JPH01192825A - Apparatus for making flame-resistant - Google Patents

Apparatus for making flame-resistant

Info

Publication number
JPH01192825A
JPH01192825A JP947388A JP947388A JPH01192825A JP H01192825 A JPH01192825 A JP H01192825A JP 947388 A JP947388 A JP 947388A JP 947388 A JP947388 A JP 947388A JP H01192825 A JPH01192825 A JP H01192825A
Authority
JP
Japan
Prior art keywords
flame
fluidized bed
fibers
heat
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP947388A
Other languages
Japanese (ja)
Inventor
Tatsuo Akimoto
秋本 龍夫
Masashi Ogasawara
小笠原 正史
Atsushi Tsunoda
敦 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP947388A priority Critical patent/JPH01192825A/en
Publication of JPH01192825A publication Critical patent/JPH01192825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To perform uniform heat-treatment of fiber even by using a fluidized layer having low height, by fluidizing heat-medium particles deposited on a dispersion plate with gas blasted through the holes of the dispersion plate, and passing a number of precursor fibers through the fluidized layer in a specific arrangement. CONSTITUTION:Heat-medium particles are deposited on dispersion plates 8, 8' in a flame-resistant treatment furnace 1 and are fluidized by oxidizing gas blasted upward through the holes of the dispersion plates 8, 8'. A group of precursor fibers 101 is continuously passed through the obtained fluidized layer to effect the flame-resistant treatment of the fiber 101. In the above apparatus for the flame-resistant treatment, the precursor fibers are vertically arranged into plural sections and placed at a height of 5-500mm from the dispersion plates 8, 8' by guiding means 41, 42, 43, 44 and, at the same time, heating means 6, 7 are placed in a gas channel before the oxidizing gas enters into the fluidized layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、前駆体繊維の耐炎化装置に関し、とくに流動
層を用いた耐炎化装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flame-retardant device for precursor fibers, and particularly to the structure of a flame-retardant device using a fluidized bed.

[従来の技術] 通常、耐炎化綴紐は、ポリアクリロニトリル(以下PA
Nと略J)系繊維、再生セルローズ系繊維、フェノール
系繊維、ピッチ系繊維等の有機重合体から成る前駆体繊
維を光重空気または他の酸化性カス雰囲気中にて、20
0〜300 ’Cで耐炎化(ピッチ系繊維では一般に不
融化と称しており、更に高温の450’C程度までの処
理を行っている)して得られる。次いでこれを窒素、ア
ルゴン等の不活性ガス雰囲気中にて800−2000°
Cで炭化して炭素繊維としたり、また、さらに2000
℃以上の不活性ガス雰囲気中で黒鉛化を行ない、弾性率
が一段と高い黒鉛繊維を製造することも行なわれる。
[Prior art] Flame-resistant binding cords are usually made of polyacrylonitrile (hereinafter referred to as PA).
Precursor fibers made of organic polymers such as N (abbreviated as J) type fibers, recycled cellulose fibers, phenolic fibers, pitch fibers, etc. are heated in a light heavy air or other oxidizing residue atmosphere for 20 minutes.
It is obtained by making it flame resistant at 0 to 300'C (generally called infusibility for pitch fibers, which is further treated at a high temperature of about 450'C). Next, this was heated at 800-2000° in an inert gas atmosphere such as nitrogen or argon.
It can be carbonized with C to make carbon fiber, and it can also be carbonized with
Graphitization is also carried out in an inert gas atmosphere at a temperature of 0.degree. C. or higher to produce graphite fibers with even higher elastic modulus.

上記耐炎化工程は酸化と環化を伴なう反応であって、高
温で処理する程反応速度を上げて耐炎化に必要な処理時
間を短縮できる。しかしなから、反応発熱を伴うため、
処理温度を高温にし過ぎたり、前駆体繊維を高密度に多
数充填したりすると、反応熱か該繊維内に蓄熱して単糸
間の融着や発火現象、糸切れを生じる。そのため、耐炎
化工程の生産効率を十C)るためには、当該繊維の反応
発熱を効率良く除去しつつ可能な限り高温で処理てぎる
プロセスであることが肝要である。
The above-mentioned flameproofing process is a reaction involving oxidation and cyclization, and the higher the temperature, the higher the reaction rate and the shorter the treatment time required for flameproofing. However, because the reaction is accompanied by exothermic heat,
If the processing temperature is too high or if a large number of precursor fibers are packed at a high density, reaction heat will accumulate within the fibers, causing fusion between single yarns, ignition, and yarn breakage. Therefore, in order to increase the production efficiency of the flame-retardant process, it is important to use a process that efficiently removes the heat generated by the reaction of the fibers while treating the fibers at as high a temperature as possible.

このような目的に合致した耐炎化方法としては、従来前
駆体繊維に熱風を吹き(=Jシブたり、加熱固体表面に
間欠的に接触さゼたすして、前者においでは処理時間2
0〜120分で、後者においては20分前後で耐炎化処
理する方法が良く知られている。
Conventional flame-retardant methods that meet these objectives include blowing hot air onto the precursor fibers or intermittently contacting them with a heated solid surface.
A well-known method is to perform flameproofing treatment for 0 to 120 minutes, with the latter taking about 20 minutes.

ところが、上記公知の方法においては、耐炎化子「程に
おCJる前駆体繊維の加熱効率、反応熱の除去効率に限
界かあるため、処理時間を大幅に短縮することが困難で
あるという問題、および前駆体繊維が太デニールになる
と該繊維束内部の効果的な加熱あるいは除熱が難しくな
るため、前駆体繊維の太デニール化、ひいては処理密度
の向上が困カ11であるという問題がある。また、上記
熱風を吹ぎ付ける方法では、通常エネルギー節約の面か
ら熱風を循環使用し、使用済み熱風の一部のみを排気す
るようにしているが、所望の加熱、除熱量を達成するに
は大きな熱風循環量か必要となり、設備、循膿系に設け
られるヒータ容量、ざらには熱風使用量か相当大になる
という問題もある。
However, in the above-mentioned known method, there is a problem that it is difficult to significantly shorten the processing time because there are limits to the heating efficiency of the precursor fiber and the removal efficiency of reaction heat, which are moderately CJ. , and when the denier of the precursor fiber becomes large, it becomes difficult to effectively heat or remove heat inside the fiber bundle, so there is a problem that it is difficult to increase the denier of the precursor fiber and improve the processing density11. In addition, in the method of blowing hot air described above, the hot air is usually circulated and only a part of the used hot air is exhausted from the viewpoint of energy saving, but it is difficult to achieve the desired amount of heating and heat removal. This requires a large amount of hot air circulation, and there is also the problem that the equipment, the capacity of the heater provided in the circulation system, and the amount of hot air used are considerably large.

このような問題に対し、前駆体繊維の加熱、除熱効率を
向上して処理口り間を短縮し、かつ使用熱風最を大幅に
削減−でさる方法として、熱媒粒子の流動層中て耐炎化
処理する方法がある。特公昭44−25375号公報に
は、ポリアクリロニトリルのフィラメン1〜を第1段階
に於いて酸化性雰囲気中200乃至30(じCの範囲の
温度に加熱し、次いで第2段階(J於いて不活性雰囲気
中1000’C付近の温度でこれを炭化してフィラメン
ト状炭素を製造覆る方法に於いで、酸化・1′1雰囲気
中で加熱する該第−1段階か処理されるノイシメン1〜
に対し化学的に不活性な固体熱伝導物の流体床(流動層
〉中で行われることを特徴とする方法か提案されている
To address these problems, we have developed a method to improve the heating and heat removal efficiency of precursor fibers, shorten the processing gap, and significantly reduce the amount of hot air used. There is a way to process it. Japanese Patent Publication No. 44-25375 discloses that filaments 1 to 1 of polyacrylonitrile are heated in an oxidizing atmosphere to a temperature in the range of 200 to 30° C. in a second step (J). In the process of producing filamentary carbon by carbonizing it at a temperature of around 1000'C in an active atmosphere, the -1 process of heating in an oxidizing atmosphere is performed.
For this reason, a method has been proposed that is characterized by being carried out in a fluid bed of a chemically inert solid heat conductor.

また、流動床の中でエツヂング処理する少くとも1段階
を包含Jる耐炎化ノ)法として特公昭47=18896
号公報か公知である。
In addition, as a flame-retardant method including at least one step of etching treatment in a fluidized bed, Japanese Patent Publication No. 47/18896
No. Publication or publicly known.

ところか、上記第1の方法における耐炎化処理時間は0
.5〜1時間、上記第2の方法においては、予i+:i
+酸化T稈では、d3よそ7時間、後酸化工程では10
〜15分を要しており、前述した加熱カス雰囲気や接触
伝熱による方法に比べ耐炎化時間という点からは決して
有利とは言い難い。
However, the flame-retardant treatment time in the first method is 0.
.. 5 to 1 hour, in the second method, prei+:i
+ For oxidized T culms, d3 is about 7 hours, and for post-oxidation step 10
This method requires ~15 minutes, and cannot be said to be advantageous in terms of flame resistance compared to the above-mentioned method using a heated gas atmosphere or contact heat transfer.

このような問題に対し、先に本出願人により、前駆体繊
維を分散手段上の流動層中で加熱処理して耐炎化する方
法において、車量の80%以上が粒度1()メツシュ以
下の固体粒子を熱媒とし、上面レベルから分散手段まで
の前記熱媒粒子の静置時深さH[771]を下記の範囲
として分散手段上に流動層を形成せしめ、前記流動層中
で前駆体繊維を200〜550°Cで加熱処理すること
を特徴とする前駆体繊維の耐炎化方法が提案されている
In order to solve this problem, the present applicant previously proposed a method in which precursor fibers are heat-treated in a fluidized bed on a dispersing means to make them flame resistant. Using solid particles as a heating medium, a fluidized bed is formed on the dispersion means by setting the depth H [771] of the heating medium particles at rest from the upper surface level to the dispersion means in the following range, and in the fluidized bed, the precursor is A method for making precursor fibers flame resistant has been proposed, which is characterized by heat-treating the fibers at 200 to 550°C.

20M f /(ρ1/ cpA)< トl<500/
ρυここで、 Mf:流動層中に存在する前駆体繊維重量[K3]ρ1
/:熱媒粒子の嵩密度[Kg/TrL3]CP:熱媒粒
子の比熱[K c a I’/Ky°C]A :流動層
の流動化面積[m2] である。
20M f /(ρ1/cpA)<tr<500/
ρυHere, Mf: weight of precursor fibers present in the fluidized bed [K3]ρ1
/: Bulk density of heating medium particles [Kg/TrL3] CP: Specific heat of heating medium particles [K c a I'/Ky°C] A: Fluidized area of fluidized bed [m2].

[発明が解決しようとする課題] =  5  = ところが、上述のような流動層による耐炎化装置(Jは
、次のような技術的課題が残されている。
[Problems to be Solved by the Invention] = 5 = However, the above-mentioned flame-retardant device (J) using a fluidized bed still has the following technical problems.

一般に、熱媒粒子の流動層の加熱構造としでは、第13
図又は第14図に示すようなものが知られている。第1
3図は、外部hll熱型の装置を示しでおり、給気孔9
、分散板8を通して送られる気体によって流動化される
熱媒粒子流動層5は、装置外面側に設けた加熱手段70
からの伝熱により加熱される。
In general, as a heating structure of a fluidized bed of heat transfer particles, the 13th
A device as shown in FIG. 1 or FIG. 14 is known. 1st
Figure 3 shows an external hll heating type device, with air supply hole 9
The heat medium particle fluidized bed 5, which is fluidized by the gas sent through the dispersion plate 8, is heated by a heating means 70 provided on the outside of the device.
It is heated by heat transfer from

第14図は、内部加熱型の装置を示しており、流動層5
は流動層5内に配設された加熱手段71に直接接触して
加熱される。
FIG. 14 shows an internal heating type device, in which the fluidized bed 5
is heated by directly contacting heating means 71 disposed within the fluidized bed 5.

このような公知の流動層加熱構造を、そのまま耐炎化装
置に適用づ−ると、次のような問題が生じる。
If such a known fluidized bed heating structure is applied as is to a flameproofing device, the following problems will arise.

ま−ジー1第13図に示した外部加熱型においては、流
動層5の両側面側と中央部側への伝熱効率か異なり、流
動層幅W方向の温度均一性の確保が困難になり、全幅に
わたって所定の耐炎化処理温度に保つことか難しい。こ
の問題は、幅Wが大きくなる程顕著になるので、流動層
の広幅化に限界がある。第14図に示した内部加熱型に
ついても同様の問題かある。つまり、加熱手段71を流
動層5の幅W方向に万遍なく配置すれば問題はないが、
そうすると熱媒粒子の流動化が著しく阻害されるし、有
効な処理容積が減少するので、結局図のように流動層す
中の両側に配置け”ざるを得す、加熱手段71が設けら
れている部位近傍とそれから離れた部位との間に温度の
不均一が生じ、前)ボと同様の問題が生じる。特に、前
駆体繊維101を多糸条化して生産性を上げたい場合、
炉巾を広巾化する必要がある上、該繊維自身が熱媒粒子
の流動化を防げる傾向にあるため、上記問題か著しくな
る。
In the external heating type shown in FIG. 13, the efficiency of heat transfer to both sides of the fluidized bed 5 and the central part are different, making it difficult to ensure temperature uniformity in the width W direction of the fluidized bed. It is difficult to maintain a predetermined flame-retardant treatment temperature over the entire width. This problem becomes more pronounced as the width W increases, so there is a limit to how wide the fluidized bed can be made. The internal heating type shown in FIG. 14 has similar problems. In other words, there is no problem if the heating means 71 are evenly arranged in the width W direction of the fluidized bed 5, but
In this case, the fluidization of the heating medium particles is significantly inhibited and the effective processing volume is reduced, so that the heating means 71 must be placed on both sides of the fluidized bed as shown in the figure. Temperature non-uniformity occurs between the vicinity of the area where the fiber is present and the area away from it, resulting in the same problem as in the previous example.Especially, when it is desired to increase productivity by making the precursor fiber 101 multi-filamentary,
The above problem is exacerbated because it is necessary to widen the furnace width and the fibers themselves tend to prevent the heat transfer particles from becoming fluidized.

また、流動層5を流動化させるには、分散板8を通して
送られる気体にあるレベル以上の圧力と流速が必要であ
る。この圧力としては、流動層5の高さが高くなる程大
きなものが必要となる。ところが、圧力が高くなりすぎ
ると、熱媒粒子の運動エネルギか大きくなりすぎ、熱媒
粒子中の前駆体繊維101(第13図、第14図)への
衝突エネルキか高くなりすぎる。衝突エネルキが高くな
りすぎると繊維に損傷の生じるおそれがある。流動化を
達成しつつ、上記の繊維損傷を防止するためには、流動
層5の高さを小に抑え、流動化用の気体圧力を低下させ
る必要がある。しかし、第13図おJ:び第14図に示
したような加熱構造では、流動層5を所定の温度に均一
加熱するためには加熱手段70.71による加熱面積か
一定以上必要であり、そのための高さを小さくするのに
は限界があり、気体圧力を十分に下げることができない
Furthermore, in order to fluidize the fluidized bed 5, the gas sent through the dispersion plate 8 needs to have a pressure and flow rate above a certain level. This pressure needs to be greater as the height of the fluidized bed 5 becomes higher. However, if the pressure becomes too high, the kinetic energy of the heating medium particles becomes too large, and the collision energy of the heating medium particles against the precursor fibers 101 (FIGS. 13 and 14) becomes too high. If the collision energy becomes too high, damage to the fibers may occur. In order to prevent the above fiber damage while achieving fluidization, it is necessary to keep the height of the fluidized bed 5 small and to lower the gas pressure for fluidization. However, in the heating structure shown in FIGS. 13 and 14, in order to uniformly heat the fluidized bed 5 to a predetermined temperature, a heating area of the heating means 70, 71 is required to be larger than a certain level. There is a limit to reducing the height for this purpose, and the gas pressure cannot be lowered sufficiently.

本発明は、従来技術の上記欠点を解決し、流動層を容易
に広幅化でき、特に多糸条の前駆体繊維を耐炎化する場
合、広幅でも均一な温度分イ[を達成できるとともに、
流動層の高さか低くても所定の温度に加熱でき流動層高
さを抑えることにより気体流速を小に抑えて繊維の損傷
を防止することがiJ能な耐炎化装置を提供することを
目的とする1゜[課題を解決するための手段]  ′ この目的に沿う本発明の耐炎“化装置は、分散板−1−
に堆積された熱媒粒子を、分散板で分散された酸化性気
体で流動化せしめた流動層中にで、前駆体繊維を連続的
に加熱処理する耐炎化装置において、前記前駆体繊維の
配列を上下方向に複数列とし、かつ、該前駆体繊維の分
散板からの高さ1−1を、5mm≦H≦500mm の範囲に配置せしめる案内手段を設けるとともに、前記
酸化性気体が流動層に至るまでのガス経路中に、該酸化
性気体を加熱する加熱手段を設Cブたものから成る。
The present invention solves the above-mentioned drawbacks of the prior art, makes it possible to easily widen the width of the fluidized bed, and in particular, when flame-proofing multi-filament precursor fibers, it is possible to achieve a uniform temperature distribution even in a wide width.
The purpose of the present invention is to provide a flame-retardant device capable of heating to a predetermined temperature even if the height of the fluidized bed is low, and by suppressing the height of the fluidized bed, the gas flow velocity can be kept low and damage to the fibers can be prevented. 1゜[Means for Solving the Problem] ``The flame-retardant device of the present invention in accordance with this purpose has a dispersion plate-1-
In a flame-retardant device that continuously heat-treats precursor fibers in a fluidized bed in which heating medium particles deposited on A guide means is provided for arranging the precursor fibers in multiple rows in the vertical direction, and for arranging the height 1-1 of the precursor fibers from the dispersion plate in the range of 5 mm≦H≦500 mm. A heating means for heating the oxidizing gas is installed in the gas path leading to the oxidizing gas.

本発明において前駆体繊維とは、ポリアクリロニトリル
(PA、N)系、再生セルローズ系、フェノール系、ピ
ッチ系等に代表される有機重合体を紡糸して得られるフ
ィラメント、ス1〜ランド、トウ状の連続体もしくは不
連続体及びその紡績糸、織物や織物等をいい、特にその
形態を問わない。
In the present invention, precursor fibers refer to filaments, strands, and tow-like fibers obtained by spinning organic polymers such as polyacrylonitrile (PA, N), regenerated cellulose, phenol, pitch, etc. It refers to continuous or discontinuous bodies of , and their spun yarns, fabrics, textiles, etc., regardless of their particular form.

また、本発明において炭素繊維とは黒鉛繊維を含む総称
である。
Further, in the present invention, carbon fiber is a general term including graphite fiber.

本発明における流動層とは、固体熱媒粒子を気体で流動
化した状態下で加熱処理する手段であって、前記熱媒粒
子か酸化性気体で流動化された状態と所定の温度好まし
くは200’C以上、より好ましくは240’C以上に
加熱された状態かこの流動層内で共存された状態をいう
The fluidized bed in the present invention is a means for heat-treating solid heat transfer particles in a state in which they are fluidized with gas, and the heat transfer particles are in a state in which they are fluidized in an oxidizing gas and at a predetermined temperature, preferably 200°C. It refers to a state where it is heated to a temperature of 240'C or higher, preferably 240'C or higher, or a state where it coexists in this fluidized bed.

本発明において酸化性気体とは、空気の他含硫ゲ1気体
等、前記前駆体繊維に対しで加熱時広義の酸化反応を生
する気体を含む。
In the present invention, the oxidizing gas includes, in addition to air, gases that cause an oxidation reaction in a broad sense when heated on the precursor fibers, such as sulfur-containing gas.

本発明に係る熱媒粒子とは、気体で流動化された状態で
用いる固体粒子をいい、耐炎化に必要な、7Jl熱温度
に耐え得る耐熱性、即ち350’C以上好ましくは40
0℃以」二の耐熱性を有ザる、例えば、主成分として炭
素、アルミナ、炭化ケイ素、ジルコニア、シリカ等が単
独あるいは共存して構成されるセラミックやカラス等の
無機物粒子を用いることかできる。
The heating medium particles according to the present invention refer to solid particles used in a gaseous fluidized state, and have heat resistance that can withstand 7 Jl heat temperature required for flame resistance, that is, 350'C or more, preferably 40
It is possible to use inorganic particles such as ceramic or glass that have heat resistance of 0°C or lower and are composed of carbon, alumina, silicon carbide, zirconia, silica, etc. as the main components, singly or in combination. .

更に、当該熱媒粒子の内、炭素を主成分とする粒子(炭
素粒子)であることか好ましい。
Furthermore, among the heat transfer particles, particles containing carbon as a main component (carbon particles) are preferable.

前記炭素粒子としては、カーボンブラック、サーマルブ
ラック、炭素中空球、活性炭粉末、球状活性炭、グラツ
シーカーボン粉末、メソフェースビッヂビーズ、人造黒
鉛粉末、顆粒黒鉛、天然黒鉛粉末等に代表され、その組
成上50%以上、好ましくは90%以上の炭素成分から
成る炭素粒子である。無機物や炭素等から成るこれら熱
媒粒子は、その組成上炭化工程で炭素と反応する金属成
分、例えばFe、Ca、fVIg、Mr)、Cu1/「
1、Or、Ni等が少ない程好ましい。炭素を主成分と
りる熱媒粒子の場合、その熱媒粒子か繊維に付着してた
とえ炭化工程に持ち込まれたとしても、粒子中に含まれ
る金属成分は該粒子の炭素と反応するだCブであるから
、本質的に炭素繊維の物性を低下させることがない。ま
た、該粒子が耐炎化時に当該繊維の単糸間中へ侵入する
ことによって単糸間融着を防止できるので、粒径の細か
い方の限定は特にない。
The carbon particles are typified by carbon black, thermal black, carbon hollow spheres, activated carbon powder, spherical activated carbon, grassy carbon powder, mesofaced bridge beads, artificial graphite powder, granular graphite, natural graphite powder, etc., and their compositions These are carbon particles having a carbon content of 50% or more, preferably 90% or more. These heat transfer particles made of inorganic substances, carbon, etc., are composed of metal components that react with carbon during the carbonization process, such as Fe, Ca, fVIg, Mr), Cu1/"
The less 1, Or, Ni, etc., the better. In the case of heating medium particles whose main component is carbon, even if they are attached to the heating medium particles or fibers and brought into the carbonization process, the metal components contained in the particles will react with the carbon in the particles. Therefore, the physical properties of the carbon fiber are not essentially deteriorated. Further, since the particles can penetrate into the spaces between the single filaments of the fibers during flameproofing, thereby preventing fusion between the single filaments, there is no particular limitation on the finer particle size.

ま1こ、粒径としては、JIS Z 8801、黒鉛粉
末についてはJISH8511−1960による測定方
法で、重量の80%以上か粒度10メツシユ(タイラー
式)以下、好ましくは28メツシユ以下の小径の粒子か
良い。粒径がこれ以上人き過ぎると、流動化に必要な気
体流量を多量に要し、該粒子か前駆体繊維へ衝突づる際
の運動エネルキーが大きくなるため毛−1′l− 羽等の物理的損傷を生じ易い。逆に粒径か小さいと、流
動化に必要な気体流量−し減少するし、該繊維への損傷
も低減できる。
The particle size is determined by the measurement method according to JIS Z 8801 and JISH 8511-1960 for graphite powder, and the particle size is 80% or more of the weight or the particle size is 10 meshes (Tyler method) or less, preferably 28 meshes or less. good. If the particle size is larger than this, a large amount of gas flow is required for fluidization, and the kinetic energy when the particle collides with the precursor fiber becomes large, causing problems with the physics of feathers, etc. Easy to cause damage. On the other hand, if the particle size is small, the gas flow rate required for fluidization is reduced, and damage to the fibers can also be reduced.

当該熱媒粒子の形状としては、特に限定しないかシ(・
−ブエツジの無い球形状に近い粒子の方か、前駆体繊維
への物理的損傷が少ないため好ましい。
The shape of the heat transfer particles is not particularly limited.
- Particles with a shape close to spherical without edges are preferable because they cause less physical damage to the precursor fibers.

なお、粒径か、ある程度人きい方か該繊維への(’J 
Ni量か少なく、除去もし易いので、除去を要する場合
の粒径の下限値は400メツシユか好ましく、200メ
ツシユかより好ましい。
In addition, whether it is the particle size or a certain degree of sensitivity, it is important to note that ('J
Since the amount of Ni is small and removal is easy, the lower limit of the particle size when removal is required is preferably 400 mesh, more preferably 200 mesh.

本発明における分散板は、多孔体又は金網体からなり、
前記熱媒粒子の粒径との関係で、分散板上に所定量の熱
媒粒子を堆積できるだ(プのメツシュである必要かある
The dispersion plate in the present invention is made of a porous body or a wire mesh body,
Depending on the particle size of the heating medium particles, a predetermined amount of heating medium particles can be deposited on the dispersion plate.

この分散板を通して酸化性気体が流動層中に送り込まれ
、分散板で分散された酸化性気体により熱媒層が流動化
される。酸化性気体は、流動層に至るまでのカス経路中
で加熱手段により所定温度まで加熱て゛きるので、流動
層自身に対しては加熱手段を設(プなくても良いか、昇
温用や補助用とし= 12− て設けてもさしつかえない。酸化性気体を事前に所定温
度に加熱することによって、流動層は流動化されると同
時に所定の温度に加熱される。酸化性気体は分散板で分
散された後流動層に入るので、流動層は全域にわたって
均一に加熱される。また、酸化性気体は実質的に流動層
の底面側全域から流動層内に流入するので、広幅の流動
層でおっても全域にわたって均一に加熱され、均一な湿
度分イIが得られる。
Oxidizing gas is sent into the fluidized bed through this distribution plate, and the heat medium layer is fluidized by the oxidizing gas dispersed by the distribution plate. The oxidizing gas can be heated to a predetermined temperature by a heating means in the waste path leading to the fluidized bed. There is no problem even if the fluidized bed is fluidized and heated to a predetermined temperature at the same time by heating the oxidizing gas to a predetermined temperature in advance.The oxidizing gas is dispersed by a dispersion plate. The fluidized bed is heated uniformly over the entire area.In addition, the oxidizing gas flows into the fluidized bed from substantially the entire bottom side of the fluidized bed, so it is not occluded in the wide fluidized bed. Even if the area is heated evenly over the entire area, a uniform humidity level can be obtained.

酸化性気体が連続的に通過し、均一でかつ所定の温度ま
で加熱された流動層中を前駆体繊維が連続的に通過され
、所望の耐炎化処理が行われる。
The precursor fibers are continuously passed through a fluidized bed through which an oxidizing gas is passed and which is uniformly heated to a predetermined temperature to provide the desired flameproofing treatment.

この流動層を構成する耐炎化装置において、前記前駆体
繊維を前記耐炎化装置へ通糸配列する案内手段を、該繊
維糸道の分散板からの高さHが、5mm≦ ト1≦50
0  rrm の範囲になるように配置Vしめることが必要である。5
00mmを越えると、導入・導出孔からの熱媒粒子の炉
外への漏れを防ぐことが困難になる上、これ以上の高さ
になる熱媒層を流動化させるために酸化性気体の大きな
圧力か必要となり、前述の如き前駆体繊維損傷の問題を
生じるおそれがある。
In the flame-retardant device constituting this fluidized bed, the guide means for threading and arranging the precursor fibers into the flame-retardant device is arranged such that the height H of the fiber path from the distribution plate is 5 mm≦T1≦50.
It is necessary to set the arrangement V so that it is in the range of 0 rrm. 5
If the height exceeds 00 mm, it will be difficult to prevent heat medium particles from leaking out of the furnace from the inlet/outlet holes, and a large amount of oxidizing gas will be required to fluidize the heat medium layer, which will be higher than this. Pressure is required, which can lead to precursor fiber damage problems as described above.

逆に5mmよりも小さいと、前駆体繊維を完全に流動層
中に埋没さゼた状態にて通過さ−けることか回動になる
。また、高さ方向にみて、流動層全体としての熱容量が
小さくなるので、前述の反応発熱を効率よく除熱覆るこ
とか困難になるおそれがある。したかつて、ト1は上述
の範囲に納める必要がある。
On the other hand, if the diameter is smaller than 5 mm, the precursor fibers must be completely immersed in the fluidized bed or rotated. Furthermore, since the heat capacity of the fluidized bed as a whole decreases in the height direction, it may be difficult to efficiently remove and cover the heat generated by the reaction. However, it is necessary to keep t1 within the range mentioned above.

上記のような構成において、複数本の前駆体繊維を、案
内、配列手段でその通過する方向に垂直な流動層断面内
で二次元的に配列通糸し、同一方向に走行させて耐炎化
することが好ましく、更に、前記配列手段として溝部を
有する回転体を用いて、前記流動層断面内でrllWl
lへの配列間隔をある範囲として耐炎化するのがより好
ましい。上記複数本の前駆体繊維とは93〜5デニール
の前駆体のフィラメン1〜が500〜50.000本集
束した糸条が、少くとも10本以上の複数糸条である状
態をいう。
In the above configuration, a plurality of precursor fibers are arranged two-dimensionally in a cross-section of the fluidized bed perpendicular to the direction in which they pass by a guiding and arranging means, and made to run in the same direction to make them flame resistant. It is preferable that a rotating body having a groove is used as the arranging means so that rllWl is
It is more preferable to make flame resistance by setting the arrangement interval to l within a certain range. The above-mentioned plurality of precursor fibers refers to a state in which 500 to 50,000 filaments of precursor filaments 1 to 1 of 93 to 5 deniers are bundled to form a plurality of at least 10 fibers.

ここで、溝部を右する回転体としては、外径面= 14
− の円周方向に連続した凹部を有するローラや回転カイト
をいい、駆動源の有無を問わない。
Here, as a rotating body that rotates the groove to the right, the outer diameter surface = 14
- refers to a roller or rotating kite that has continuous recesses in the circumferential direction, regardless of whether or not it has a driving source.

流動層内でローラやガイドを使って該繊維を往復させる
と、熱媒粒子がローラやガイドと該繊維の接触面間に噛
みこんで、毛羽等該繊維の損傷を受は易いので好ましく
ない。
If the fibers are reciprocated in the fluidized bed using rollers or guides, heat transfer particles may get caught between the contact surfaces of the rollers or guides and the fibers, which is undesirable because the fibers are likely to be damaged by fuzz or the like.

また、当該繊維糸条は、流動層の導入部から導出部へ同
一方向にある張力下で走行させて耐炎化処理するのか良
い。その際、水平面から±15°程度の傾き以内の同一
方向か好ましい。
Further, the fiber threads may be flame-resistant treated by running them under tension in the same direction from the inlet to the outlet of the fluidized bed. In this case, it is preferable to move in the same direction within an inclination of approximately ±15° from the horizontal plane.

該繊維の処理張力は、低過ぎると開繊して熱媒粒子の運
動で毛羽が発生し易く、また熱媒粒子か該繊維へ付着す
る率も高くかつ除去性も悪化する。
If the processing tension of the fibers is too low, the fibers tend to open and fuzz is generated due to the movement of the heating medium particles, and the rate at which the heating medium particles adhere to the fibers is high and the removability becomes poor.

逆に、張力が高過ぎると毛羽や糸切れを生じ易く、概ね
30〜2.0009/にデ′ニールの範囲が好ましい。
On the other hand, if the tension is too high, fuzz and thread breakage are likely to occur, so a denier range of approximately 30 to 2.0009/2 is preferable.

また、前)小の如く、本発明においては流動層の広幅化
か可能になるか、幅Wと前駆体繊維糸道の分散板からの
高ざ1−1との関係は、 W/]」≧1 とすることが望ましい。W/Hが小さすぎると、−15
= 同時に流動層を通過可能な繊維の本数か少なくなるので
、処理効率が悪くなるからである。
Also, as mentioned in the previous section, whether the width of the fluidized bed can be made wider in the present invention, the relationship between the width W and the height 1-1 of the precursor fiber path from the distribution plate is W/] It is desirable that ≧1. If W/H is too small, -15
= This is because the number of fibers that can pass through the fluidized bed at the same time decreases, resulting in poor processing efficiency.

このような高さH1幅Wの望ましい領域を図示覆ると、
第7図に示すようになる。
When a desirable area of such height H1 width W is covered in the diagram,
The result is as shown in FIG.

次に本発明の耐炎化装置の望ましい態様について説明す
る。
Next, preferred embodiments of the flameproofing device of the present invention will be described.

第1図は本発明の一実施態様に係る耐炎化装置の概略断
面図を示している。
FIG. 1 shows a schematic sectional view of a flameproofing device according to one embodiment of the present invention.

図において、1は耐炎化炉を示しており、炉1中には分
散板8か設けられている。分散板8下方は、カス分散箱
90に構成されており、分散板8上に熱媒粒子が第7図
に示したような所定範囲の糸道高さ以上まで堆積されて
熱媒層5が構成されている。この熱媒層5は、ガス分散
箱90から分散板8を通して送られる酸化性気体(矢印
)により流動化され、流動層を構成する。酸化性気体は
、カス通路9を通してカス分散箱90内に導入されるが
、ガス通路9にヒータ6が設けられ、ヒータ6によって
酸化性気体は所定の温度まで加熱される。
In the figure, 1 indicates a flameproofing furnace, and a dispersion plate 8 is provided in the furnace 1. A waste dispersion box 90 is formed below the dispersion plate 8, and heat medium particles are deposited on the dispersion plate 8 to a predetermined range of thread path height or higher as shown in FIG. It is configured. This heat medium layer 5 is fluidized by the oxidizing gas (arrow) sent from the gas distribution box 90 through the distribution plate 8 to form a fluidized bed. The oxidizing gas is introduced into the waste dispersion box 90 through the waste passage 9. A heater 6 is provided in the gas passage 9, and the heater 6 heats the oxidizing gas to a predetermined temperature.

このような装置においては、カス分散箱90内に流入し
た酸化性気体は、分散板8の圧損のため分散板8を通過
する前にガス分散筒8内で均一に広がる。そして分散板
8で分散された酸化性気体が熱ts層5に送られ、熱媒
@5か流動化され、る。熱媒層5の高さは第7図に示し
た範囲以上、流動化時に糸道が気相部へ露出しない程度
でなくてはならない。流動化時、最上部糸)首より5〜
20mm高いのか良い。このような熱媒層高さにすれば
、酸化性気体の小さな斥力でもって流動化され、かつ酸
化性気体は分散板8の全域、つまり流動層の底面側全域
から流動層に入るので、流動層は均一に加熱される。ま
た、熱媒粒子の導入出孔からの炉外への漏れを防ぐこと
が、熱媒層の自重による静圧か低いので容易である。し
たかつて、多糸条の前駆体繊維101を同時に通過させ
る場合にも、各前駆体繊1101について目標とする耐
炎化処理か確実に達成される。
In such an apparatus, the oxidizing gas that has flowed into the waste dispersion box 90 spreads uniformly within the gas dispersion cylinder 8 before passing through the dispersion plate 8 due to the pressure loss of the dispersion plate 8 . Then, the oxidizing gas dispersed by the dispersion plate 8 is sent to the heat ts layer 5, and the heat medium @5 is fluidized. The height of the heat medium layer 5 must be greater than the range shown in FIG. 7 and must be such that the yarn path is not exposed to the gas phase during fluidization. When fluidized, the top thread) 5~ from the neck
It's good that it's 20mm higher. With such a height of the heat medium layer, the oxidizing gas is fluidized by a small repulsive force, and the oxidizing gas enters the fluidized bed from the entire region of the distribution plate 8, that is, from the entire bottom side of the fluidized bed. The layers are heated evenly. Furthermore, it is easy to prevent the heating medium particles from leaking out of the furnace from the introduction or exit hole because the static pressure due to the weight of the heating medium layer is low. Even when multiple threads of precursor fibers 101 are passed through simultaneously, the targeted flame-retardant treatment for each precursor fiber 1101 is reliably achieved.

第2図は、別の実施態様を示し、加熱手段としでのヒー
タ72かガス分散箱90中に配設される。その他の構成
は第1図の構成に準じる。このような構成をとれば、ヒ
ータ72からの輻射熱が分散板8を介して熱媒へと伝達
されるので、前記実施態様に比べ熱効率の向上が可能に
なる。
FIG. 2 shows another embodiment in which a heater 72 as heating means is arranged in the gas distribution box 90. Other configurations are similar to those shown in FIG. With this configuration, the radiant heat from the heater 72 is transmitted to the heat medium via the dispersion plate 8, making it possible to improve thermal efficiency compared to the embodiment described above.

第3図および第4図は、さらに別の実IM態様を示し、
分散板8内にヒータ73を埋設することにより分散板8
自体か加熱手段に構成される。このように、酸化性気体
を流動層流入直前に効率よく加熱することも可能である
。この場合、ヒータ電源74に接続されるヒータ73の
配線等が完全に絶縁されでいれば別設問題はないか、完
全な絶縁が容易でない場合には、第4図に示すように分
散板8を絶縁体75を介して支持すればよい。
FIG. 3 and FIG. 4 show still another actual IM aspect,
By embedding the heater 73 in the distribution plate 8, the distribution plate 8
itself or configured as a heating means. In this way, it is also possible to efficiently heat the oxidizing gas immediately before it enters the fluidized bed. In this case, if the wiring of the heater 73 connected to the heater power source 74 is completely insulated, there will be no problem with separate installation, or if complete insulation is not easy, the distribution plate 8 may be supported via an insulator 75.

第5図および第6図は、さらに別の実施態様を示してお
り、本実tM悪態様は、カス分散箱75が複数のヂVン
バ75aに分割されている。各ヂャンパ75aにそれぞ
れ酸化性気体を送る配管76の分岐配管76aが接続さ
れ、各分岐配管76aにそれぞれダンパ77が設けられ
ている。このように構成すれば、ヒータ78によって加
熱された酸化性気体は各ヂャンバ75aに送られるに際
し、その供給流量をチャ= 18− ンバ75a毎に独立に調整でき、よりきめ細かな配分を
行うことができるので、−層流動層の湿度均一化をはか
ることが可能になる。
FIGS. 5 and 6 show yet another embodiment, in which the waste distribution box 75 is divided into a plurality of chambers 75a. A branch pipe 76a of a pipe 76 for sending oxidizing gas is connected to each damper 75a, and a damper 77 is provided in each branch pipe 76a. With this configuration, when the oxidizing gas heated by the heater 78 is sent to each chamber 75a, the supply flow rate can be adjusted independently for each chamber 75a, and more fine distribution can be performed. Therefore, it becomes possible to equalize the humidity of the -laminar fluidized bed.

次に、本発明の耐炎化装置の更に望ましい態様を、第8
図ないし第10図を用いて詳細に説明する。
Next, a further preferred embodiment of the flame resistant device of the present invention will be described in the eighth section.
This will be explained in detail using FIGS. 1 to 10.

第8図ないし第10図は、本発明の一実/II態様に係
る更に望ましい耐炎化装置を、25糸条の前駆体繊維を
耐炎化する装置の実施例として示しており、第8図はそ
の概略模式図、第9図は第8図の繰出し部、巻取り部を
除く部分平面図、第10図は第8図中の7−7断面を示
す概略模式図を示す。
8 to 10 show a more desirable flame resistant device according to the first embodiment/II aspect of the present invention as an embodiment of the device for flame resistant a 25-thread precursor fiber, and FIG. Its schematic diagram, FIG. 9 is a partial plan view of FIG. 8 excluding the feeding part and winding part, and FIG. 10 is a schematic diagram showing the section 7-7 in FIG. 8.

第8図および第9図において、25本のパッケージ30
(図の一部は省略している〉から繰り出した前駆体繊維
糸条101は、カイトローラ37を経た後駆動ローラ3
3で送り出され、案内、配列手段として溝部を有する回
転体41.42の一組で、5糸条を基本的に垂直方向に
配列するとともに、該回転体の5組で第10図に示す如
く並行する5列の二次元的配列を構成して、流動層加熱
耐炎化炉1の流動層5内へ通糸されて耐炎化処理される
。耐炎化ざれた該糸条102は、耐炎化炉1外へ導出さ
れて、次いて必要なら該糸条に(=J着残留した熱媒を
除去する除去手段20を通過せしめた後、導入部と同様
に構成された配列手段、即ら、溝部を有する回転体43
.44を経て、駆動ローラ34、ガイドローラ38を介
してパッケージ31としで巻き取られる。耐炎  ゛化
性の該糸条101の処理張力は、駆動ローラ33.34
をそれぞれ所定の回転速度に設定することにより保持さ
れる。駆動ローラ33.34の内、前記配列手段側に最
も近いローラ33a、34aは溝付ローラが良い。
In FIGS. 8 and 9, 25 packages 30
(Part of the figure is omitted) The precursor fiber yarn 101 fed out passes through the kite roller 37 and then the drive roller 3
A pair of rotary bodies 41 and 42 having grooves as guide and arrangement means are used to arrange the five yarns in a basically vertical direction, and the five sets of rotary bodies are arranged as shown in FIG. The fibers are formed into a two-dimensional array of five parallel rows, and threaded into the fluidized bed 5 of the fluidized bed heating flameproofing furnace 1 for flameproofing treatment. The flame-retardant yarn 102 is led out of the flame-retardant furnace 1, and then, if necessary, the yarn is passed through a removal means 20 for removing the remaining heating medium, and then passed through a removal means 20 for removing the remaining heating medium. A rotary body 43 having an arrangement means configured in the same manner as, that is, a groove portion.
.. 44, the package 31 is wound up via a drive roller 34 and a guide roller 38. The processing tension of the flame-resistant thread 101 is as follows:
are maintained by setting each to a predetermined rotation speed. Of the drive rollers 33 and 34, the rollers 33a and 34a closest to the arrangement means are preferably grooved rollers.

上記のように構成することによって、前駆体繊維糸条を
第10図に示した如く、該糸条の走行方向に垂直な流動
層5断面内で二次元的に配列通糸することが可能で必る
。その際、配列手段旧、42.43.44を、該繊組糸
通の分散板からの高さ[」が、5mm≦H≦500mm
の範囲に配置せしめることが必要である。本実施例にお
いて、前駆体繊維糸条を例えば12000デニールとし
た峙、垂直方向への該糸条間ピッチを5 mm、「HW
方向への列間ピッチPlを20〜30mmとして耐炎化
処理することが可能であるから、熟媒層の深さは30〜
40mm程度で十分である。一般的には、少くともrl
J W方向への列間ピッチP1を15mm以上とするの
が、熱媒の流動性を阻害させない点で好ましい。上限は
100 mm以下、好ましくは50mm以下とするのが
処理密度を上げられるので好ましい。ここで巾W方向の
列間ピッチP1は、各列の巾方向のバラツキr゛の中心
間距離である。P記のような配列手段は、例えば第11
図に示したような、円周方向に連続した溝部63を有す
るフリーローラで構成される。
With the above configuration, as shown in FIG. 10, it is possible to thread the precursor fiber threads in a two-dimensional arrangement within the cross section of the fluidized bed 5 perpendicular to the running direction of the threads. Must have. At that time, the arrangement means old, 42, 43, 44, the height ['' from the dispersion plate of the fiber braid threading is 5mm≦H≦500mm.
It is necessary to place it within the range of . In this example, the precursor fiber threads were, for example, 12,000 denier, the pitch between the threads in the vertical direction was 5 mm, and the "HW
Since it is possible to perform flameproofing treatment by setting the inter-row pitch Pl in the direction of 20 to 30 mm, the depth of the ripening medium layer is 30 to 30 mm.
About 40 mm is sufficient. In general, at least rl
It is preferable to set the inter-row pitch P1 in the JW direction to 15 mm or more in order not to impede the fluidity of the heat medium. The upper limit is preferably 100 mm or less, preferably 50 mm or less, since processing density can be increased. Here, the inter-row pitch P1 in the width direction is the center-to-center distance of the widthwise variation r of each row. For example, the arranging means as described in P.
As shown in the figure, it is composed of a free roller having a continuous groove 63 in the circumferential direction.

このような配列手段を用いると、該糸条は溝底部に沿っ
て垂直方向に扁平化されるので、太デニーの糸条であっ
ても厚みが小に抑えられ、外周から効率よく除熱されて
、酸化反応発熱による繊維束内への蓄熱量が小に抑えら
れる。その結果、処理温度を高めることができ、処理時
間か短縮される。
When such an arrangement means is used, the yarn is flattened in the vertical direction along the groove bottom, so even if the yarn is thick, the thickness can be kept small and heat can be efficiently removed from the outer periphery. Therefore, the amount of heat stored in the fiber bundle due to heat generated by oxidation reaction can be suppressed to a small level. As a result, the processing temperature can be increased and the processing time can be shortened.

第8図にあいで、耐炎化炉1内には、分散板8」二に熱
媒粒子の流動層5か形成され、該流動層5〜21− は、供給孔9を介し分散板8を通して送られてくる酸化
性気体によって流動化され、流動化後の気体は排気孔1
()から排出される。また、この熱媒流動層5は、流動
層5へ至るまでのガス経路途中に設けられた加熱手段(
ヒータ)6.7によってそれぞれ所定の処理温度に加熱
制御されるとともに、仕切板12によって2つの加熱域
3.4を形成して二段の昇温か可能である。もちろん、
1つの加熱域でも、更に多数の加熱域でも構成すること
もできる。
In FIG. 8, in the flameproofing furnace 1, a fluidized bed 5 of heat medium particles is formed on the dispersion plate 8'2, and the fluidized beds 5-21- are passed through the dispersion plate 8 through the supply holes 9. It is fluidized by the sent oxidizing gas, and the fluidized gas is passed through the exhaust hole 1.
Ejected from (). In addition, this heat medium fluidized bed 5 has heating means (
Heaters) 6.7 control the heating to predetermined processing temperatures, and the partition plate 12 forms two heating regions 3.4, making it possible to raise the temperature in two stages. of course,
It can be configured with one heating zone or even more heating zones.

当該繊維糸条が本耐炎化炉1の流動層5へ導入出される
導入・導出孔は開放のままだと熱媒や加熱空気か流出す
るので、加圧シール室11.11′を設け、気体を供給
孔13.13−からそれぞれへ供給し、該加圧シール室
内雰囲気圧を炉内の雰囲気圧より若干高目の圧力にして
熱媒と加熱空気をシールリ−る。勿論その他のシール方
法、例えば炉内方向へ気体流を生じるエジェクターであ
っても良いし、場合によってはシール−u覆−に流出し
た熱媒をW1′1めて流動層内へ順次自動的にもどして
やるシスツムも可能である。
If the introduction/exit holes through which the fiber threads are introduced into the fluidized bed 5 of the flameproofing furnace 1 are left open, heat medium and heated air will flow out, so pressurized seal chambers 11 and 11' are provided to prevent the gas from flowing out. is supplied to each from the supply holes 13 and 13-, and the atmospheric pressure in the pressurized sealing chamber is made slightly higher than the atmospheric pressure in the furnace to seal the heating medium and the heated air. Of course, other sealing methods may be used, such as an ejector that generates a gas flow toward the inside of the furnace, or in some cases, the heating medium flowing out to the seal U cover may be automatically transferred to W1'1 and sequentially into the fluidized bed. A system that returns it is also possible.

本発明の耐炎化方法によって得られた耐炎化繊維102
あるいは103は、必要なら次いて第12図に示すよう
に炭化炉2を用いて連続的に炭化し炭素繊維104のパ
ッケージ32としたり、バッチ的に炭化して炭素繊維と
することも可能である。
Flame resistant fiber 102 obtained by the flame resistant method of the present invention
Alternatively, if necessary, 103 can be continuously carbonized using a carbonization furnace 2 as shown in FIG. 12 to form a package 32 of carbon fibers 104, or can be carbonized in batches to form carbon fibers. .

炭化炉2の加熱方法は、不活性ガス、例えばN2、△r
゛、He等の雰囲気で使用できて所定の炭化温度かjq
られるものであれば、抵抗加熱、誘導加熱等の方法か可
能で特に限定されない。なお、第12図における35.
36は駆動ローラ、50は不活性カス給気孔、51はそ
の排気孔をそれぞれ丞している。
The carbonization furnace 2 is heated using an inert gas such as N2, △r
゛, Can be used in an atmosphere such as He, and has a specified carbonization temperature?
There is no particular limitation, and methods such as resistance heating and induction heating can be used as long as the method is suitable. Note that 35. in FIG.
36 is a drive roller, 50 is an inert gas supply hole, and 51 is an exhaust hole thereof.

第8図ないし第12図に示した例では、耐炎化と炭化処
理を分離して行う例で示したが、耐炎化処理後耐炎化繊
維102もしくは103を、続いて更に連続的に炭化処
理して炭素繊維104を得ることもできる。
In the examples shown in FIGS. 8 to 12, the flame-retardant treatment and the carbonization treatment are performed separately, but after the flame-retardant treatment, the flame-retardant fiber 102 or 103 is further continuously carbonized. The carbon fiber 104 can also be obtained by

[発明の効果] 以上説明したように、本発明の耐炎化装置によるときは
、前駆体繊維糸道の分散板からの高さを、通糸配列手段
(案内手段)で所定の範囲内とし、分散板を通して流動
層内に送られる酸化性気体を流動層に至るまでのカス経
路中にて加熱するようにしたので、流動層を広幅化して
も均一な温度分布を得ることかでき、かつ流動化に必要
な気体の斥力を抑えて耐炎化繊維の損傷を確実に防止す
ることがてぎ、また、熱媒層への該繊維の導入出孔から
、熱媒の漏れ防止を容易になさしめるため、生産効率の
向上をはかることかできるとともに優れた物性の炭素繊
維を得ることができる。
[Effects of the Invention] As explained above, when using the flameproofing device of the present invention, the height of the precursor fiber thread path from the distribution plate is set within a predetermined range by the thread arranging means (guiding means), Since the oxidizing gas sent into the fluidized bed through the dispersion plate is heated in the waste path leading to the fluidized bed, it is possible to obtain a uniform temperature distribution even if the width of the fluidized bed is widened. It is necessary to reliably prevent damage to the flame-retardant fibers by suppressing the repulsion of the gas necessary for oxidation, and also to easily prevent leakage of the heat medium from the introduction orifice of the fibers into the heat medium layer. Therefore, production efficiency can be improved and carbon fibers with excellent physical properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様に係る耐炎化装置の概略断
面図、 第2図は別の実施態様に係る耐炎化装置の概略断面図、 第3図はさらに別の実施態様に係る耐炎化装置に用いら
れる分散板の概略平面図、 第4図は第3図の分散板を取付けた耐炎化装置の概略断
面図、 = 24− 第5図はざらに別の実施態様に係る耐炎化装置の概略構
成図、 第6図は第5図の装置のガス分散箱の概略平面図、 第7図は糸道の高さHと熱媒層の幅Wの望ましい範囲を
示すグラフ、 第8図は本発明に係る耐炎化装置の好ましい− 一実施
例を示す概略模式図、 第9図は第8図に示した概略模式図の部分平面図、 第10図は第8図中の7−7断面を示す概略断面図、 第11図は前駆体繊維配列手段の一実施例を示す概略断
面図、 第12図は得られた耐炎化繊維を炭化覆る方法の一実施
例を示す概略模式図、 第13図は従来の耐炎化装置の概略断面図、第14図は
別の従来の耐炎化装置の概略断面図、である。 1:耐炎化炉 2:炭化炉 3:第1段目の加熱域 4:第2段目の加熱域 5:熱媒粒子層 6.7:ヒータ 8.8−:分散板 9.9−:給気孔 10:排気孔 月、11−:加肚シール室 12:仕切板 13.13−:給気孔 20:熱媒除去手段 30:前駆体繊維パッケージ 31:耐炎化繊維パッケージ 32:炭素繊維パッケージ 33.34.35.36:駆動ローラ 33a、 34a :溝付ローラ 37.38.39.4():カイトローラ41.42.
43.44:溝部を有する回転体50:不活性ガス給気
孔 51:不活性ガス排気孔 61:フリーローラ 62:軸 63:溝部 64:ベアリング 101:前駆体繊維糸条 102.103 :耐炎化111i維 104:炭素繊維
FIG. 1 is a schematic sectional view of a flame resistant device according to one embodiment of the present invention, FIG. 2 is a schematic sectional view of a flame resistant device according to another embodiment, and FIG. 3 is a flame resistant device according to yet another embodiment. Fig. 4 is a schematic cross-sectional view of a flame retardant device with the dispersion plate of Fig. 3 attached, =24- Fig. 5 is a schematic plan view of a dispersion plate used in a flame retardant device according to a completely different embodiment. 6 is a schematic plan view of the gas distribution box of the device shown in FIG. 5; FIG. 7 is a graph showing the desirable ranges of the height H of the yarn path and the width W of the heating medium layer; 9 is a partial plan view of the schematic diagram shown in FIG. 8, and FIG. 11 is a schematic sectional view showing an example of a precursor fiber arrangement means; FIG. 12 is a schematic sectional view showing an example of a method for carbonizing the obtained flame-resistant fibers. , FIG. 13 is a schematic sectional view of a conventional flame resistant device, and FIG. 14 is a schematic sectional view of another conventional flame resistant device. 1: Flameproofing furnace 2: Carbonization furnace 3: First stage heating zone 4: Second stage heating zone 5: Heat medium particle layer 6.7: Heater 8.8-: Dispersion plate 9.9-: Air supply hole 10: Exhaust hole, 11-: Calibration seal chamber 12: Partition plate 13.13-: Air supply hole 20: Heat medium removal means 30: Precursor fiber package 31: Flame-resistant fiber package 32: Carbon fiber package 33 .34.35.36: Drive rollers 33a, 34a: Grooved rollers 37.38.39.4(): Kite rollers 41.42.
43.44: Rotating body with groove 50: Inert gas supply hole 51: Inert gas exhaust hole 61: Free roller 62: Shaft 63: Groove 64: Bearing 101: Precursor fiber thread 102.103: Flame resistant 111i fiber 104: carbon fiber

Claims (1)

【特許請求の範囲】 1、分散板上に堆積された熱媒粒子を、分散板で分散さ
れた酸化性気体で流動化せしめた流動層中にて、前駆体
繊維を連続的に加熱処理する耐炎化装置において、前記
前駆体繊維の配列を上下方向に複数列とし、かつ、該前
駆体繊維の分散板からの高さHを、 5mm≦H≦500mm の範囲に配置せしめる案内手段を設けるとともに、前記
酸化性気体が流動層に至るまでのガス経路中に、該酸化
性気体を加熱する加熱手段を設けたことを特徴とする耐
炎化装置。
[Claims] 1. The precursor fibers are continuously heat-treated in a fluidized bed in which the heating medium particles deposited on the dispersion plate are fluidized by the oxidizing gas dispersed by the dispersion plate. In the flameproofing device, the precursor fibers are arranged in multiple rows in the vertical direction, and a guide means is provided for arranging the precursor fibers at a height H from the dispersion plate in the range of 5 mm≦H≦500 mm. A flame-retardant device, characterized in that a heating means for heating the oxidizing gas is provided in the gas path leading the oxidizing gas to the fluidized bed.
JP947388A 1988-01-21 1988-01-21 Apparatus for making flame-resistant Pending JPH01192825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP947388A JPH01192825A (en) 1988-01-21 1988-01-21 Apparatus for making flame-resistant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP947388A JPH01192825A (en) 1988-01-21 1988-01-21 Apparatus for making flame-resistant

Publications (1)

Publication Number Publication Date
JPH01192825A true JPH01192825A (en) 1989-08-02

Family

ID=11721230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP947388A Pending JPH01192825A (en) 1988-01-21 1988-01-21 Apparatus for making flame-resistant

Country Status (1)

Country Link
JP (1) JPH01192825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111485292A (en) * 2019-01-28 2020-08-04 株式会社Snt Carbon fiber precursor stabilization device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111485292A (en) * 2019-01-28 2020-08-04 株式会社Snt Carbon fiber precursor stabilization device
KR20200093180A (en) * 2019-01-28 2020-08-05 주식회사 에스엔티 Stabilization apparatus for carbon fiber precursor
CN111485292B (en) * 2019-01-28 2022-04-29 株式会社Snt Carbon fiber precursor stabilization device

Similar Documents

Publication Publication Date Title
US4610860A (en) Method and system for producing carbon fibers
TWI507578B (en) Carbide furnace for fabricating carbon fiber bundle and fabricating method of carbon fiber bundle
GB2184819A (en) System for producing carbon fibers
JP5496214B2 (en) Carbon fiber bundle manufacturing method
JPH01192825A (en) Apparatus for making flame-resistant
US3615212A (en) Method of manufacturing carbon fibers
JP4809757B2 (en) Flame-resistant heat treatment apparatus and method for producing flame-resistant fiber bundle
KR101281192B1 (en) Apparatus for maunfacturing carbon fiber
JPH01207421A (en) Apparatus for making flame-resistance and method therefor
JPH0681223A (en) Production of carbon fiber
JP2505495B2 (en) Method for producing flame resistant fiber
JPH0770828A (en) Production of carbon fiber
JPH0214022A (en) Fire-resistant treatment
JPH01118623A (en) Provision of precursor fiber with flame resistance
JPH01104835A (en) Production of fire-resistant fiber
JP3733688B2 (en) Carbon fiber manufacturing method
JPH01282348A (en) Provision of fiber with flame resistance
JP4236316B2 (en) Flame-resistant heat treatment equipment for yarn
JPH026625A (en) Production of flame-resistant fiber
JPH01111021A (en) Production of carbon fiber
JPH05171523A (en) Unit for making carbon fiber flame-resistant
JPH06229681A (en) Fluidized bed apparatus for treating wire or band material
JPH01260021A (en) Production of carbon fiber cloth
JPH04214186A (en) Sealing method of in-furnace thermal medium particles in fluidized bed and flame resistant device using the method
JPH01148817A (en) Production of carbon fiber