JPH04211223A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH04211223A
JPH04211223A JP3065977A JP6597791A JPH04211223A JP H04211223 A JPH04211223 A JP H04211223A JP 3065977 A JP3065977 A JP 3065977A JP 6597791 A JP6597791 A JP 6597791A JP H04211223 A JPH04211223 A JP H04211223A
Authority
JP
Japan
Prior art keywords
liquid crystal
degrees
display element
crystal display
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3065977A
Other languages
Japanese (ja)
Other versions
JPH0833531B2 (en
Inventor
Yasuhiko Shindo
神藤 保彦
Tamihito Nakagome
中込 民仁
Shinji Hasegawa
真二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3065977A priority Critical patent/JPH0833531B2/en
Publication of JPH04211223A publication Critical patent/JPH04211223A/en
Publication of JPH0833531B2 publication Critical patent/JPH0833531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electric field effective type liquid crystal display element having an excellent time division driving characteristic. CONSTITUTION:Nematic liquid crystal, which has positive dielectric anisotropy and to which a light emissive material is added, is sandwiched between a pair of upper and lower electrode substrates arranged so as to oppose the rubbing orientation treating surfaces to each other, and forms a spiral structure twisted by an angle within range of 160 degrees to 200 degrees in its thickness direction, and further, polarization axes or absorption axes 8 and 9 of a pair of polarizing plates arranged so as to sandwich this spiral structure are dislocated by an angle within range of 30 degrees to 60 degrees against the liquid crystal molecule array direction on adjacent electrode substrates.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は液晶表示素子に係り、特
に優れた時分割駆動特性を有する電界効果型液晶表示素
子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a field effect liquid crystal display device having excellent time-division drive characteristics.

【0002】0002

【従来の技術】従来の液晶表示素子のツイステッドネマ
チックタイプと言われるものは、2枚の電極基板間に正
の誘電異方性を有するネクチック液晶による90°ねじ
れたらせん構造を有し、かつ両電極基板の外側には偏光
板をその偏光軸(あるいは吸収軸)が電極基板に隣接す
る液晶分子に対し直交あるいは平行になるように配置す
るものであった(特公昭51−13666号公報)。
[Prior Art] A conventional liquid crystal display element called a twisted nematic type has a 90° twisted helical structure made of nectic liquid crystal having positive dielectric anisotropy between two electrode substrates. A polarizing plate was arranged outside the electrode substrate so that its polarization axis (or absorption axis) was perpendicular or parallel to the liquid crystal molecules adjacent to the electrode substrate (Japanese Patent Publication No. 13666/1982).

【0003】2枚の電極基板間で液晶分子が90°ねじ
れたらせん状構造をなすように配向させるには、例えば
電極基板の、液晶に接する表面を布などで一方向にこす
る方法、いわゆるラビング法によってなされる。このと
きのこする方向、即ちラビング方向が液晶分子の配列方
向となる。このようにして配向処理された2枚の電極基
板をそれぞれのラビング方向が互にほぼ90度に交差す
るように間隙をもたせて対向させ、2枚の電極基板をシ
ール剤により接着し、その間隙に正の誘電異方性をもっ
たネマチック液晶を封入すると、液晶分子はその電極基
板間でほぼ90度回転したらせん状構造の分子配列をす
る。このようにして構成された液晶セルの上下には偏光
板が設けられるが、その偏光軸あるいは吸収軸はそれぞ
れの電極基板に隣接する液晶分子の配列方向とほぼ平行
にする。ここで、以降の説明に必要な時分割駆動特性を
表わす量の定義について簡単に説明する。
[0003] In order to align the liquid crystal molecules between two electrode substrates so as to form a spiral structure twisted by 90°, for example, a method of rubbing the surface of the electrode substrate in contact with the liquid crystal in one direction with a cloth, etc. It is done by rubbing method. The rubbing direction at this time, that is, the rubbing direction, becomes the alignment direction of the liquid crystal molecules. The two electrode substrates that have been oriented in this way are placed facing each other with a gap so that their rubbing directions cross each other at approximately 90 degrees, and the two electrode substrates are adhered with a sealant, and the gap between the two electrode substrates is When a nematic liquid crystal having positive dielectric anisotropy is sealed in the liquid crystal, the liquid crystal molecules are arranged in a spiral structure rotated approximately 90 degrees between the electrode substrates. Polarizing plates are provided above and below the liquid crystal cell constructed in this manner, and the polarizing axes or absorption axes thereof are made approximately parallel to the alignment direction of liquid crystal molecules adjacent to each electrode substrate. Here, the definition of the quantity representing the time-division drive characteristic, which is necessary for the following explanation, will be briefly explained.

【0004】図1は従来の90度ねじれた液晶分子のら
せん構造を持つ液晶表示素子の典型的な電圧−輝度特性
を示している。これは印加電圧に対する反射輝度の相対
値をとったものであり、輝度の初期値を100%、最終
値(印加電圧が十分大きいときの値)を0%にしている
。一般には、相対輝度が90%となる電圧をしきい値V
th,10%となる電圧を飽和値Vsatとして液晶の
特性のめやすにする。しかし、実用上は90%以上あれ
ば画素は十分明るく液晶は非点灯状態、50%以下であ
れば画素は十分暗く、液晶は点灯状態としてよく、以下
本明細書においては、相対輝度が、90%、50%にな
る電圧をそれぞれ、しきい値電圧Vth,飽和電圧Vs
atとする。
FIG. 1 shows typical voltage-luminance characteristics of a conventional liquid crystal display element having a helical structure of liquid crystal molecules twisted by 90 degrees. This is a relative value of the reflected brightness with respect to the applied voltage, and the initial value of the brightness is 100% and the final value (value when the applied voltage is sufficiently large) is 0%. Generally, the voltage at which the relative brightness is 90% is the threshold V
The voltage at which th, 10% is taken as the saturation value Vsat is used as a guideline for the characteristics of the liquid crystal. However, in practice, when the relative brightness is 90% or more, the pixel is sufficiently bright and the liquid crystal is not lit, and when it is 50% or less, the pixel is sufficiently dark and the liquid crystal is lit. %, the voltage at 50% is the threshold voltage Vth, and the saturation voltage Vs, respectively.
Let it be at.

【0005】さらに液晶表示素子の電気光学特性は、見
る方向によっても変り、この特性が良好な表示品質が得
られる視野を制限している。
Furthermore, the electro-optical characteristics of a liquid crystal display element vary depending on the viewing direction, and these characteristics limit the field of view in which good display quality can be obtained.

【0006】ここで視角角度φの定義を図7によって説
明する。図において、液晶表示素子1の上側電極基板1
1のラビング方向を2、下側電極基板12のラビング方
向を3とし、液晶分子のねじれ角を4とする。また液晶
表示素子1の表面に直交座標XY軸をとり、X軸方向を
液晶分子のねじれ角4を2等分する方向に規定し、Z軸
をXY面の法線方向に定め、観察方向5がZ軸となす角
を視角角度φとする。なお、この場合簡単のために観察
方向5はXZ面内にあることとする。また、図7に示さ
れたφを正とし、このような方向から見た場合、コント
ラストが高くなるので、このような方向を視野方向とい
う。
[0006] Here, the definition of the viewing angle φ will be explained with reference to FIG. In the figure, an upper electrode substrate 1 of a liquid crystal display element 1
The rubbing direction of 1 is 2, the rubbing direction of the lower electrode substrate 12 is 3, and the twist angle of the liquid crystal molecules is 4. Further, orthogonal coordinates XY axes are set on the surface of the liquid crystal display element 1, the direction of the X axis is defined in a direction that bisects the twist angle 4 of the liquid crystal molecules, the Z axis is defined in the direction normal to the XY plane, and the direction of observation 5 is set. Let the angle formed by this with the Z axis be the viewing angle φ. In this case, for the sake of simplicity, the observation direction 5 is assumed to be within the XZ plane. Further, when φ shown in FIG. 7 is positive, contrast becomes high when viewed from such a direction, and thus such a direction is called a viewing direction.

【0007】図6において、角度φ=10度の輝度が9
0%になる電圧をVth1、50%になる電圧をVsa
t1とし、角度φ=40度の輝度が90%になる電圧を
Vth2としたとき、立ち上がり特性γ、角度特性△φ
及び時分割能mを次式のように定義する。
In FIG. 6, the brightness at angle φ=10 degrees is 9
The voltage that becomes 0% is Vth1, and the voltage that becomes 50% is Vsa.
When t1 is the voltage at which the brightness at angle φ = 40 degrees is 90% and Vth2, the rise characteristic γ and the angle characteristic △φ
and time resolution m are defined as follows.

【0008】従来の液晶表示素子の時分割駆動特性は、
液晶の屈折率異方性を△n,上下電極基板間間隙をdと
した場合△n・dに依存しており、△n・dが大きい場
合(例えば0.8μm以上)にはγが良く(小さく)、
△φが悪い(小さい)。一方、△n・dが小さい場合(
例えば0.8μm以下)にはγが悪く(大きく)、△φ
が良い(大きい)。しかし、時分割能mで比較した場合
には、△n・dの小さい方が良い。以上の具体的な例を
表1に示す。
[0008] The time division drive characteristics of the conventional liquid crystal display element are as follows:
If the refractive index anisotropy of the liquid crystal is △n and the gap between the upper and lower electrode substrates is d, it depends on △n・d, and when △n・d is large (for example, 0.8 μm or more), γ is good. (small),
△φ is bad (small). On the other hand, if △n・d is small (
For example, γ is bad (large) for 0.8 μm or less, and △φ
is good (large). However, when compared in terms of time resolution m, the smaller Δn·d is, the better. Specific examples of the above are shown in Table 1.

【0009】[0009]

【表1】[Table 1]

【0010】ここで時分割駆動について、ドットマトリ
クスディスプレイを例に取って簡単に説明する。図8に
示すように下側電極基板12にストライプ状のY電極(
信号電極)13を、上側電極基板11にX電極(走査電
極)14を形成し、文字等の表示は、X,Y両電極の交
点部の液晶を点灯あるいは非点灯にして行う。図におい
てn本の走査電極をX1,X2,・・・Xn,X1,X
2,・・・Xnと繰り返し線順次走査を繰返して時分割
駆動する。ある走査電極(図においてはX3)が選択さ
れたとき、その電極上のすべての画素に、信号電極13
であるY1,Y2,・・・Ymより、表示すべき信号に
従い選択また非選択の表示信号を同時に加える。このよ
うに、走査電極と信号電極に加える電圧パルスの組合せ
で交点の点灯、非点灯を選択する。この場合の走査電極
Xの数が時分割数に相当する。
[0010] Time-division driving will now be briefly explained using a dot matrix display as an example. As shown in FIG. 8, striped Y electrodes (
A signal electrode) 13 and an X electrode (scanning electrode) 14 are formed on the upper electrode substrate 11, and characters and the like are displayed by turning on or off the liquid crystal at the intersection of the X and Y electrodes. In the figure, n scanning electrodes are X1, X2,...Xn, X1,
2, . . . Xn are repeated to perform time-division driving. When a certain scanning electrode (X3 in the figure) is selected, the signal electrode 13 is applied to all pixels on that electrode.
Selected or unselected display signals are simultaneously added from Y1, Y2, . . . Ym according to the signal to be displayed. In this way, lighting or non-lighting of the intersection is selected by the combination of voltage pulses applied to the scanning electrode and the signal electrode. The number of scanning electrodes X in this case corresponds to the number of time divisions.

【0011】[0011]

【発明が解決しようとする課題】従来の液晶表示素子で
は、表1に例示したような時分割駆動特性しか得られな
いために、時分割数32あるいは64が実用的には限界
であった。しかし、近年、液晶表示素子の画質の改善と
表示情報量増大に対する要求が厳しくなっており、要求
仕様を満足できない状況に到っている。
Problems to be Solved by the Invention In conventional liquid crystal display elements, only the time-division drive characteristics as illustrated in Table 1 can be obtained, so that the number of time divisions of 32 or 64 is a practical limit. However, in recent years, demands for improving the image quality of liquid crystal display elements and increasing the amount of displayed information have become stricter, and it has become impossible to satisfy the required specifications.

【0012】本発明の目的は、従来の液晶表示素子と全
く異なったセル構造をとることによって、極めて優れた
時分割駆動特性を持ち、時分割数32以上でも良好な画
質を持った液晶表示素子を提供することにある。
An object of the present invention is to provide a liquid crystal display element which has extremely excellent time-division drive characteristics and has good image quality even when the number of time divisions is 32 or more, by adopting a cell structure completely different from that of conventional liquid crystal display elements. Our goal is to provide the following.

【0013】[0013]

【課題を解決するための手段】このような目的を達成す
るために本発明による液晶表示素子は、正の誘電異方性
を有し、旋光性物質が添加されたネマチック液晶を、ラ
ビング配向処理された面を対向させて配置された上下一
対の電極基板間に挟持し、その厚さ方向に160度から
200度の範囲内のねじれたらせん構造を形成させ、か
つこのらせん構造を挾んで設けられた一対の偏光板の偏
光軸あるいは吸収軸を、隣接する電極基板の液晶分子配
列方向と30度から60度の範囲内の角度ずらせること
を特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, a liquid crystal display element according to the present invention uses a nematic liquid crystal having positive dielectric anisotropy and added with an optically active substance, which is subjected to a rubbing alignment treatment. The electrode substrates are sandwiched between a pair of upper and lower electrode substrates disposed with their surfaces facing each other to form a twisted helical structure within a range of 160 degrees to 200 degrees in the thickness direction, and the helical structure is sandwiched between them. The polarizing axis or the absorption axis of the pair of polarizing plates is shifted by an angle within the range of 30 degrees to 60 degrees from the alignment direction of the liquid crystal molecules of the adjacent electrode substrate.

【0014】[0014]

【作用】本発明の液晶表示素子においては、液晶分子の
らせん構造のねじれ角を160度から200度の範囲と
し、この液晶分子のらせん構造の前後に配設された偏光
板の吸収軸(あるいは偏光軸)をそれに隣接する液晶分
子の配向方向に対し、一定の角度ずらせて配設すること
により、印加電圧−光透過率特性カーブが急峻になり、
時分割能が大幅に向上する。
[Operation] In the liquid crystal display element of the present invention, the twist angle of the helical structure of the liquid crystal molecules is in the range of 160 degrees to 200 degrees, and the absorption axes (or By arranging the polarization axis (polarization axis) at a certain angle with respect to the alignment direction of the adjacent liquid crystal molecules, the applied voltage-light transmittance characteristic curve becomes steeper.
Time resolution is greatly improved.

【0015】[0015]

【実施例】次に、図面を用いて本発明の実施例を詳細に
説明する。
Embodiments Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0016】図1は本発明になる液晶表示素子を上側か
ら見た場合の液晶分子の配列方向(例えばラビング方向
)、液晶分子のねじれ方向、偏光板の吸収軸(あるいは
偏光軸)方向を示している。図2はそれらの関係を示す
斜視図である。図7と構造、機能が同一な部分は同一の
符号を付した。
FIG. 1 shows the alignment direction (for example, rubbing direction) of liquid crystal molecules, the twist direction of liquid crystal molecules, and the absorption axis (or polarization axis) direction of a polarizing plate when the liquid crystal display element according to the present invention is viewed from above. ing. FIG. 2 is a perspective view showing the relationship between them. Parts having the same structure and function as those in FIG. 7 are given the same reference numerals.

【0017】液晶分子17のねじれ方向10とねじれ角
αは、上側電極基板11のラビング方向6と下側電極基
板12のラビング方向7及びネマチック液晶に添加され
る旋光性物質の種類と量によって規定される。
The twist direction 10 and twist angle α of the liquid crystal molecules 17 are determined by the rubbing direction 6 of the upper electrode substrate 11, the rubbing direction 7 of the lower electrode substrate 12, and the type and amount of the optically active substance added to the nematic liquid crystal. be done.

【0018】ねじれ角αはしきい値近傍の点灯状態が光
を散乱する配向となることから最大値が制限され、20
0度が上限であり、また下限はコントラストによって制
限され、160度が限界である。
The maximum value of the twist angle α is limited because the lighting state near the threshold value is an orientation that scatters light, and the maximum value is limited to 20
0 degrees is the upper limit, and the lower limit is limited by contrast, and 160 degrees is the limit.

【0019】上側の偏光板15の吸収軸(あるいは偏光
軸)8と下側の偏光板16の吸収軸(あるいは偏光軸)
9とのなす角β3はコントラスト,明るさ,色等を考慮
すると0度から30度の範囲が好ましい。また、上側の
偏光板15の吸収軸(あるいは偏光軸)8と上側電極基
板11のラビング方向6とのなす角β1及び下側の偏光
板16の吸収軸(あるいは偏光軸)9と下側電極基板1
2のラビング方向7とのなす角β2はコントラスト,明
るさ及び色等を考慮すると、それぞれ30度から60度
の範囲に設定することが好ましい。
The absorption axis (or polarization axis) 8 of the upper polarizing plate 15 and the absorption axis (or polarization axis) of the lower polarizing plate 16
9 is preferably in the range of 0 degrees to 30 degrees in consideration of contrast, brightness, color, etc. Also, the angle β1 between the absorption axis (or polarization axis) 8 of the upper polarizing plate 15 and the rubbing direction 6 of the upper electrode substrate 11, the absorption axis (or polarization axis) 9 of the lower polarizing plate 16, and the lower electrode Board 1
In consideration of contrast, brightness, color, etc., it is preferable that the angle β2 between the rubbing direction 7 and the rubbing direction 7 is set in the range of 30 degrees to 60 degrees.

【0020】また、本発明になる液晶表示素子は顕著な
△n・d依存性を示し、コントラスト,明るさ,色の点
から0.8μm≦△n・d≦1.2μmの条件を満足す
ると殊に良好な結果を示す。ここで△nの値については
一般に波長依存性があり、短波長側で大きく、長波長側
で小さくなる傾向がある。本明細書で使用している△n
の値は、He−Neレーザ光(波長6328Å)を使用
し、25℃で測定したものであるから、他の波長で測定
した場合には本明細書における△n・dの値は若干変化
する。
Furthermore, the liquid crystal display element according to the present invention exhibits remarkable △n·d dependence, and in terms of contrast, brightness, and color, if it satisfies the condition of 0.8 μm≦△n·d≦1.2 μm. Shows particularly good results. Here, the value of Δn generally has wavelength dependence, and tends to be large on the short wavelength side and small on the long wavelength side. △n used in this specification
The value of is measured at 25°C using He-Ne laser light (wavelength 6328 Å), so the value of Δn・d in this specification will change slightly if measured at other wavelengths. .

【0021】ここで本発明になる液晶表示素子の具体的
な一実施例について、その構造と測定結果を説明する。
[0021] Here, the structure and measurement results of a specific example of the liquid crystal display element according to the present invention will be explained.

【0022】図3はその構造、即ち電極基板のラビング
方向、液晶分子のらせん構造のねじれ方向及び角度、偏
光板の偏光軸(あるいは吸収軸)の関係を示し、液晶表
示素子を上側から見た図である。
FIG. 3 shows the relationship between the structure, that is, the rubbing direction of the electrode substrate, the twist direction and angle of the helical structure of the liquid crystal molecules, and the polarization axis (or absorption axis) of the polarizing plate, and shows the relationship between the rubbing direction of the electrode substrate, the twist direction and angle of the helical structure of the liquid crystal molecule, and the polarization axis (or absorption axis) of the polarizing plate. It is a diagram.

【0023】使用した液晶はビフェニール系液晶とエス
テルシクロヘキサン(ECH)系液晶を主成分とするネ
マチック液晶で、旋光性物質としてメルク社のS811
を0.5重量%添加したものである。この混合液晶の△
nは0.123である。
The liquid crystal used was a nematic liquid crystal whose main components were biphenyl liquid crystal and ester cyclohexane (ECH) liquid crystal, and Merck's S811 was used as the optically active substance.
0.5% by weight was added. This mixed liquid crystal △
n is 0.123.

【0024】図3において、上側及び下側電極基板のラ
ビング方向6,7は互いに平行であり、旋光性物質S8
11によって、ねじれ方向は10,ねじれ角αは180
度となる。
In FIG. 3, the rubbing directions 6 and 7 of the upper and lower electrode substrates are parallel to each other, and the optically active substance S8
11, the twist direction is 10, and the twist angle α is 180.
degree.

【0025】上側の偏光板の吸収軸8と下側の偏光板の
吸収軸9は互に平行であり(β3=0度)、ラビング方
向6,7となす角β1,β2はいずれも45度である。
The absorption axis 8 of the upper polarizing plate and the absorption axis 9 of the lower polarizing plate are parallel to each other (β3=0 degree), and the angles β1 and β2 formed with the rubbing directions 6 and 7 are both 45 degrees. It is.

【0026】なお、上側電極基板11のラビング方向6
、下側電極基板12のラビング方向7、および液晶分子
17のらせん構造の関係を、図3の実施例の場合を例に
とって説明する。電極基板をラビング処理すると、図4
に示すようにラビング方向に沿って傾斜方向の異なる2
つの微小傾斜がほぼ周期的に繰り返したものが形成され
る。したがってらせん構造を形成する液晶分子が電極基
板間でほぼ平行に配列されるためには上下基板のラビン
グ処理の方向を図4に示す如くほぼ一致させることが、
表示画質を良好なものにする。
Note that the rubbing direction 6 of the upper electrode substrate 11
The relationship between the rubbing direction 7 of the lower electrode substrate 12 and the helical structure of the liquid crystal molecules 17 will be explained using the example of FIG. 3 as an example. When the electrode substrate is rubbed, the result is shown in Figure 4.
As shown in , there are two different inclination directions along the rubbing direction.
A nearly periodic repetition of two small slopes is formed. Therefore, in order for the liquid crystal molecules forming a helical structure to be arranged almost parallel between the electrode substrates, it is necessary to make the rubbing directions of the upper and lower substrates almost coincident as shown in FIG.
To improve display image quality.

【0027】次に以上のようなセル構造で、液晶層の厚
さdを変えて、△n・dのを変化させた液晶セルを作り
、色及び明るさを観察した。その結果を表2に示す。
Next, liquid crystal cells with the above-described cell structure and the thickness d of the liquid crystal layer were changed to change Δn·d were made, and the color and brightness were observed. The results are shown in Table 2.

【0028】この結果から、△n・dが1μm近傍で明
るさ及び色ともに表示素子として問題のないレベルであ
ることが分かった。
From this result, it was found that when Δn·d was around 1 μm, both the brightness and color were at a level that would pose no problem as a display element.

【0029】△n・dの更に詳細な検討から、図3の関
係がある場合は△n・dが0.7μmから1.2μmの
範囲においては実用上問題ないことが分かった。
From a more detailed study of Δn·d, it was found that when the relationship shown in FIG. 3 exists, there is no practical problem when Δn·d is in the range of 0.7 μm to 1.2 μm.

【0030】[0030]

【表2】[Table 2]

【0031】次に△n・d=0.98μmの液晶セルの
時分割駆動特性を測定した結果を表3に示す。表1に示
した従来の液晶表示素子に比較して、γ,△φ,mいず
れもが著しく改良されていることが分かる。
Next, Table 3 shows the results of measuring the time division drive characteristics of a liquid crystal cell with Δn·d=0.98 μm. It can be seen that γ, Δφ, and m are all significantly improved compared to the conventional liquid crystal display element shown in Table 1.

【0032】[0032]

【表3】[Table 3]

【0033】図3では偏光板の軸として吸収軸を使った
が、偏光軸を使用してもほとんど同様の結果が得られた
。また実施例ではビフェニール系とECH系の混合液晶
を使用したが、他の種類の正の誘電異方性を持つネマチ
ック液晶でも同様の効果が得られることは言うまでもな
い。なお、以上の例では、らせん構造のねじれ方向を反
時計回りとして説明したが、図5に示す如く時計回りの
ねじれ方向の場合も全く同じ作用効果が得られることは
勿論である。
Although the absorption axis was used as the axis of the polarizing plate in FIG. 3, almost the same results were obtained even if the polarization axis was used. Furthermore, although a biphenyl-based and ECH-based mixed liquid crystal was used in the embodiment, it goes without saying that similar effects can be obtained with other types of nematic liquid crystals having positive dielectric anisotropy. In the above example, the twisting direction of the helical structure was explained as being counterclockwise, but it goes without saying that the same effect can be obtained even when the twisting direction is clockwise as shown in FIG.

【0034】また旋光性物質についてもラビング方向と
ねじれ方向との関係を図1,図3及び図4の如く保てば
種類を限定するものではないことは言うまでもない。
It goes without saying that the type of optically active substance is not limited as long as the relationship between the rubbing direction and the twisting direction is maintained as shown in FIGS. 1, 3 and 4.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、従
来全く不可能であった高時分割駆動特性および高品質の
表示特性を持つ液晶表示素子が得られる。
As described above, according to the present invention, it is possible to obtain a liquid crystal display element having high time division drive characteristics and high quality display characteristics, which were completely impossible in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明になる液晶表示素子の液晶分子の配列方
向、液晶のねじれ方向及び偏光板の軸の方向の関係を示
した説明図である。
FIG. 1 is an explanatory diagram showing the relationship among the alignment direction of liquid crystal molecules, the twist direction of the liquid crystal, and the axis direction of the polarizing plate in a liquid crystal display element according to the present invention.

【図2】本発明になる液晶表示素子の液晶分子の配列方
向、液晶のねじれ方向及び偏光板の軸の方向の関係を示
した要部分解斜視図である。
FIG. 2 is an exploded perspective view of essential parts showing the relationship among the alignment direction of liquid crystal molecules, the twist direction of the liquid crystal, and the axis direction of the polarizing plate of the liquid crystal display element according to the present invention.

【図3】本発明になる液晶表示素子の第一の実施例にお
ける液晶分子の配列方向、液晶のねじれ方向及び偏光板
の軸の方向の関係を示した説明図である。
FIG. 3 is an explanatory diagram showing the relationship among the alignment direction of liquid crystal molecules, the twist direction of the liquid crystal, and the axis direction of the polarizing plate in the first embodiment of the liquid crystal display element according to the present invention.

【図4】図3に示した第一の実施例における液晶分子の
配列方向、液晶分子のねじれ方向及びラビング方向の関
係を示した断面図である。
4 is a cross-sectional view showing the relationship between the alignment direction of liquid crystal molecules, the twisting direction of liquid crystal molecules, and the rubbing direction in the first embodiment shown in FIG. 3. FIG.

【図5】本発明になる液晶表示素子の第二の実施例にお
ける液晶分子の配列方向、液晶のねじれ方向及び偏光板
の軸の方向の関係を示した説明図である。
FIG. 5 is an explanatory diagram showing the relationship among the alignment direction of liquid crystal molecules, the twist direction of the liquid crystal, and the axis direction of the polarizing plate in a second embodiment of the liquid crystal display element according to the present invention.

【図6】時分割駆動特性の定義に用いられる液晶表示素
子の電圧輝度特性を示す説明図である。
FIG. 6 is an explanatory diagram showing voltage-luminance characteristics of a liquid crystal display element used for defining time-division drive characteristics.

【図7】時分割駆動特性の測定方向を定義する説明図で
ある。
FIG. 7 is an explanatory diagram defining measurement directions of time-division drive characteristics.

【図8】時分割駆動のための電極構造の配置を説明する
図である。
FIG. 8 is a diagram illustrating the arrangement of an electrode structure for time-division driving.

【符号の説明】[Explanation of symbols]

1・・・液晶表示素子、2,6・・・上側電極基板のラ
ビング方向、3,7・・・下側電極基板のラビング方向
、4,10・・・液晶分子のねじれ方向、8・・・上側
偏光板の吸収軸あるいは偏光軸方向、9・・・下側偏光
板の吸収軸あるいは偏光軸方向、17・・・液晶分子、
α・・・液晶分子のねじれ角。
1... Liquid crystal display element, 2, 6... Rubbing direction of upper electrode substrate, 3, 7... Rubbing direction of lower electrode substrate, 4, 10... Twisting direction of liquid crystal molecules, 8... - Absorption axis or polarization axis direction of the upper polarizing plate, 9... Absorption axis or polarization axis direction of the lower polarizing plate, 17... Liquid crystal molecules,
α...Twisting angle of liquid crystal molecules.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】正の誘電異方性を有し、旋光性物質が添加
されたネマチック液晶が、ラビング配向処理された面を
対向させて配置された上下一対の電極基板間に挟持され
、その厚さ方向に160度から200度の範囲内のねじ
れたらせん構造を形成し、かつこのらせん構造を挾んで
設けられた一対の偏光板の偏光軸あるいは吸収軸を、隣
接する電極基板の液晶分子配列方向と30度から60度
の範囲内の角度ずらせることを特徴とする液晶表示素子
[Claim 1] A nematic liquid crystal having positive dielectric anisotropy and added with an optically active substance is sandwiched between a pair of upper and lower electrode substrates arranged with their rubbed alignment treated surfaces facing each other. The polarization axis or absorption axis of a pair of polarizing plates, which form a twisted helical structure within the range of 160 degrees to 200 degrees in the thickness direction, and are provided with this helical structure in between, is aligned with the liquid crystal molecules of the adjacent electrode substrates. A liquid crystal display element characterized by being shifted by an angle within a range of 30 degrees to 60 degrees with respect to an arrangement direction.
【請求項2】前記一対の偏光板の偏光軸あるいは吸収軸
同志のなす挟角が0度から30度の範囲内にある請求項
1記載の液晶表示素子。
2. The liquid crystal display element according to claim 1, wherein an included angle between the polarization axes or absorption axes of the pair of polarizing plates is within a range of 0 degrees to 30 degrees.
【請求項3】前記液晶の厚みd(μm)と前記液晶の屈
折率異方性△nの積△n・dが0.7μmから1.2μ
mの範囲にある請求項1記載の液晶表示素子。
3. The product Δn·d of the thickness d (μm) of the liquid crystal and the refractive index anisotropy Δn of the liquid crystal is from 0.7 μm to 1.2 μm.
2. The liquid crystal display element according to claim 1, wherein the liquid crystal display element is in the range of m.
JP3065977A 1991-03-29 1991-03-29 Liquid crystal display element Expired - Lifetime JPH0833531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3065977A JPH0833531B2 (en) 1991-03-29 1991-03-29 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3065977A JPH0833531B2 (en) 1991-03-29 1991-03-29 Liquid crystal display element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58157801A Division JPS6050511A (en) 1983-08-31 1983-08-31 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JPH04211223A true JPH04211223A (en) 1992-08-03
JPH0833531B2 JPH0833531B2 (en) 1996-03-29

Family

ID=13302574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3065977A Expired - Lifetime JPH0833531B2 (en) 1991-03-29 1991-03-29 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0833531B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072645A (en) * 1973-07-18 1975-06-16
JPS5249854A (en) * 1975-10-17 1977-04-21 Seiko Epson Corp Liquid crystal display device
JPS56156816A (en) * 1980-05-08 1981-12-03 Asahi Glass Co Ltd Liquid-crystal display device
JPS57212417A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Liquid crysral dislay device
JPS5817423A (en) * 1981-07-24 1983-02-01 Seiko Epson Corp Liquid crystal optical device
JPS58123522A (en) * 1982-01-19 1983-07-22 Seiko Epson Corp Liquid crystal display panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072645A (en) * 1973-07-18 1975-06-16
JPS5249854A (en) * 1975-10-17 1977-04-21 Seiko Epson Corp Liquid crystal display device
JPS56156816A (en) * 1980-05-08 1981-12-03 Asahi Glass Co Ltd Liquid-crystal display device
JPS57212417A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Liquid crysral dislay device
JPS5817423A (en) * 1981-07-24 1983-02-01 Seiko Epson Corp Liquid crystal optical device
JPS58123522A (en) * 1982-01-19 1983-07-22 Seiko Epson Corp Liquid crystal display panel

Also Published As

Publication number Publication date
JPH0833531B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
KR890003232B1 (en) The liquid crystals element for expression
JP3634390B2 (en) Liquid crystal electro-optic element
JPS61210324A (en) Liquid crystal display element
KR0134974B1 (en) Liquid crystal display device using nematic liquid crystal
JPH0656459B2 (en) Liquid crystal display element
JPH0349412B2 (en)
US20070030428A1 (en) Liquid crystal display
JP3432293B2 (en) Liquid crystal display device
JP2002023178A (en) Liquid crystal display device
JP2773748B2 (en) Liquid crystal display device
JPS61256324A (en) Liquid crystal display element
JP3332863B2 (en) Optical modulator
JPH04211223A (en) Liquid crystal display element
JPS60162226A (en) Liquid-crystal display element
JPH07199205A (en) Liquid crystal display element
JPS60162225A (en) Liquid-crystal display element
JP2717731B2 (en) Liquid crystal display device
JP2819670B2 (en) Liquid crystal display device
KR100257719B1 (en) Reflection type color liquid crystal display device using chiral neumatic composition structure
JPH09179109A (en) Liquid crystal display element
JPH03248121A (en) Liquid crystal display element
JPH0438328B2 (en)
JPH0850271A (en) Liquid crystal display element
JPS58123522A (en) Liquid crystal display panel
JPS61120123A (en) Liquid crystal display device