JP3021601B2 - MgO target - Google Patents

MgO target

Info

Publication number
JP3021601B2
JP3021601B2 JP2283982A JP28398290A JP3021601B2 JP 3021601 B2 JP3021601 B2 JP 3021601B2 JP 2283982 A JP2283982 A JP 2283982A JP 28398290 A JP28398290 A JP 28398290A JP 3021601 B2 JP3021601 B2 JP 3021601B2
Authority
JP
Japan
Prior art keywords
mgo
target
thin film
crystallinity
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2283982A
Other languages
Japanese (ja)
Other versions
JPH04160155A (en
Inventor
俊宏 黒木
幸典 三崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2283982A priority Critical patent/JP3021601B2/en
Publication of JPH04160155A publication Critical patent/JPH04160155A/en
Application granted granted Critical
Publication of JP3021601B2 publication Critical patent/JP3021601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [発明の利用分野] この発明はMgOターゲットに関し、特に超伝導薄膜の
下地MgO膜のスパッタリングに用いるMgOターゲットに関
する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MgO target, and more particularly to an MgO target used for sputtering an underlying MgO film of a superconducting thin film.

[従来技術] 1986年のY−Ba−Cu−O系高温超伝導体の発見を契機
として常温超伝導体の研究が進められ、その一環として
超伝導体の薄膜化が検討されている。超伝導薄膜の基板
としては格子定数の類似したMgOが有望であるが、単結
晶MgOが高価なためSi等の基板に結晶性MgO膜を形成し、
この上部に超伝導薄膜をエピタキシャル成長させること
が実用的である。
[Prior Art] With the discovery of a Y-Ba-Cu-O-based high-temperature superconductor in 1986, research on a normal-temperature superconductor has been advanced, and as a part thereof, thinning of the superconductor has been studied. As a substrate for a superconducting thin film, MgO having a similar lattice constant is promising, but since single-crystal MgO is expensive, a crystalline MgO film is formed on a substrate such as Si,
It is practical to epitaxially grow a superconducting thin film on this.

発明者は軽焼MgOを焼結してターゲットとし、RFスパ
ッタリングでMgO薄膜を形成した。得られた薄膜は非晶
質であった(第4図)。軽焼MgOをターゲットとしたの
は焼結性が高く、緻密なターゲットを得るのが容易なた
めである。用いたターゲットの相対密度は99%で、気孔
や比表面積も小さく、吸着水等の不純物も少ないはずで
ある。緻密で不純物が少ないとの観点からは結晶性のMg
O薄膜を得るのが容易なはずであるが、結果は予想を裏
切った。発明者は軽焼MgOに変えMgOクリンカー粉体を焼
結しターゲットとしたが、やはり非晶質のMgO薄膜しか
得られなかった。
The inventor sintered light-burned MgO as a target, and formed an MgO thin film by RF sputtering. The obtained thin film was amorphous (FIG. 4). Light burned MgO was used because it has high sinterability and it is easy to obtain a dense target. The relative density of the target used was 99%, the pores and specific surface area were small, and impurities such as adsorbed water should be small. Crystalline Mg from the viewpoint of dense and low impurities
O thin films should be easy to obtain, but the results were disappointing. The inventor sintered MgO clinker powder instead of lightly burned MgO and used it as a target, but again only an amorphous MgO thin film was obtained.

軽焼MgOに変え単結晶MgOターゲットを用いると、(2,
0,0)方向に配向した薄膜が得られた(第3図)。ター
ゲットの結晶性とスパッタリング膜の結晶性とは本来無
関係なはずである。しかしターゲットを単結晶とすると
結晶性のMgO薄膜が得られ、ターゲットの結晶性とスパ
ッタリング膜の結晶性とが関係する理由は不明である。
When a single crystal MgO target is used instead of lightly burned MgO, (2,
A thin film oriented in the (0,0) direction was obtained (FIG. 3). The crystallinity of the target and the crystallinity of the sputtering film should be originally unrelated. However, when the target is a single crystal, a crystalline MgO thin film is obtained, and the reason why the crystallinity of the target is related to the crystallinity of the sputtering film is unknown.

発明者は単結晶ターゲットに代わるものとして、電融
MgO粉体を焼結しターゲットとした。電融MgOに着目した
のは、結晶成長が進んでいる点で単結晶に類似の材料だ
からである。しかし電融MgOは焼結性が低く、相対密度7
0%程度のものしか得られなかった。また電融MgOはアー
ク放電を利用して製造するため、金属成分の純度は高く
はなく、金属成分の純度は軽焼MgOよりも低い。金属成
分の純度が低く、気孔が多く多量の吸着不純物を含む点
からは、電融MgOは好ましいターゲット材料ではない。
しかし電融MgOをターゲットに用いると、単結晶ターゲ
ットと同等の結晶性を持つMgO薄膜が得られた。即ちこ
の場合にも、ターゲットの結晶性と得られた薄膜の結晶
性との関係が保たれた。
The inventor has proposed electrofusion as an alternative to single crystal targets.
MgO powder was sintered and used as a target. We focused on electrofused MgO because it is a material similar to a single crystal in that crystal growth is progressing. However, fused MgO has low sinterability and a relative density of 7
Only about 0% was obtained. Further, since electro-fused MgO is produced using arc discharge, the purity of the metal component is not high, and the purity of the metal component is lower than that of lightly burned MgO. In view of the low purity of the metal component, the large number of pores, and the large amount of adsorbed impurities, electrofused MgO is not a preferred target material.
However, when MgO was used as the target, an MgO thin film having the same crystallinity as the single crystal target was obtained. That is, also in this case, the relationship between the crystallinity of the target and the crystallinity of the obtained thin film was maintained.

[発明の課題] この発明の課題は、高結晶性のMgO薄膜の製造が容易
なMgOターゲットを安価な材料で得られるようにするこ
とにある。
[Problem of the Invention] An object of the present invention is to provide an MgO target that can easily produce a highly crystalline MgO thin film with an inexpensive material.

[発明の構成] この発明では、MgO成分中の60wt%以上を電融MgOとし
てMgOターゲットを作成する。このターゲットを用い、
高周波スパッタリングしたMgO膜は(2,0,0)方向に配向
し、結晶性は単結晶MgOターゲットを用いた場合と変わ
らない。電融MgOの含量が70wt%と50wt%では得られた
膜の結晶性に大差があり、70wt%では単結晶MgOターゲ
ットと同等の薄膜が得られ、50wt%ではX線回折でのピ
ーク強度や半値幅が低下する。このことから、電融MgO
含量の最低値を60wt%とした。
[Constitution of the Invention] In the present invention, an MgO target is prepared by using at least 60 wt% of the MgO component as electrofused MgO. Using this target,
The high-frequency sputtered MgO film is oriented in the (2,0,0) direction, and the crystallinity is the same as when a single-crystal MgO target is used. When the content of electrofused MgO is 70 wt% and 50 wt%, there is a large difference in the crystallinity of the obtained films. At 70 wt%, a thin film equivalent to a single crystal MgO target is obtained, and at 50 wt%, the peak intensity and the X-ray diffraction The half width decreases. From this, electrofused MgO
The minimum content was 60 wt%.

[実施例] 50メッシュパスで100メッシュオーバーの電融MgO粉体
(純度99%程度)を、平均粒径5.6μmの軽焼MgOと混合
し、厚さ10mm,直径60mmのディスクに700Kgw/cm2でプレ
ス成型し、空気中1700℃で1時間焼結した。主成分の電
融MgOの粒径は粉体工学的な見地から20メッシュ〜200メ
ッシュ程度が適当である。20メッシュ以上の材料では焼
結性が低く、200メッシュ以下では粉砕が進み比表面積
が増加して吸着不純物が増加する。軽焼MgO成分はター
ゲットの結晶剤であり、MgOクリンカー(水酸化マグネ
シウムや炭酸マグネシウムを1600℃程度で焼結したも
の)、あるいは電融MgOを粒径10μm以下に粉砕したも
の等に変えても良い。焼結剤の粒径が10μmを越えると
焼結性が低下するので、焼結剤は粒径10μm以下が好ま
しい。主成分の電融MgOの粒度が20メッシュ〜200メッシ
ュが好ましく、焼結剤の粒径が10μm以下が好ましい点
から、100%電融MgOを用いる場合、焼結剤として電融Mg
Oの一部を10μm以下の粒径に粉砕しておくのが好まし
い。
[Example] An electro-fused MgO powder (purity of about 99%) of 100 mesh over with a 50 mesh pass was mixed with light-burned MgO having an average particle size of 5.6 µm, and 700 Kgw / cm on a disk having a thickness of 10 mm and a diameter of 60 mm. It was press-molded in 2 and sintered in air at 1700 ° C. for 1 hour. The particle size of the electrofused MgO as a main component is suitably about 20 to 200 mesh from the viewpoint of powder engineering. When the material has a mesh size of 20 mesh or more, the sinterability is low. The lightly burned MgO component is a crystallization agent for the target, and it can be changed to MgO clinker (magnesium hydroxide or magnesium carbonate sintered at about 1600 ° C) or electro-fused MgO pulverized to a particle size of 10 μm or less. good. If the particle size of the sintering agent exceeds 10 μm, the sinterability is reduced. Therefore, the particle size of the sintering agent is preferably 10 μm or less. The particle size of the main component of fused MgO is preferably 20 mesh to 200 mesh, and the particle size of the sintering agent is preferably 10 μm or less.
It is preferable that a part of O is pulverized to a particle size of 10 μm or less.

得られた焼結体をターゲットとし、基板ホルダー温度
を150℃、高周波電力を200W、スパッタリング雰囲気をA
rでAr圧を20mTorr、流量を15scc/minでシリコン基板に
高周波スパッタリングした。高周波スパッタリングに変
えイオンビームスパッタリングを用いても良く、基板は
シリコンの他にサファイアや石英等でも良く、雰囲気は
Arの他にXeやN2等でも良い。しかし雰囲気にO2を導入す
ると、スパッタリング膜の結晶性が低下した。また基板
ホルダー温度は水の吸着を防止するため、例えば100℃
以上とすることが好ましい。
Using the obtained sintered body as a target, the substrate holder temperature was 150 ° C, the high-frequency power was 200 W, and the sputtering atmosphere was A.
High frequency sputtering was performed on the silicon substrate at a pressure of 20 mTorr and a flow rate of 15 scc / min at r. Ion beam sputtering may be used instead of high frequency sputtering, and the substrate may be sapphire, quartz, etc. in addition to silicon.
In addition to Ar, Xe or N 2 may be used. However, the introduction of O 2 into the atmosphere reduced the crystallinity of the sputtered film. The temperature of the substrate holder is 100 ° C, for example, to prevent water adsorption.
It is preferable to make the above.

用いたターゲット組成と(2,0,0)方向の結晶性との
関係を表1に示す。また電融MgO90wt%と軽焼MgO10wt%
のターゲットでの(2,0,0)ピークのX線回折パターン
を第1図に、電融MgO50wt%と軽焼MgO50wt%でのX線回
折パターンを第2図に、単結晶MgOターゲットでのパタ
ーンを第3図に、100%軽焼MgOターゲットでのX線回折
パターンを第4図に示す。
Table 1 shows the relationship between the target composition used and the crystallinity in the (2,0,0) direction. Also, electrofused MgO 90wt% and lightly burned MgO 10wt%
Fig. 1 shows the X-ray diffraction pattern of the (2,0,0) peak with the target of Fig. 1. Fig. 2 shows the X-ray diffraction patterns of 50wt% of fused MgO and 50wt% of lightly burned MgO. The pattern is shown in FIG. 3, and the X-ray diffraction pattern with the 100% lightly burned MgO target is shown in FIG.

結晶質のMgO薄膜が得られる場合、MgOは(2,0,0)方
向に配向し、他の方向でのX線回折ピークは得られなか
った。電子顕微鏡観察では結晶質のMgO膜にクラックは
見出されず、膜表面は鏡面で全体に均一な膜である。こ
れらのことは電融MgOターゲットで製造した結晶質MgO膜
が、(2,0,0)方向に配向した膜で、エピタキシャル成
長の下地に適していることを示している。ターゲット材
料について検討すると、電融MgO90wt%や単結晶MgOター
ゲットでは(2,0,0)方向に強く配向したMgO薄膜が得ら
れた。一方軽焼MgOが100%では非晶質の薄膜が得られ、
基板ホルダー温度を室温から300℃の範囲で変化させて
も結晶質の薄膜は得られなかった。電融MgOが70wt%で
は単結晶ターゲットと同等の薄膜が得られるが、50wt%
では結晶性の低下した膜となる。このことから、ターゲ
ット中の電融MgO含量は60%以上が好ましい。なおこれ
以外に軽焼MgOをMgOクリンカー(平均粒径9μm)に変
えて1700℃焼結でターゲットを調整したが、MgOクリン
カー単味では非晶質の薄膜しか得られず、電融MgO量を7
0wt%以上とすると単結晶ターゲットと同等の薄膜が得
られた。
When a crystalline MgO thin film was obtained, MgO was oriented in the (2,0,0) direction, and X-ray diffraction peaks in other directions were not obtained. No cracks were found in the crystalline MgO film by observation with an electron microscope, and the film surface was a mirror-finished and entirely uniform film. These facts indicate that the crystalline MgO film manufactured using the electro-fused MgO target is a film oriented in the (2,0,0) direction and is suitable as a base for epitaxial growth. When examining the target materials, an MgO thin film with a strong orientation in the (2,0,0) direction was obtained with a fused MgO 90 wt% or single crystal MgO target. On the other hand, when light burned MgO is 100%, an amorphous thin film is obtained.
Even when the substrate holder temperature was changed from room temperature to 300 ° C., a crystalline thin film was not obtained. A thin film equivalent to a single crystal target can be obtained with 70% by weight of fused MgO, but 50% by weight.
Thus, a film having reduced crystallinity is obtained. For this reason, the content of electrofused MgO in the target is preferably 60% or more. Other than this, the target was adjusted by sintering at 1700 ° C by changing the lightly burned MgO to MgO clinker (average particle size 9 μm). 7
When the content was 0 wt% or more, a thin film equivalent to the single crystal target was obtained.

[発明の効果] この発明では安価な電融MgOを主成分とし、結晶性の
高いMgO薄膜が得られるターゲットを得る。この発明の
ターゲットは一般に多孔質で、金属成分の純度も高くは
ないが、それにもかかわらず結晶性の高いMgO薄膜を得
ることができる。
[Effects of the Invention] According to the present invention, a target is obtained, which contains inexpensive electrofused MgO as a main component and can provide an MgO thin film having high crystallinity. Although the target of the present invention is generally porous and the purity of the metal component is not high, an MgO thin film having high crystallinity can nevertheless be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例の電融MgO90wt%,軽焼MgO10wt%の焼結
ターゲットを用いたMgO薄膜のX線回折図、 第2図は従来例の電融MgO50wt%,軽焼MgO50wt%の結晶
ターゲットを用いたMgO薄膜のX線回折図、 第3図は従来例の単結晶MgOターゲットを用いたMgO薄膜
のX線回折図、 第4図は従来例の軽焼MgOの結晶ターゲットを用いたMgO
薄膜のX線回折図である。
FIG. 1 is an X-ray diffraction diagram of an MgO thin film using a sintered target of fused MgO of 90% by weight and lightly burned MgO of 10% by weight, and FIG. X-ray diffraction diagram of a MgO thin film using a conventional single crystal MgO target, FIG. 3 shows an X-ray diffraction diagram of a MgO thin film using a conventional single crystal MgO target, and FIG.
It is an X-ray diffraction diagram of a thin film.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C30B 29/22 C04B 35/00,35/04 H01L 39/24 JOIS────────────────────────────────────────────────── ─── Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 14/00-14/58 C30B 29/22 C04B 35 / 00,35 / 04 H01L 39/24 JOIS

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】MgO中の60wt%以上を電融MgOとした、MgO
ターゲット。
1. An MgO wherein at least 60 wt% of the MgO is electrofused MgO.
target.
JP2283982A 1990-10-22 1990-10-22 MgO target Expired - Fee Related JP3021601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2283982A JP3021601B2 (en) 1990-10-22 1990-10-22 MgO target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2283982A JP3021601B2 (en) 1990-10-22 1990-10-22 MgO target

Publications (2)

Publication Number Publication Date
JPH04160155A JPH04160155A (en) 1992-06-03
JP3021601B2 true JP3021601B2 (en) 2000-03-15

Family

ID=17672755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2283982A Expired - Fee Related JP3021601B2 (en) 1990-10-22 1990-10-22 MgO target

Country Status (1)

Country Link
JP (1) JP3021601B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4778693B2 (en) * 2004-08-31 2011-09-21 タテホ化学工業株式会社 Single crystal magnesium oxide sintered body and protective film for plasma display panel
CN101395732A (en) * 2006-03-03 2009-03-25 佳能安内华股份有限公司 Method for manufacturing magnetoresistance element and apparatus for manufacturing magnetoresistance element
JP2012096951A (en) * 2010-11-01 2012-05-24 Ryukoku Univ Method of manufacturing magnesium oxide thin film

Also Published As

Publication number Publication date
JPH04160155A (en) 1992-06-03

Similar Documents

Publication Publication Date Title
Shah et al. Superconductivity and resputtering effects in rf sputtered YBa2Cu3O7− x thin films
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
JPH02181304A (en) Zinc oxide transparent conductive film and manufacture thereof
KR20040069178A (en) MgO VAPOR DEPOSITION MATERIAL AND METHOD FOR PREPARATION THEREOF
JP3021601B2 (en) MgO target
Qiu et al. Epitaxial growth and characterization of Ni films grown on MgO (001) by biased direct‐current sputter deposition
JP5128326B2 (en) Laser deposition target and method for manufacturing the same
Hirata et al. Pulsed laser deposition of Y3Al5O12: Tb photoluminescent thin films
Kadin et al. High temperature superconducting films by RF magnetron sputtering
Yong et al. High resolution transmission electron microscopy study on the microstructures of aluminum nitride and hydrogenated aluminum nitride films prepared by radio frequency reactive sputtering
JPH0280562A (en) Production of iron garnet layer and waveguide and integrated optoelectronics element
Kim et al. The effects of substrates on the thin-film structures of BaTiO 3
JP5035857B2 (en) Low resistance ITO thin film and manufacturing method thereof
JP4026194B2 (en) ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same
Kim et al. Enhancement of cathodoluminescence of ZnGa 2 O 4: Mn thin-film phosphor by energetic particle bombardment
JPH11323538A (en) Sputtering sintered target material for forming ge-si thin film of semiconductor device
JP4196438B2 (en) Vapor deposition material and manufacturing method thereof
WO2024042591A1 (en) Sic substrate and sic composite substrate
JP2505849B2 (en) Manufacturing method of superconducting ceramic thin film
JP2791409B2 (en) Method for producing target material for forming oxide superconducting thin film
JP2679276B2 (en) Superconducting ceramic thin film forming single crystal wafer material for semiconductor device manufacturing
JPH03279212A (en) Production of target material for forming oxide superconducting thin film
JPH01212230A (en) Superconducting material
KR100270074B1 (en) The thin coating method for epitaxial ba-ferrite
Hirohata et al. Influence of preparation conditions on the surface roughness of SiC thin films coated on 304 stainless steel

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees