in an oxidizing atmosphere at 200°C to 300°C, the time it takes to pass through the non-contact area between the rollers once is Thread density 1.28-1.30g/cm
Less than ^3: 20 seconds or less, 1.28 to 1.30 g/cm
A method for producing a flame-resistant fiber, characterized in that the manufacturing time is 1 minute or less at ^3 or more. 2 The temperature around the roller where the fibers come into contact with the roller is
2. The method according to claim 1, wherein the temperature is 20 to 50[deg.] C. lower than the temperature of the non-contact area between the rollers. 3. The method according to claim 1, wherein the roller is provided with several slits in the length direction, and heated air which is 20 to 50 degrees Celsius lower than the temperature of the non-contact portion is blown out from the roller at a speed of 5 m/sec or less. 4 Acrylonitrile fiber has a single yarn denier of 0.7~
1.25.
JP929789A 1989-01-18 1989-01-18 Production of fire-resistant yarn Pending JPH02191723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP929789A JPH02191723A (en) 1989-01-18 1989-01-18 Production of fire-resistant yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP929789A JPH02191723A (en) 1989-01-18 1989-01-18 Production of fire-resistant yarn

Publications (1)

Publication Number Publication Date
JPH02191723A true JPH02191723A (en) 1990-07-27

Family

ID=11716539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP929789A Pending JPH02191723A (en) 1989-01-18 1989-01-18 Production of fire-resistant yarn

Country Status (1)

Country Link
JP (1) JPH02191723A (en)

Similar Documents

Publication Publication Date Title
US4284615A (en) Process for the production of carbon fibers
EP3227479B1 (en) Continuous carbonization process and system for producing carbon fibers
KR870000704B1 (en) Method and system for producing carbon fibers
US4473372A (en) Process for the stabilization of acrylic fibers
JPH02191723A (en) Production of fire-resistant yarn
JP2000160435A (en) Continuous thermal treatment of acrylic fiber bundle
JPH06294020A (en) Production of carbon fiber
JPH026625A (en) Production of flame-resistant fiber
JPS62257422A (en) Production of carbon fiber
JPS58214525A (en) Production of carbon fiber
JPS61174423A (en) Production of flameproofed fiber
WO1987002391A1 (en) Process for producing carbon fibers
JPS5982414A (en) Heat-treatment apparatus for manufacture of carbon fiber
JPH04153327A (en) Production of flame-resistant fiber
JPS6127487B2 (en)
JPH02154013A (en) Production of flame-resistant fiber
JPS5853086B2 (en) Method for producing flame-resistant fibers
JPH0754218A (en) Production of flame-resistant yarn
JPH03174019A (en) Production of carbon yarn
JPH01148817A (en) Production of carbon fiber
JPS62257424A (en) Production of carbon fiber having high strength and elastic modulus
JPS58214535A (en) Production of acrylic type carbon fiber
JPH02169728A (en) Production of flame-resistant fiber
JPH03260120A (en) Continuous heat treatment of precursor fibber web for carbonaceous fiber
JPH11269726A (en) Production of carbon fiber