JPH02169727A - Oven for infusing pitch fiber - Google Patents

Oven for infusing pitch fiber

Info

Publication number
JPH02169727A
JPH02169727A JP32161188A JP32161188A JPH02169727A JP H02169727 A JPH02169727 A JP H02169727A JP 32161188 A JP32161188 A JP 32161188A JP 32161188 A JP32161188 A JP 32161188A JP H02169727 A JPH02169727 A JP H02169727A
Authority
JP
Japan
Prior art keywords
fiber mat
conveyor
fibers
infusibility
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32161188A
Other languages
Japanese (ja)
Other versions
JPH0737690B2 (en
Inventor
Hiroaki Morita
宏明 森田
Kenichi Nagaoka
長岡 憲一
Kenji Okuda
健二 奥田
Keihachiro Tanaka
田仲 啓八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Nippon Sheet Glass Co Ltd
Osaka Gas Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Osaka Gas Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Osaka Gas Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP32161188A priority Critical patent/JPH0737690B2/en
Publication of JPH02169727A publication Critical patent/JPH02169727A/en
Publication of JPH0737690B2 publication Critical patent/JPH0737690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce the homogeneous flow of an oxidizable heated gas in a pitch fiber mat by disposing a conveyor equipped with a pitch fiber-three- dimentionally holding mechanism above an air-permeable carrying conveyor for carrying the pitch fiber mat in the oxidizable gas atmosphere. CONSTITUTION:A pitch fiber mat is carried with an air-permeable carrying conveyor 1 in the direction of the arrow 3 and heated in the respective chambers 5 of an infusion oven in a state wherein the fiber mat is floated with an oxidizable heated gas 7 supplied from the lower direction. An conveyor 11 which moves at the same direction as the carrying conveyor and is equipped with a mechanism for holding the pitch fibers three-dimensionally is disposed above the carrying conveyor 1.

Description

【発明の詳細な説明】 本発明は、嵩高マット状のピッチ繊維の不融化炉に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infusible furnace for bulky mat-like pitch fibers.

従来技術とその問題点 ナフサピッチまたはコールタールピッチを溶融紡糸する
ことにより得られる嵩高なマット状ピッチ繊維(以下特
に必要でないかぎり、単に繊維マットという)の連続的
不融化方法としては、搬送コンベア上に置かれた繊維マ
ットの厚さ方向に酸化性のガスを強制的に通過させる方
法が提案されている(特開昭60−167928号公報
)。しかしながら、この方法では、繊維マットが嵩高で
ある(厚さ30〜300 mm程度)場合には、繊維マ
ットの上下方向の温度差が大きくなり、均一な不融化が
行なわれない。上下方向の温度差を小さくするために、
加熱ガスの循環量を増大させていくと、上方から下方に
吹き付けられるガスによって繊維マットが搬送コンベア
上に押し付けられてマットの嵩密度が増大するため、繊
維相互が融着したり、発熱による反応の暴走が誘発され
易くなったりする。この様な場合には、繊維が損傷をう
け、炭化した繊維の物性値が低下するという問題点もあ
る。
Prior art and its problems As a method for continuous infusibility of bulky mat-like pitch fibers (hereinafter simply referred to as fiber mat unless otherwise required) obtained by melt-spinning naphtha pitch or coal tar pitch, it is possible to A method has been proposed in which an oxidizing gas is forced to pass through the thickness of a placed fiber mat (Japanese Patent Application Laid-open No. 167928/1983). However, in this method, when the fiber mat is bulky (about 30 to 300 mm thick), the temperature difference in the vertical direction of the fiber mat becomes large and uniform infusibility cannot be achieved. In order to reduce the temperature difference in the vertical direction,
As the circulation rate of heated gas increases, the gas blown from above to below presses the fiber mat onto the conveyor, increasing the bulk density of the mat, which may cause fibers to fuse together or cause reactions due to heat generation. This may make it easier for people to go out of control. In such a case, there is also the problem that the fibers are damaged and the physical properties of the carbonized fibers are reduced.

特開昭62−33823号公報は、繊維マットをバーに
懸架した状態で不融化する方法を提案している。しかし
ながら、嵩高の繊維マットの場合には、ピッチ繊維相互
の絡みが比較的不十分であるため、バーに懸架した繊維
マットがのびたり、切れたりする。また、繊維マット内
部に強制対流を起こさせる程の風量を確保することも、
実際上困難であるという問題点もある。
JP-A-62-33823 proposes a method of making a fiber mat infusible while suspended on a bar. However, in the case of bulky fiber mats, the pitch fibers are relatively poorly entangled with each other, causing the fiber mats suspended on the bars to stretch or break. In addition, it is also possible to secure enough air volume to cause forced convection inside the fiber mat.
There is also the problem that it is difficult in practice.

問題点を解決するための手段 本発明者は、上記の如き技術の現況に鑑みて鋭意研究を
重ねた結果、通気性ベルトからなる搬送コンベア上に載
置された繊維マットを下方から」二方に吹上げつつ酸化
性雰囲気中を移動させ、該通気性ベルトからなる搬送コ
ンベアの上方に繊維マットを三次元的に保持する機構を
設けることにより繊維マット内に強制的に均一な酸化性
加熱気体流を生じさせる場合には、従来技術の問題点が
大巾に軽減されることを見出した。
Means for Solving the Problems As a result of extensive research in view of the current state of the art as described above, the inventor of the present invention has discovered that a fiber mat placed on a conveyor made of an air permeable belt is By providing a mechanism that holds the fiber mat three-dimensionally above the conveyor made of the air-permeable belt, a uniform oxidizing heated gas is forced into the fiber mat. It has been found that the problems of the prior art are greatly alleviated when the flow is generated.

すなわち、本発明は、下記の如き不融化炉を提供するも
のである: 0通気性ベルトからなる搬送コンベア」二に嵩高マット
状ピッチ繊維を載置し、酸化性加熱気体によりピッチ繊
維を下方から」二方に吹上げつつ、酸化性雰囲気中を移
動させ、ピッチ繊維の不融化を行う不融化炉であって、
該搬送コンベアの上方にピッチ繊維の三次元的保持機構
を備えたコンベアを設けたことを特徴とする不融化炉。
That is, the present invention provides an infusibility furnace as follows: Bulky mat-like pitch fibers are placed on a conveyor made of an air-permeable belt, and the pitch fibers are heated from below with an oxidizing heated gas. ” An infusibility furnace that infusifies pitch fibers by moving them through an oxidizing atmosphere while blowing them up in both directions,
An infusibility furnace characterized in that a conveyor equipped with a three-dimensional holding mechanism for pitch fibers is provided above the conveyor.

■ピッチ繊維の不融化のために下方から上方に吹き」二
げる酸化性加熱気体の一部を、ピッチ繊維を通過させる
ことな(迂回して上方に逃がす様にピッチ繊維を通過す
る加熱気体の量を調整するための風足調整機構を設けた
上記0項に記載の不融化炉。
■A part of the oxidizing heated gas that is blown from below upwards to make the pitch fibers infusible should not be allowed to pass through the pitch fibers (the heated gas that passes through the pitch fibers should be bypassed and released upwards). The infusibility furnace according to item 0 above, which is provided with a wind foot adjustment mechanism for adjusting the amount of.

以下図面に示す実施態様を参照しつつ、本発明をさらに
詳細に説明する。
The present invention will be described in further detail below with reference to embodiments shown in the drawings.

第1図は、本発明による不融化炉の概要を示す縦断面図
である。繊維マットは、通気性ベルトからなる搬送コン
ベア(1)上に載置された状態で矢印(3)の方向に送
られる。不融化炉は、仕切により複数の室(5)、(5
)・・・・・・に区画されている。各室(5)内では、
繊維マット内を下方から上方に流動する酸化性加熱気体
(7)が、繊維マットを貫いてこれを浮上させた状態で
加熱した後、搬送コンベア(1)の側方を矢印(9)の
方向に下降し、再び同様にして循環する。搬送コンベア
(1)の上方には、これと同一方向に移動するとともに
、ピッチ繊維を三次元的に保持する機構を備えたコンベ
ア(11)が設けられている。
FIG. 1 is a longitudinal sectional view showing an outline of the infusibility furnace according to the present invention. The fiber mat is placed on a conveyor (1) made of a breathable belt and sent in the direction of the arrow (3). The infusibility furnace is divided into multiple chambers (5) and (5) by partitions.
)... are divided into... Inside each room (5),
The oxidizing heating gas (7) flowing from the bottom to the top inside the fiber mat pierces the fiber mat and heats it in a floating state, and then moves the side of the conveyor (1) in the direction of the arrow (9). and then cycle again in the same way. A conveyor (11) is provided above the conveyor (1), which moves in the same direction as the conveyor (1) and is equipped with a mechanism for three-dimensionally holding the pitch fibers.

また、(13)は、排気系統を示す。Moreover, (13) shows an exhaust system.

本願明細書において、“ピッチ繊維を三次元的に保持す
る″という表現は、下方から上方に循環する酸化性加熱
気体により持ち」二げられた繊維マットの上面を単に平
面的或いは二次元的に押付けて保持するのではなく、繊
維マットの内部からも保持することを意味する。酸化性
加熱気体の温度は、50〜350°C程度とすることが
好ましい。
In this specification, the expression "holding the pitch fibers three-dimensionally" means simply holding the upper surface of the pitch fiber mat flatly or two-dimensionally by the oxidizing heated gas circulating from below upwards. This means that it is not held by pressing, but also held from within the fiber mat. The temperature of the oxidizing heating gas is preferably about 50 to 350°C.

以下に、繊維マットを三次元的に保持する機構について
詳細に説明する。
Below, the mechanism for three-dimensionally holding the fiber mat will be described in detail.

第2図は、ピッチ繊維を三次元的に保持する機構を備え
たコンベア(11)の−例を示す。コンベア(11)の
全面には、小さな突起を複数個備えた針状固定具(17
)か設けられている。この針状固定具(17)は、繊維
マット(1つ)内を貫いて下方から上方に流動する加熱
気体(7)により持ち上げられた繊組:マットの内部に
入り込み、流動酸化性加熱気体による力に抗して、繊維
マットを保持するので、繊維マットは、均一な高密度に
保持される。かくして、従来技術とは異なって、繊維マ
ツ)(19)は、全体的に均一な条件で強制的に加熱さ
れるので、繊維相互の融着、不融化反応熱の内部蓄熱に
よる反応の暴走などの障害は、生じない。なお、コンベ
ア(11)の形態は、特に限定されず、例えば、図示し
た様に繊維マット(19)の進行方向に垂直な方向に一
定の間隔で設けられたバー(21)に針状固定具(17
)を取り付けたもの、或いはネットコンベアに同様な針
状固定具を取り付けたもの(図示せず)などが、例示さ
れる。また、針状固定具(17)としても、繊維マット
の内部に入り込み、流動酸化性加熱気体による力に抗し
て、繊維マットを保持し得るものであれば、特に限定さ
れない。
FIG. 2 shows an example of a conveyor (11) with a mechanism for holding pitch fibers in three dimensions. The entire surface of the conveyor (11) has a needle-like fixture (17) with multiple small protrusions.
) are provided. This needle-shaped fixture (17) penetrates the inside of the fiber mat (1) and is lifted up by the heated gas (7) flowing from below to upward. By holding the fiber mat against the force, the fiber mat remains uniformly dense. Thus, unlike the prior art, fiber pine) (19) is forcibly heated under uniform conditions throughout, which prevents the fusion of fibers with each other and runaway reaction due to internal heat storage of infusible reaction heat. No failure will occur. Note that the form of the conveyor (11) is not particularly limited, and for example, as shown in the figure, needle-like fixing tools are attached to bars (21) provided at regular intervals in a direction perpendicular to the traveling direction of the fiber mat (19). (17
), or a net conveyor with a similar needle-shaped fixture (not shown). Further, the needle-like fixture (17) is not particularly limited as long as it can penetrate into the inside of the fiber mat and hold the fiber mat against the force of the fluid oxidizing heated gas.

第3図にピッチ繊維の三次元的保持機構を備えたコンベ
アの他の一例を示す。この場合には、コンベアは、一定
位置に固定された複数の回転ローラー(23)、(23
)・・・・・・からなっており、これらローラーは、そ
の外周面に小さな突起を有している。この場合には、搬
送される繊維マット(19)と回転ローラーとの接点は
、常に移動しているので、繊維マットは、圧密されず、
常に解きほぐされた状態で前方に送られ、局部的な嵩密
度の高まりによる不均一加熱、繊維相互の融着、局部的
過熱による反応の暴走などの障害は、やはり生じない。
FIG. 3 shows another example of a conveyor equipped with a three-dimensional holding mechanism for pitch fibers. In this case, the conveyor includes a plurality of rotating rollers (23), (23) fixed at a fixed position.
)... These rollers have small protrusions on their outer peripheral surfaces. In this case, the contact point between the transported fiber mat (19) and the rotating roller is constantly moving, so the fiber mat is not consolidated.
It is always sent forward in an unraveled state, and problems such as nonuniform heating due to local increases in bulk density, fusion of fibers to each other, and runaway reactions due to local overheating do not occur.

繊維マットの三次元的保持機構としても、とくに限定さ
れず、繊維マットを圧密することなく、解きほぐした状
態で保持し得るものであれば、上記の実施例以外のもの
も使用可能である。
The three-dimensional holding mechanism for the fiber mat is not particularly limited, and any mechanism other than the above embodiments can be used as long as it can hold the fiber mat in an unraveled state without compressing it.

第4図は、第1図に示す仕切られた一つの室(5)の横
断面図を示す。(25)はブロワ−(27)を備えた酸
化性加熱気体循環経路、(31)、(31)・・・・・
・はヒーターを示す。本発明においては、搬送コンベア
(1)の両側方に左右に移動し得る風量調整機構(33
)、(33)を設け、加熱気体通過のための開口の幅(
35)、(35)を調節することにより、酸化性加熱気
体の循環nと繊維マット内の強制通過風量とのバランス
を取り、繊維マット(19)のコンベア(11)に対す
る押し付けの抑制および繊維マットの適度の浮上を図る
ことが出来る。この開口幅の調整は、通常繊維マット(
19)の全幅をAとし、開口幅(開口の幅(35)、(
35)の合計値)をBとする場合にB/Ax100 (
%)で定義される開口率が、0〜10%となるように行
なうことが好ましい。
FIG. 4 shows a cross-sectional view of one partitioned chamber (5) shown in FIG. (25) is an oxidizing heating gas circulation path equipped with a blower (27), (31), (31)...
- indicates a heater. In the present invention, the air volume adjustment mechanism (33
), (33), and the width of the opening for passing the heated gas (
By adjusting 35) and (35), a balance is achieved between the circulation of the oxidizing heated gas and the forced air flow rate within the fiber mat, thereby suppressing the pressing of the fiber mat (19) against the conveyor (11) and reducing the amount of fiber mat. It is possible to achieve a moderate level of levitation. Adjustment of this opening width is usually performed using fiber mats (
19) is the full width of A, and the aperture width (width of the aperture (35), (
35)) is B/Ax100 (
It is preferable to perform this so that the aperture ratio defined in %) is 0 to 10%.

本発明不融化炉により、処理された繊維マットは、引続
き常法に従って炭化処理し、炭素繊維としたり、さらに
黒鉛処理を行なって炭化繊維ととすることができる。
The fiber mat treated by the infusibility furnace of the present invention can be subsequently carbonized in accordance with a conventional method to form carbon fibers, or further subjected to graphite treatment to form carbonized fibers.

発明の効果 本発明によれば、下記の如き顕著な効果が達成される。Effect of the invention According to the present invention, the following remarkable effects are achieved.

(イ)繊維マットの三次元的保持機構を設けたことによ
り、繊維マットの嵩密度が不均一となることはないので
、酸化性加熱気体が繊維マット内に均一に供給され、ま
た反応熱も容易に除去される。
(b) By providing a three-dimensional holding mechanism for the fiber mat, the bulk density of the fiber mat will not become uneven, so the oxidizing heating gas will be uniformly supplied into the fiber mat, and the reaction heat will also be reduced. easily removed.

したがって、従来技術において見られた繊維マットの局
部的な過熱、ピ・ジチ繊維相互の融着、不融化反応熱の
内部蓄熱による反応の暴走などの問題点は、生じない。
Therefore, problems such as local overheating of the fiber mat, mutual fusion of the fibers, and runaway reaction due to internal storage of heat of the infusible reaction, which were observed in the prior art, do not occur.

その結果、安定した連続操業が行なわれ、量産が可能と
なる。
As a result, stable continuous operation is achieved and mass production becomes possible.

(ロ)繊維マットは、三次元的保持機構により強制的に
搬送されるので、従来技術に比して、切断、蛇行などを
起こし難く、安定した生産が可能となる。
(b) Since the fiber mat is forcibly conveyed by a three-dimensional holding mechanism, it is less likely to be cut or meandered than in the prior art, and stable production is possible.

(ハ)搬送コンベアの“両側方に設けた開口の大きさを
調節することにより、酸化性加熱気体の循環量と繊維マ
ット内の強制通過風量とのバランスを取ることが出来る
ので、必要以上の風圧を加える必要がない。
(c) By adjusting the size of the openings on both sides of the conveyor, it is possible to balance the circulation amount of oxidizing heating gas with the amount of forced air passing through the fiber mat. No need to apply wind pressure.

実施例 以下に実施例を示し、本発明の特徴とするところをより
一層明らかにする。
EXAMPLES Examples will be shown below to further clarify the features of the present invention.

実施例1 コールタール系ニアブローンピッチ(軟化点280°C
,0140%)を渦流法により吹繊紡糸した後、通気性
のあるメツシュコンベア上に堆積させ、吸引集綿を行な
って、嵩高の連続繊維マットを形成させた。この繊維マ
ットの厚さは、150mm、目付は、1000g/ry
i’であった。
Example 1 Coal tar based near blown pitch (softening point 280°C
, 0140%) was blown fiber-spun by the eddy current method, deposited on an air-permeable mesh conveyor, and collected by suction to form a bulky continuous fiber mat. The thickness of this fiber mat is 150mm, and the basis weight is 1000g/ry.
It was i'.

得られた繊維マットを第1図に示す形式の熱風循環式の
不融化炉に送り込み、第2図に示す形式の針状固定具を
備えたコンベアで繊維マットを三次元的に保持しつつ、
循環風速0.8m/see、開口率−0%の条件下に空
気雰囲気中で150℃から325°Cまで65分かけて
昇温し、その不融化を行なった。
The obtained fiber mat is sent to a hot air circulation type infusibility furnace of the type shown in Fig. 1, and while the fiber mat is held three-dimensionally by a conveyor equipped with a needle-shaped fixing device of the type shown in Fig. 2,
The temperature was raised from 150° C. to 325° C. over 65 minutes in an air atmosphere under the conditions of a circulating wind speed of 0.8 m/see and an aperture ratio of −0% to make it infusible.

この際繊維マットは、風力により持ち上げられ、搬送コ
ンベア上方の針状固定具に十分突き刺さった状態となっ
ており、この状態で繊維マット−に下問の圧力差を測定
したところ、水柱約5mmであった。
At this time, the fiber mat was lifted by the wind force and was sufficiently pierced by the needle-like fixture above the conveyor. When the pressure difference below was measured on the fiber mat in this state, it was found that the water column was approximately 5 mm. there were.

また、不融化進行中の温度200°C,250°Cおよ
び300°Cにおける繊維マツ)・」二面と下面との温
度差は、それぞれ7°C,9,5°Cおよび12℃と極
めて小さかった。
In addition, the temperature difference between the second side and the bottom side of fiber pine at temperatures of 200°C, 250°C and 300°C during infusibility is 7°C, 9.5°C and 12°C, respectively. It was small.

さらにまた、得られた不融化繊維の酸素含有率は、マッ
トの上部、中部および下部において、それぞれ6.8%
、7.2%および7.0%であった。
Furthermore, the oxygen content of the obtained infusible fibers was 6.8% in the upper, middle, and lower parts of the mat, respectively.
, 7.2% and 7.0%.

この様にして7日間連続して繊維マットの不融化を行な
ったが、発熱による暴走反応、マット切れなどの障害は
全く発生せず、安定した操業が可能であった。
In this way, the fiber mat was made infusible for 7 consecutive days, but no problems such as runaway reactions due to heat generation or mat breakage occurred, and stable operation was possible.

上記で得られた不融化繊維を連続炭化炉において窒素雰
囲気下(残存酸素濃度50 p p m以下)に23分
かけて930°Cまで昇温しで、炭素繊維を得た。
The infusible fibers obtained above were heated to 930° C. in a continuous carbonization furnace under a nitrogen atmosphere (residual oxygen concentration 50 ppm or less) over 23 minutes to obtain carbon fibers.

得られた炭素繊維の力学的物性値を第1表に示す。Table 1 shows the mechanical properties of the obtained carbon fibers.

第  1  表 測定  直径   強度  伸度  弾性率箇所 (μ
m)  (kgf/ll1m2) (%)  (tf/
 ll1m2)上部  13.0   89  2.2
5  4. 0中部  13.0   83  2.1
0  4. 0下部  13.0   80  2.0
0  4. 0第1表に示す結果から明らかな様に得ら
れた炭素繊維の物性は、マットの位置を問わずほぼ一定
である。このことは、繊維マットの不融化が均一に行わ
れたことを示している。
Table 1 Measurement Diameter Strength Elongation Elastic modulus location (μ
m) (kgf/ll1m2) (%) (tf/
ll1m2) Upper 13.0 89 2.2
5 4. 0 Chubu 13.0 83 2.1
0 4. 0 lower part 13.0 80 2.0
0 4. As is clear from the results shown in Table 1, the physical properties of the obtained carbon fibers are almost constant regardless of the position of the mat. This indicates that the fiber mat was uniformly infusible.

実施例2 循環風量を2.4m/seeとし、開口率を8%とする
以外は実施例1と同様にして、繊維マットの連続不融化
を行なった。
Example 2 Continuous infusibility of a fiber mat was carried out in the same manner as in Example 1 except that the circulating air volume was 2.4 m/see and the aperture ratio was 8%.

この際繊維マットは、風力により持ち上げられ、搬送コ
ンベア上方の針状固定具に十分突き刺さった状態となっ
ており、この状態で繊維マット上下間の圧力差を測定し
たところ、水柱約5mmであった。
At this time, the fiber mat was lifted by the wind force and was sufficiently pierced by the needle-like fixture above the conveyor. When the pressure difference between the upper and lower parts of the fiber mat was measured in this state, it was found to be approximately 5 mm in water column. .

また、不融化進行中の温度200°C1250℃および
300°Cにおける繊維マット上面と下面との温度差は
、それぞれ2°C,3,5°Cおよび5°Cと実施例1
に比してより一層小さかった。
Furthermore, the temperature differences between the upper and lower surfaces of the fiber mat at temperatures of 200°C, 1250°C and 300°C during infusibility were 2°C, 3.5°C and 5°C, respectively, in Example 1.
It was much smaller than.

さらにまた、得られた不融化繊維の酸素含有率は、マッ
トの上部、中部および下部において、それぞれ6.9%
、7.1%および7.0%であった。
Furthermore, the oxygen content of the obtained infusible fibers was 6.9% in the upper, middle, and lower parts of the mat, respectively.
, 7.1% and 7.0%.

この様にして7日間連続して繊維マットの不融化を行な
ったが、やはり発熱による暴走反応、マット切れなどの
障害は全く発生せず、安定した操業が可能であった。
In this way, the fiber mat was made infusible for 7 consecutive days, but no problems such as runaway reactions due to heat generation or mat breakage occurred, and stable operation was possible.

比較例1 実施例1で使用したと同様の繊維マットを、針状固定具
を備えたコンベアを使用することなく、実施例1に準じ
て不融化した。但し、循環風曾を0.2m/seeとす
るとともに、繊維マットが風力により持ち上がることの
ない様に、繊維マット上下間の圧力差を水柱的0.5m
mとした。
Comparative Example 1 A fiber mat similar to that used in Example 1 was infusible according to Example 1 without using a conveyor equipped with needle-like fixtures. However, in addition to setting the circulating wind speed to 0.2 m/see, the pressure difference between the top and bottom of the fiber mat should be set to 0.5 m in the water column to prevent the fiber mat from being lifted up by the wind force.
It was set as m.

不融化設定温度200℃、250℃および300℃にお
ける繊維マット上面と下面との温度差は、それぞれ14
℃、20℃および27℃と極めて大きかった。
The temperature difference between the upper and lower surfaces of the fiber mat at the infusibility setting temperature of 200°C, 250°C and 300°C is 14°C, respectively.
℃, 20℃ and 27℃, which were extremely large.

さらに、不融化設定温度を325℃として得られた不融
化繊維の酸素含有率は、マットの上部、中部および下部
において、それぞれ6.5%、8.1%および7.4%
とバラツキが大きかった。
Furthermore, the oxygen content of the infusible fibers obtained by setting the infusible temperature to 325°C was 6.5%, 8.1%, and 7.4% in the upper, middle, and lower parts of the mat, respectively.
There was a large variation.

これは、不融化時に発生する反応熱が十分に除去されな
いために生じたものである。
This occurs because the reaction heat generated during infusibility is not sufficiently removed.

この様にして7日間連続して繊維マットの不融化を行な
ったが、当初から発熱による暴走反応が頻発し、マット
切れもしばしば発生した。
Although the fiber mat was infusible for 7 consecutive days in this manner, runaway reactions due to heat generation frequently occurred from the beginning, and the mat broke frequently.

上記で得られた不融化繊維(不融化設定温度325℃)
を連続炭化炉において実施例1と同様にして炭化処理し
、炭素繊維を得た。
Infusible fiber obtained above (infusibility set temperature 325°C)
was carbonized in a continuous carbonization furnace in the same manner as in Example 1 to obtain carbon fibers.

得られた炭素繊維の力学的物性値を第2表に示す。Table 2 shows the mechanical properties of the obtained carbon fibers.

第2表 測定  直径   強度  伸度  弾性率箇所 (μ
m)  (kgf/m+n2) (%)  (tf/ 
mm2)上部  13.0   57   L、45 
 4. 0中部  13.0   71  1.80 
 4. 0下部  13.0   76  1,90 
 4. 0第1表に示す結果から明らかな様に得られた
炭素繊維は、実施例1の炭素繊維に比して、強度および
伸度のバラツキが大きく、その値も低くなっている。こ
れらの結果も、繊維マットの不融化が均一に行われなか
ったことを示している。
Measurement in Table 2 Diameter Strength Elongation Elastic modulus location (μ
m) (kgf/m+n2) (%) (tf/
mm2) Upper 13.0 57 L, 45
4. 0 Chubu 13.0 71 1.80
4. 0 lower part 13.0 76 1,90
4. As is clear from the results shown in Table 1, the obtained carbon fibers had larger variations in strength and elongation and lower values than the carbon fibers of Example 1. These results also indicate that the fiber mat was not uniformly infusible.

実施例3 実施例1で使用したと同様の繊維マットを循環風fi1
. 2m/ s e c、開口率2%の条件下に二酸化
窒素1%を含む空気雰囲気中で150℃から325℃ま
で35分かけて昇温し、その不融化を行なった。
Example 3 A fiber mat similar to that used in Example 1 was heated with circulating air fi1.
.. The temperature was increased from 150° C. to 325° C. over 35 minutes in an air atmosphere containing 1% nitrogen dioxide under conditions of 2 m/sec and an aperture ratio of 2% to make it infusible.

この際繊維マットは、風力により持ち上げられ、搬送コ
ンベア上方の針状固定具に十分突き刺さった状態となっ
ており、この状態で繊維マット上下間の圧力差を測定し
たところ、水柱約5市であった。
At this time, the fiber mat was lifted by the wind force and was sufficiently pierced by the needle-like fixture above the conveyor. When the pressure difference between the top and bottom of the fiber mat was measured in this state, it was found that the water column was approximately 5 cm. Ta.

また、不融化進行中の温度200°C,250℃および
300℃における繊維マット上面と下面との温度差は、
それぞれ5℃、7℃および10.5℃であった。
Furthermore, the temperature difference between the upper and lower surfaces of the fiber mat at temperatures of 200°C, 250°C, and 300°C during infusibility is as follows:
The temperatures were 5°C, 7°C and 10.5°C, respectively.

さらにまた、得られた不融化繊維の酸素含有率は、マッ
トの上部、中部および下部において、それぞれ7.3%
、7.6%および7.5%であった。本実施例では、酸
化剤として二酸化窒素1%をaむ空気雰囲気中で不融化
を行なったので、時間を短縮したにもかかわらず、酸素
含有量が高くなっている。
Furthermore, the oxygen content of the obtained infusible fibers was 7.3% in the upper, middle, and lower parts of the mat, respectively.
, 7.6% and 7.5%. In this example, since the infusibility was carried out in an air atmosphere containing 1% nitrogen dioxide as an oxidizing agent, the oxygen content was high even though the time was shortened.

この様にして70間連続して繊維マットの不融化を行な
ったが、やはり発熱による陽走反応、マット切れなどの
障害は全(発生せず、安定した操業が可能であった。
In this way, the fiber mat was made infusible continuously for 70 days, but no problems such as diversion reactions due to heat generation or mat breakage occurred, and stable operation was possible.

上記で得られた不融化繊維を連続炭化炉において実施例
1と同様にして炭化処理し、炭素繊維を得た。
The infusible fibers obtained above were carbonized in a continuous carbonization furnace in the same manner as in Example 1 to obtain carbon fibers.

得られた炭素繊維の力学的物性値を第3表に示す。Table 3 shows the mechanical properties of the obtained carbon fibers.

第3表 測定  直径   強度  伸度  弾性率箇所 (μ
m)  (kgf/mm2) (%)  (tf/ m
m” )上部  13.0   83  2.30  
3. 6中部  13.0   86   2.40 
 3. 6下部  13.0   85  2J5  
3. 6得られた炭素繊維は、物性が均質であり、実施
例1品に比して、特に伸度に優れている。
Measurement in Table 3 Diameter Strength Elongation Elastic modulus location (μ
m) (kgf/mm2) (%) (tf/m
m”) Upper 13.0 83 2.30
3. 6 Chubu 13.0 86 2.40
3. 6 lower part 13.0 85 2J5
3. 6 The obtained carbon fiber has homogeneous physical properties and is particularly excellent in elongation as compared to the product of Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明装置の概要を示す縦断面図である。 第2図は、本発明で使用するピッチ繊維の三次元的保持
機構を備えたコンベアの一例を示す図面である。 第3図は、本発明で使用するピッチ繊維の三次元的保持
機構を備えたコンベアの他の一例を示す図面である。 第4図は、本発明装置の概要を示す横断面図である。 (1)・・・搬送コンベア (3)・・・繊維マットの移動方向 (7)、(9)・・・加熱気体 (11)・・・コンベア (13)・・・排気系統 (17)・・・針状固定具 (19)・・・繊維マット (21)・・・バー (23)・・・ローラー (25)・・・酸化性加熱気体循環経路(27)・・・
ブロワ− (31)・・・ヒーター (33)・・・風量調整機構 (35)・・・酸化性加熱気体通過のための開口第1図 第3図 第4図 第2図
FIG. 1 is a vertical sectional view showing an outline of the apparatus of the present invention. FIG. 2 is a drawing showing an example of a conveyor equipped with a three-dimensional holding mechanism for pitch fibers used in the present invention. FIG. 3 is a drawing showing another example of a conveyor equipped with a three-dimensional holding mechanism for pitch fibers used in the present invention. FIG. 4 is a cross-sectional view showing an outline of the device of the present invention. (1) Conveyor (3) Direction of movement of fiber mat (7), (9) Heated gas (11) Conveyor (13) Exhaust system (17) ... Needle-like fixture (19) ... Fiber mat (21) ... Bar (23) ... Roller (25) ... Oxidizing heating gas circulation path (27) ...
Blower (31)...Heater (33)...Air volume adjustment mechanism (35)...Opening for passage of oxidizing heated gas Fig. 1 Fig. 3 Fig. 4 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)通気性ベルトからなる搬送コンベア上に嵩高マッ
ト状ピッチ繊維を載置し、酸化性加熱気体によりピッチ
繊維を下方から上方に吹上げつつ、酸化性雰囲気中を移
動させ、ピッチ繊維の不融化を行う不融化炉であって、
該搬送コンベアの上方にピッチ繊維の三次元的保持機構
を備えたコンベアを設けたことを特徴とする不融化炉。
(1) Bulky mat-like pitch fibers are placed on a conveyor made of an air-permeable belt, and the pitch fibers are blown up from below to above by oxidizing heated gas while being moved through an oxidizing atmosphere. An infusibility furnace that performs melting,
An infusibility furnace characterized in that a conveyor equipped with a three-dimensional holding mechanism for pitch fibers is provided above the conveyor.
(2)ピッチ繊維の不融化のために下方から上方に吹き
上げる酸化性加熱気体の一部をピッチ繊維を通過させる
ことなく迂回して上方に逃がす様にピッチ繊維を通過す
る加熱気体の量を調整するための風量調整機構を設けた
第一請求項に記載の不融化炉。
(2) Adjust the amount of heated gas that passes through the pitch fibers so that a portion of the oxidizing heated gas that is blown upward from below to infusibility the pitch fibers bypasses the pitch fibers and escapes upwards. The infusibility furnace according to claim 1, further comprising an air volume adjustment mechanism for controlling the air volume.
JP32161188A 1988-12-19 1988-12-19 Pitch fiber infusible furnace Expired - Lifetime JPH0737690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32161188A JPH0737690B2 (en) 1988-12-19 1988-12-19 Pitch fiber infusible furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32161188A JPH0737690B2 (en) 1988-12-19 1988-12-19 Pitch fiber infusible furnace

Publications (2)

Publication Number Publication Date
JPH02169727A true JPH02169727A (en) 1990-06-29
JPH0737690B2 JPH0737690B2 (en) 1995-04-26

Family

ID=18134460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32161188A Expired - Lifetime JPH0737690B2 (en) 1988-12-19 1988-12-19 Pitch fiber infusible furnace

Country Status (1)

Country Link
JP (1) JPH0737690B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311722A (en) * 1995-05-16 1996-11-26 Sgl Technik Gmbh Method and apparatus for manufacturing polydimensional sheetstructure consisting of polyacrylonitrile fiber
EP1146158A1 (en) 2000-04-13 2001-10-17 Inoac Corporation Fibrous aggregate forming method, fibrous aggregate formed by said method, and fibrous aggregate forming apparatus
CN100347356C (en) * 2006-02-21 2007-11-07 肖忠渊 Dedicated gas-liquid device for carbon fibre production line
WO2009150874A1 (en) 2008-06-12 2009-12-17 帝人株式会社 Nonwoven fabric, felt and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738202B2 (en) * 2016-05-27 2020-08-12 帝人株式会社 Ultrafine carbon fiber manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311722A (en) * 1995-05-16 1996-11-26 Sgl Technik Gmbh Method and apparatus for manufacturing polydimensional sheetstructure consisting of polyacrylonitrile fiber
EP1146158A1 (en) 2000-04-13 2001-10-17 Inoac Corporation Fibrous aggregate forming method, fibrous aggregate formed by said method, and fibrous aggregate forming apparatus
CN100347356C (en) * 2006-02-21 2007-11-07 肖忠渊 Dedicated gas-liquid device for carbon fibre production line
WO2009150874A1 (en) 2008-06-12 2009-12-17 帝人株式会社 Nonwoven fabric, felt and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0737690B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
CN101277912B (en) Porous carbon sheet and process for production thereof
CA1143516A (en) Method for preparing carbon fibers
JPH02169727A (en) Oven for infusing pitch fiber
JPH0122145B2 (en)
JPS6245725A (en) Production of carbon fiber
JP2002088588A (en) Apparatus for producing activated carbon fiber
JPS5860019A (en) Preparation of carbon fiber
JP2628658B2 (en) Method and apparatus for infusibilizing pitch-based carbon fiber
JPH05132824A (en) Production unit for flame-resistant fiber
JP2013237943A (en) Method for producing carbon fiber nonwoven fabric
GB2170491A (en) Method of producing graphite fiber and product thereof
JPS5716921A (en) Preparation of carbon fiber
JPH11247031A (en) Infusibilizing treatment of pitch fiber and apparatus therefor
JPS6017110A (en) Heat treatment of yarn of raw material of pitch and device therefor
JPS60215856A (en) Heat treatment apparatus for molding mineral fiber mat
JP2002285431A (en) Method for infusibilizing pitch-based fiber and method for producing pitch-based carbon fiber
JPH0214022A (en) Fire-resistant treatment
JP2648073B2 (en) Adjustment method of gas composition in pitch-based carbon fiber infusible furnace
JPH01162828A (en) Method for infusibilizing pitch fiber
JPH0754218A (en) Production of flame-resistant yarn
US20040025261A1 (en) Method for the carbonization of an at least inherently stable two-dimensional textile structure
CN110470142A (en) A kind of a variety of grid section arragement constructions of sintering pallet
JPS60167928A (en) Method for infusibilizing pitch based carbon fiber and apparatus therefor
JPH0735613B2 (en) Carbonization treatment method
JPH01239116A (en) Production of pitch-based carbon fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 14