JPH04214098A - Manufacture of oxide superconducting thin film - Google Patents

Manufacture of oxide superconducting thin film

Info

Publication number
JPH04214098A
JPH04214098A JP3063643A JP6364391A JPH04214098A JP H04214098 A JPH04214098 A JP H04214098A JP 3063643 A JP3063643 A JP 3063643A JP 6364391 A JP6364391 A JP 6364391A JP H04214098 A JPH04214098 A JP H04214098A
Authority
JP
Japan
Prior art keywords
thin film
oxide superconducting
superconducting thin
target
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3063643A
Other languages
Japanese (ja)
Inventor
Noriyuki Yoshida
葭田 典之
Shigeru Okuda
奥田 繁
Satoru Takano
悟 高野
Norikata Hayashi
憲器 林
Chikushi Hara
原 築志
Kiyoshi Okaniwa
岡庭 潔
Takahiko Yamamoto
隆彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP3063643A priority Critical patent/JPH04214098A/en
Publication of JPH04214098A publication Critical patent/JPH04214098A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To efficiently execute film forming and to permit the formation of a dense oxide superconducting thin film having higher current density in the method for manufacturing an oxide superconducting thin film using laser ablation. CONSTITUTION:A target 7 having <=10% porosity is irradiated with a laser beam 8 to generate ablation in the irradiated part of te laser beam 8, by which grains splashed from the target 7 are deposited so that an oxide superconducting thin film 11 will is formed on a substrate 10.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、レーザアブレーショ
ンを用いる酸化物超電導薄膜の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an oxide superconducting thin film using laser ablation.

【0002】0002

【従来の技術】レーザ光をターゲットに照射すると、レ
ーザ光の照射部分においてアブレーションが生じ、この
アブレーションによりターゲットを構成する物質の粒子
が飛散する。飛散した粒子は、ターゲットに対向するよ
うに配置された基板上に堆積され、それによって、基板
上にターゲットを構成する物質からなる薄膜が形成され
る。
2. Description of the Related Art When a target is irradiated with a laser beam, ablation occurs in the irradiated portion of the laser beam, and particles of a substance constituting the target are scattered by this ablation. The scattered particles are deposited on a substrate placed to face the target, thereby forming a thin film of the substance constituting the target on the substrate.

【0003】このようなレーザアブレーション法が、酸
化物超電導薄膜の形成方法として、最近注目されている
。レーザアブレーション法によれば、比較的低温かつ高
速で酸化物超電導薄膜を製造することができる。したが
って、基板として、たとえば、適当な可撓性を有する長
尺体を用いると、長尺体の表面に酸化物超電導薄膜が形
成された酸化物超電導線材を能率的に製造することが可
能になる。
[0003] Such a laser ablation method has recently attracted attention as a method for forming oxide superconducting thin films. According to the laser ablation method, oxide superconducting thin films can be manufactured at relatively low temperatures and high speeds. Therefore, by using, for example, a long body with appropriate flexibility as a substrate, it becomes possible to efficiently manufacture an oxide superconducting wire in which an oxide superconducting thin film is formed on the surface of the long body. .

【0004】レーザアブレーション法では、ターゲット
の組成が基板上に形成された酸化物超電導薄膜の組成に
再現性よく反映されるので、ターゲットとしては、通常
、酸化物超電導物質の成分を有する焼結体が用いられる
In the laser ablation method, the composition of the target is reflected in the composition of the oxide superconducting thin film formed on the substrate with good reproducibility, so the target is usually a sintered body containing a component of an oxide superconducting substance. is used.

【0005】[0005]

【発明が解決しようとする課題】レーザアブレーション
法では、レーザアブレーションによってターゲットの表
面から飛散した粒子は、ターゲットの表面にほぼ垂直方
向を中心として飛散し、この粒子の飛散方向は、ターゲ
ットに対するレーザ光の入射角にほとんど依存しないこ
とがわかっている。したがって、基板を、ターゲットの
表面におけるレーザ光の照射部分の真正面に配置すると
、最も効率よく成膜することができる。
[Problems to be Solved by the Invention] In the laser ablation method, particles scattered from the surface of the target by laser ablation are scattered mainly in a direction approximately perpendicular to the surface of the target, and the scattering direction of the particles is determined by the direction of the laser beam directed toward the target. is known to be almost independent of the angle of incidence. Therefore, if the substrate is placed directly in front of the portion of the target surface irradiated with the laser beam, the most efficient film formation can be achieved.

【0006】しかしながら、本件発明者が実験を重ねた
とき、通常の焼結体から構成されたターゲットを用いる
と、理論どおりあるいは予定どおりの成膜速度で薄膜を
形成できない場合がほとんどで、また、緻密な薄膜が得
られず、得られた酸化物超電導薄膜の臨界電流密度もそ
れほど高いものではなかった。
However, when the inventor of the present invention conducted repeated experiments, it was found that in most cases, when a target made of a normal sintered body was used, it was not possible to form a thin film at the theoretical or planned film formation rate. A dense thin film could not be obtained, and the critical current density of the obtained oxide superconducting thin film was not very high.

【0007】そこで、この発明の目的は、効率よく成膜
することができ、また、緻密で電流密度のより高い酸化
物超電導薄膜の製造方法を提供しようとすることである
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing an oxide superconducting thin film that can be formed efficiently, is dense, and has a higher current density.

【0008】[0008]

【課題を解決するための手段】本発明者は、前述したよ
うな成膜の効率、ならびに得られた酸化物超電導薄膜の
緻密性および臨界電流密度に関する問題がターゲットの
性状に関連していることを見出し、この発明をなすに至
ったのである。
[Means for Solving the Problems] The present inventor has discovered that the above-mentioned problems regarding the efficiency of film formation, the density and critical current density of the obtained oxide superconducting thin film are related to the properties of the target. They discovered this and came up with this invention.

【0009】この発明では、ターゲットの特に空隙率に
注目し、これを10%以下とすることにより、上述した
技術的課題を解決している。
[0009] In the present invention, the above-mentioned technical problem is solved by paying particular attention to the porosity of the target and setting it to 10% or less.

【0010】0010

【作用】通常の焼結による焼結体からなるターゲットは
、その空隙率が10%を越え、たとえば15%という比
較的大きな空隙率を有している。図2に示すように、こ
のような従来のターゲット1は、空隙率が高いことから
、たとえ研摩されても、空隙によってもたらされる凹凸
面2を必然的に形成する。そのため、レーザ光3がター
ゲット1に照射されたとき、たとえ、レーザアブレーシ
ョンによればターゲット1の表面に垂直な方向を中心と
して粒子が飛散するといっても、凹凸面2からこのよう
な粒子が飛散するため、矢印4で示すように、飛散した
粒子は、あらゆる方向に向けられる。したがって、基板
5上には、このような粒子が効率よく到達せず、酸化物
超電導薄膜6の成膜速度が低くなり、また、酸化物超電
導薄膜6の緻密性および臨界電流密度もそれほど高くは
ならない。
[Operation] A target made of a sintered body produced by ordinary sintering has a relatively large porosity of more than 10%, for example 15%. As shown in FIG. 2, such a conventional target 1 has a high porosity, so even if it is polished, it inevitably forms an uneven surface 2 caused by the pores. Therefore, when the target 1 is irradiated with the laser beam 3, even though particles are scattered mainly in the direction perpendicular to the surface of the target 1 according to laser ablation, such particles are scattered from the uneven surface 2. Therefore, the scattered particles are directed in all directions, as shown by arrow 4. Therefore, such particles do not reach the substrate 5 efficiently, the deposition rate of the oxide superconducting thin film 6 becomes low, and the denseness and critical current density of the oxide superconducting thin film 6 are not so high. No.

【0011】これに対して、図1に示すように、この発
明に従って空隙率が10%以下とされたターゲット7を
用いたときには、レーザ光8の照射により、ターゲット
7から飛散した粒子は、矢印9で示すように、より限ら
れた範囲内に向けられ、基板10上に効率よく到達する
。したがって、基板10上において、高い成膜速度をも
って酸化物超電導薄膜11が形成され、また、得られた
酸化物超電導薄膜11の緻密性および臨界電流密度が高
くなる。
On the other hand, as shown in FIG. 1, when a target 7 with a porosity of 10% or less is used according to the present invention, particles scattered from the target 7 due to the irradiation of the laser beam 8 are shown by the arrows. As shown at 9, it is directed within a more limited range and efficiently reaches the substrate 10. Therefore, the oxide superconducting thin film 11 is formed on the substrate 10 at a high deposition rate, and the denseness and critical current density of the obtained oxide superconducting thin film 11 are increased.

【0012】0012

【発明の効果】このように、この発明によれば、空隙率
が10%以下という緻密なターゲットを用いることによ
り、高い成膜速度をもって酸化物超電導薄膜を形成する
ことができる。また、得られた酸化物超電導薄膜は、緻
密であり、高い臨界電流密度を示す。
As described above, according to the present invention, by using a dense target with a porosity of 10% or less, an oxide superconducting thin film can be formed at a high deposition rate. Furthermore, the obtained oxide superconducting thin film is dense and exhibits a high critical current density.

【0013】したがって、この発明は、たとえば、長尺
の基板上に酸化物超電導薄膜を形成して酸化物超電導線
材とする場合のように、能率的に成膜を実施しなければ
ならない場面において特に有効である。
Therefore, the present invention is particularly useful in situations where film formation must be carried out efficiently, such as when forming an oxide superconducting thin film on a long substrate to produce an oxide superconducting wire. It is valid.

【0014】[0014]

【実施例】以下に、この発明の実施例および比較例につ
いて説明するが、これらの実施例および比較例の各々に
おいて用いたターゲットの空隙率は、ターゲットを得る
ための焼結工程において加える圧力および焼結時間を制
御することにより調整した。
[Example] Examples and comparative examples of the present invention will be described below. The porosity of the target used in each of these examples and comparative examples depends on the pressure applied in the sintering process to obtain the target and Adjustments were made by controlling the sintering time.

【0015】実施例1 空隙率が3%のY1 Ba2 Cu3 OY のターゲ
ットに、KrFによるエキシマレーザ光を照射し、Mg
O(100)単結晶基板上に酸化物超電導薄膜を成膜し
た。成膜条件は、基板温度が725℃、成膜室の酸素圧
力が100mTorr、基板−ターゲット間距離が50
mm、レーザ光のエネルギ密度が2J/cm2 、レー
ザ光の繰返周波数が5Hzとした。
Example 1 A Y1 Ba2 Cu3 OY target with a porosity of 3% was irradiated with excimer laser light using KrF, and Mg
An oxide superconducting thin film was formed on an O(100) single crystal substrate. The film forming conditions were as follows: substrate temperature was 725°C, oxygen pressure in the film forming chamber was 100 mTorr, and substrate-target distance was 50 mTorr.
mm, the energy density of the laser beam was 2 J/cm2, and the repetition frequency of the laser beam was 5 Hz.

【0016】上述のような成膜操作を約17分行なって
、厚さ5000オングストロームの酸化物超電導薄膜を
得た。このときの成膜速度は、約300オングストロー
ム/分であった。
The film forming operation as described above was carried out for about 17 minutes to obtain an oxide superconducting thin film having a thickness of 5000 angstroms. The film formation rate at this time was approximately 300 angstroms/min.

【0017】得られた酸化物超電導薄膜の表面を走査型
電子顕微鏡で観察すると、平滑な面を成していることが
確認され、また、酸化物超電導薄膜の臨界電流密度を測
定すると、77.3Kにおいて、2.8×106 A/
cm2 であった。
When the surface of the obtained oxide superconducting thin film was observed with a scanning electron microscope, it was confirmed that it had a smooth surface, and when the critical current density of the oxide superconducting thin film was measured, it was found to be 77. At 3K, 2.8×106 A/
cm2.

【0018】実施例2 空隙率が6%のターゲットを用いたことを除いて、実施
例1と同様の成膜条件で酸化物超電導薄膜の成膜を行な
った。
Example 2 An oxide superconducting thin film was formed under the same film forming conditions as in Example 1, except that a target with a porosity of 6% was used.

【0019】成膜操作を約20分間行ない、厚さ500
0オングストロームの酸化物超電導薄膜を得た。この時
の成膜速度は、約250オングストローム/分であった
The film forming operation was carried out for about 20 minutes, and the thickness was 500 mm.
A 0 angstrom oxide superconducting thin film was obtained. The film formation rate at this time was approximately 250 angstroms/min.

【0020】この場合も、酸化物超電導薄膜は、平滑な
表面を成しており、その臨界電流密度を測定すると、7
7.3Kにおいて、2.5×106 A/cm2 であ
った。
In this case as well, the oxide superconducting thin film has a smooth surface, and when its critical current density is measured, it is 7.
At 7.3K, it was 2.5×106 A/cm2.

【0021】実施例3 空隙率が9%のターゲットを用いたことを除いて、実施
例1と同様の成膜条件にて、酸化物超電導薄膜の成膜を
行なった。
Example 3 An oxide superconducting thin film was formed under the same film forming conditions as in Example 1, except that a target with a porosity of 9% was used.

【0022】成膜操作を約25分間行ない、厚さ500
0オングストロームの酸化物超電導薄膜を得た。この時
の成膜速度は約200オングストローム/分であった。
[0022] The film forming operation was carried out for about 25 minutes, and the thickness was 500 mm.
A 0 angstrom oxide superconducting thin film was obtained. The film forming rate at this time was approximately 200 angstroms/min.

【0023】この場合も、酸化物超電導薄膜は、平滑な
表面を成しており、その臨界電流密度を測定すると、7
7.3Kにおいて、2.3×106 A/cm2 であ
った。
In this case as well, the oxide superconducting thin film has a smooth surface, and when its critical current density is measured, it is 7.
At 7.3K, it was 2.3×106 A/cm2.

【0024】比較例1 空隙率が15%のターゲットを用いたことを除いて、実
施例1と同様の成膜条件にて、酸化物超電導薄膜を成膜
した。・成膜操作を約50分間行ない、厚さ5000オ
ングストロームの酸化物超電導薄膜を得た。この時の成
膜速度は、約100オングストローム/分であった。
Comparative Example 1 An oxide superconducting thin film was formed under the same film forming conditions as in Example 1, except that a target with a porosity of 15% was used. - The film forming operation was carried out for about 50 minutes, and an oxide superconducting thin film with a thickness of 5000 angstroms was obtained. The film formation rate at this time was about 100 angstroms/min.

【0025】得られた酸化物超電導薄膜の表面を走査型
電子顕微鏡で観察すると、凹凸が激しく、また、酸化物
超電導薄膜の臨界電流密度を測定すると、77.3Kに
おいて、5.0×105 A/cm2 であった。
When the surface of the obtained oxide superconducting thin film was observed with a scanning electron microscope, it was found that there were severe irregularities, and when the critical current density of the oxide superconducting thin film was measured, it was 5.0×10 5 A at 77.3 K. /cm2.

【0026】その他の実施例および比較例Y1 Ba2
 Cu3 OY からなるターゲットとして、3%、6
%、9%、および15%の空隙率を持つものを採用し、
ArFによるエキシマレーザ光を照射し、MgO(10
0)単結晶基板上に酸化物超電導薄膜を形成した。レー
ザ光のエネルギ密度を、ターゲット表面上で1.5J/
cm2 とした点を除いて、実験例1と同様の成膜条件
を採用した。
Other Examples and Comparative Examples Y1 Ba2
As a target consisting of Cu3OY, 3%, 6
%, 9%, and 15% porosity,
MgO (10
0) An oxide superconducting thin film was formed on a single crystal substrate. The energy density of the laser beam is set to 1.5 J/1 on the target surface.
The same film forming conditions as in Experimental Example 1 were adopted, except that the film thickness was set to cm2.

【0027】以下の表1において、各々の空隙率を有す
るターゲットを用いて得られた酸化物超電導薄膜の臨界
電流密度(Jc)[A/cm2 ]および臨界温度(T
c)[K]が示されている。
Table 1 below shows the critical current density (Jc) [A/cm2] and critical temperature (T
c) [K] is shown.

【0028】[0028]

【表1】   表1に示すように、空隙率10%以下のターゲット
使用による効果は顕著であった。
[Table 1] As shown in Table 1, the effect of using a target with a porosity of 10% or less was remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明による酸化物超電導薄膜の製造方法を
実施している状態を示す説明図である。
FIG. 1 is an explanatory diagram showing a state in which the method for manufacturing an oxide superconducting thin film according to the present invention is being carried out.

【図2】空隙率が高いターゲットを用いて酸化物超電導
薄膜の製造方法を実施している状態を示す説明図である
FIG. 2 is an explanatory diagram showing a state in which a method for producing an oxide superconducting thin film is being carried out using a target with a high porosity.

【符号の説明】[Explanation of symbols]

7  ターゲット 8  レーザ光 9  粒子の飛散方向を示す矢印 10  基板 11  酸化物超電導薄膜 7 Target 8 Laser light 9 Arrow indicating the scattering direction of particles 10 Substrate 11 Oxide superconducting thin film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  レーザアブレーションを用いる酸化物
超電導薄膜の製造方法において、空隙率が10%以下の
ターゲットを使用することを特徴とする、酸化物超電導
薄膜の製造方法。
1. A method for producing an oxide superconducting thin film using laser ablation, the method comprising using a target having a porosity of 10% or less.
JP3063643A 1990-03-29 1991-03-28 Manufacture of oxide superconducting thin film Withdrawn JPH04214098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063643A JPH04214098A (en) 1990-03-29 1991-03-28 Manufacture of oxide superconducting thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8318690 1990-03-29
JP2-83186 1990-03-29
JP3063643A JPH04214098A (en) 1990-03-29 1991-03-28 Manufacture of oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JPH04214098A true JPH04214098A (en) 1992-08-05

Family

ID=26404785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063643A Withdrawn JPH04214098A (en) 1990-03-29 1991-03-28 Manufacture of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JPH04214098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264531A (en) * 1988-04-14 1989-10-20 Toshiba Corp Distance relay
US5660746A (en) * 1994-10-24 1997-08-26 University Of South Florida Dual-laser process for film deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264531A (en) * 1988-04-14 1989-10-20 Toshiba Corp Distance relay
US5660746A (en) * 1994-10-24 1997-08-26 University Of South Florida Dual-laser process for film deposition

Similar Documents

Publication Publication Date Title
US9552986B2 (en) Forming a memory device using sputtering to deposit silver-selenide film
JP2007314892A (en) Sputtering target and method for the preparation thereof
JPH04214098A (en) Manufacture of oxide superconducting thin film
US5227204A (en) Fabrication of ferrite films using laser deposition
Reisse et al. Properties of laser pulse deposited oxide films
US5350606A (en) Single crystal ferroelectric barium titanate films
JP3695790B2 (en) Target, method for producing the same, and method for forming a high refractive index film
JP3506782B2 (en) Manufacturing method of optical thin film
JP3021601B2 (en) MgO target
KR101907143B1 (en) a fabricating method for anti-reflection film with an excellent performance and a anti-reflection film fabricated thereof
JP3080096B2 (en) Fabrication method of large area thin film
JPS6320302B2 (en)
JP2525910B2 (en) Laser excited thin film formation method
JPH0652742A (en) Manufacture of oxide superconductive film
JP3444621B2 (en) Method of forming dielectric thin film
Messier et al. Anisotropic etching during negative ion resputtering
JP3228481B2 (en) Light emitting thin film fabrication method
JPH1083585A (en) Production of phase transition type optical recording film
JPS62279639A (en) Manufacture of flattened film
JPH0446082A (en) Formation of high-quality oxide superconducting thin film
JPS61168593A (en) Epitaxial poly-component oxide film and manufacture
JPS629302A (en) Production of interference color mirror
JPH03104862A (en) Laser beam vapor deposition device
JPS61294714A (en) Formation of transparent conducting metal oxide film
JPH10102255A (en) Formation of ceramic coating film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514