JPS60162225A - Liquid-crystal display element - Google Patents

Liquid-crystal display element

Info

Publication number
JPS60162225A
JPS60162225A JP59015112A JP1511284A JPS60162225A JP S60162225 A JPS60162225 A JP S60162225A JP 59015112 A JP59015112 A JP 59015112A JP 1511284 A JP1511284 A JP 1511284A JP S60162225 A JPS60162225 A JP S60162225A
Authority
JP
Japan
Prior art keywords
liquid crystal
liquid
electrode substrate
angle
rubbing direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59015112A
Other languages
Japanese (ja)
Inventor
Yasuhiko Shindo
神藤 保彦
Tamihito Nakagome
中込 民仁
Shinji Hasegawa
真二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59015112A priority Critical patent/JPS60162225A/en
Priority to US06/695,942 priority patent/US4652088A/en
Priority to GB08502315A priority patent/GB2154016A/en
Priority to DE19853503259 priority patent/DE3503259A1/en
Publication of JPS60162225A publication Critical patent/JPS60162225A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To attain high time-division driving by specifying the angle of spiral torsion of a liquid-crystal molecule in a range of 90 deg.-160 deg., and shifting the axes of absorption (axis of polarization) of a couple of polarizing plates which are provided in front of and behind it in the orientation direction of liquid-crystal molecules adjacent to an electrode substrate from an electrode substrate. CONSTITUTION:The liquid-crystal molecule is twisted by an angle alpha (90-160 deg.) counterclockwise from the rubbing direction 6 of an upper electrode substrate as a starting point to the rubbing direction 7 of a lower electrode substrate. The angle beta1 between the rubbing direction 6 and the axis 8 of absorption of an upper polarizing plate is equalized to that from the rubbing direction 6 to the twisting direction 10 of the liquid- crystal molecule, and the angle beta2 between the rubbing direction 7 and the axis 9 of absorption of a lower polarizing plate is defined similarly to beta1. The rubbing direction 10 of the liquid-crystal molecule and the angle alpha of torsion are specified according to the rubbing directions 6 and 7 and the kind and amount of rotary polarizing material added to nematic liquid crystal. The angles beta1 and beta2 are 15-65 deg.. Further, the product DELTAn.d of the thickness dmum of liquid crystal and refractive index anisotropy DELTAn is 0.8- 1.2mum. Consequently, high time-division driving characteristics and display characteristics of high quality are obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液晶表示素子に係シ、特に優れた時分割駆動特
性を有する電界効果型液晶表示素子に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a liquid crystal display device, and particularly to a field effect liquid crystal display device having excellent time division drive characteristics.

〔発明の背景〕[Background of the invention]

従来の液晶表示素子のツィステッドネマチックタイプと
言われるものは、2枚の電極基板間に正の誘電率異方性
を有するネマチック液晶による90Pねじれ゛たらせん
構造を有し、かつ両電極基板の外側には偏光板をその偏
光軸(あるいは吸収軸)が電極基板に隣接する液晶分子
に対し直交あるいは平行に匁るように配置するものであ
った。′2枚の電極基板間で液晶分子が90°ねじれた
らせん状構造をなすように配向させるには、例えば電極
基板の、液晶に接する表面を布などで一方向にこする方
法、いわゆるラビング法によってなされる。このときの
こする方向、即ち2ピング方向が液晶分子の配列方向と
なる。このようにして配向処理された2枚の電極基板を
それぞれのラビング方向が互にほぼ90度に交差するよ
うに間隙をもたせて対向させ、2枚の電極基板をシール
剤により接着し、その間隙に正の誘電異方性をもったネ
マチック液晶を封入すると、液晶分子はその電極基板間
でほぼ90度回転したらせん状構造の分子配列をする。
A conventional liquid crystal display element called the twisted nematic type has a 90P twisted helical structure made of nematic liquid crystal with positive dielectric anisotropy between two electrode substrates. A polarizing plate was placed on the outside so that its polarization axis (or absorption axis) was perpendicular or parallel to the liquid crystal molecules adjacent to the electrode substrate. 'In order to align the liquid crystal molecules between two electrode substrates so that they form a 90° twisted spiral structure, for example, a method of rubbing the surface of the electrode substrate in contact with the liquid crystal in one direction with a cloth, the so-called rubbing method, is used. done by. The rubbing direction at this time, that is, the 2-pin direction, is the alignment direction of the liquid crystal molecules. The two electrode substrates that have been oriented in this way are placed facing each other with a gap so that their rubbing directions cross each other at approximately 90 degrees, and the two electrode substrates are adhered with a sealant, and the gap between the two electrode substrates is When a nematic liquid crystal having positive dielectric anisotropy is sealed in the liquid crystal, the liquid crystal molecules are arranged in a spiral structure rotated approximately 90 degrees between the electrode substrates.

このよりにして構成された液晶セルの上下には偏光板が
設けられるが、その偏光軸あるいは吸収軸はそれぞれの
電極基板に隣接する液晶分子の配列方向とほぼ平行にす
る。ここで、以降の説明に必要な時分割駆動特性を表わ
す量の定義について簡単に説明する。
Polarizing plates are provided above and below the liquid crystal cell constructed in this way, and the polarization axis or absorption axis of the plates is made approximately parallel to the alignment direction of liquid crystal molecules adjacent to each electrode substrate. Here, the definition of the quantity representing the time-division drive characteristic, which is necessary for the following explanation, will be briefly explained.

第1図は従来の90度ねじれた液晶分子のらせん構造を
持つ液晶表示素子の典型的な電圧−輝度特性を示してい
る。これは印加電圧に対する反射列)を0%にしている
。一般には、相対輝度が90係となる電圧をしきい値v
th 、 io%となる電圧を飽和値Vastとして液
晶の特性のめやすにする。
FIG. 1 shows typical voltage-luminance characteristics of a conventional liquid crystal display element having a helical structure of liquid crystal molecules twisted by 90 degrees. This makes the reflection line (with respect to the applied voltage) 0%. In general, the voltage at which the relative brightness becomes a factor of 90 is the threshold value v
The voltage corresponding to th, io% is taken as the saturation value Vast and is used as a guideline for the characteristics of the liquid crystal.

しかし、実用上は90%以上あれば画素は十分側るく液
晶は非点灯状態、50%以下であれば画素は十分暗く、
液晶は点灯状態としてよく、以下本明細書においては、
相対輝度が、90%、50%になる電圧をそれぞれ、し
きい値電圧vth 、飽和電圧Vsatとする。
However, in practice, if it is 90% or more, the pixel is sufficiently dim and the liquid crystal is not lit, and if it is less than 50%, the pixel is sufficiently dark.
The liquid crystal may be in a lit state, and hereinafter, in this specification,
The voltages at which the relative brightness becomes 90% and 50% are defined as a threshold voltage vth and a saturation voltage Vsat, respectively.

さらに液晶表示素子の電気光学特性は、見る方向によっ
ても変)、この特性が良好な表示品質が得られる視野を
制限している。
Furthermore, the electro-optical characteristics of the liquid crystal display element vary depending on the viewing direction), and this characteristic limits the field of view in which good display quality can be obtained.

ここで視角角度φの定義を第2図によって説明する。図
において、液晶表示素子1の上側電極基板11のラビン
グ方向を2、下側電極基板12の2ピング方向を3とし
、液晶分子のねじれ角を4とする。また液晶表示素子1
の表面に直交座標XY軸をとシ、X軸方向を液晶分子の
ねじれ角4を2等分する方向に規定し、Z軸をxy面の
法線方向に定め、観察方向5が2軸となす角を視角角度
φとする。なお、この場合簡単のために観察方向5はX
Z面内にあることとする。また、第2図に示されたφを
正とし、このような方向から見た場合、コントラストが
高くなるので、このような方向を視野方向という。
Here, the definition of the viewing angle φ will be explained with reference to FIG. In the figure, the rubbing direction of the upper electrode substrate 11 of the liquid crystal display element 1 is 2, the 2-poling direction of the lower electrode substrate 12 is 3, and the twist angle of the liquid crystal molecules is 4. Also, liquid crystal display element 1
The orthogonal coordinates XY axes are set on the surface of Let the angle formed be the viewing angle φ. In this case, for simplicity, the observation direction 5 is
It is assumed that it is within the Z plane. Moreover, when φ shown in FIG. 2 is positive, contrast becomes high when viewed from such a direction, so such a direction is called a viewing direction.

第1図において、角度φ=10度の輝度が90係になる
電圧をvthx 、50%になる電圧をVsatlとし
、角度φ=40度の輝度が90%になる電圧をvth、
 とじたとき、立ち上が#)特性r、角度特性Δφ及び
時分割能mを次式のように定義する。
In Fig. 1, the voltage at which the brightness at angle φ = 10 degrees becomes 90% is vthx, the voltage at which the brightness becomes 50% is Vsatl, and the voltage at which the brightness at angle φ = 40 degrees becomes 90% is vth,
When closing, the rising #) characteristic r, the angular characteristic Δφ, and the time division capability m are defined as shown in the following equation.

従来の液晶表示素子の時分割駆動特性は、液晶の屈折率
異方性をΔn、上下電極基板間間隙をdとした場合Δn
odに依存しておシ、Δn@dが大きい場合(例えば0
.8μm以上)にはrが良く(小さく)、ムφが悪い(
小さい)。一方、Δn・dが小さい場合(例えば0.8
μm以下)にはrが悪く(大きく)、Δφが良い(大き
い)。しかし、時分割能mで比較した場合には、Δno
dの小さい方が良い。以上の具体的な例を表1に示す。
The time division drive characteristic of a conventional liquid crystal display element is expressed as Δn, where Δn is the refractive index anisotropy of the liquid crystal, and d is the gap between the upper and lower electrode substrates.
It depends on od, and if Δn@d is large (for example, 0
.. 8 μm or more), r is good (small), and mu φ is bad (
small). On the other hand, if Δn・d is small (for example, 0.8
μm or less), r is bad (large) and Δφ is good (large). However, when comparing by time resolution m, Δno
The smaller d is, the better. Specific examples of the above are shown in Table 1.

表 1 ここで時分割駆動について、ドツトマトリクスディスプ
レイを例に取って簡単に説明する。第3図に示すように
、第2図の下側電極基板12にストライブ状のY電極(
信号電極)13を、同様に上側電極基板11にX電極(
走査電極)14を形成し、文字等の表示は、X、Y両電
極の交点部の液晶を点灯あるいは非点灯にして行う。図
においてn本の走査電極をxl、x、、・・・・・・・
・・X n 、 Xl、 X雪・・・・・・・・・Xn
と繰シ返し線順次走査を繰返して時分割駆動する。ある
走査電極(図においてはXs)が選択されたとき、その
電極上のすべての画素に、信号電極13であるYl +
 Yl・・・・・・・・・Ynよシ、表示すべき信号に
従い選択また非選択の表示信号を同時に加える。このよ
うに、走査電極と信号電極に加える電圧パルスの組合せ
で交点の点灯、非点灯を選択する。この場合の走査電極
Xの数が時分割数に相当する。
Table 1 Here, time-division driving will be briefly explained using a dot matrix display as an example. As shown in FIG. 3, a striped Y electrode (
The signal electrode) 13 is similarly placed on the upper electrode substrate 11, and the X electrode (
A scanning electrode) 14 is formed, and characters and the like are displayed by turning on or off the liquid crystal at the intersection of the X and Y electrodes. In the figure, n scanning electrodes are xl, x,...
・・X n , Xl, X snow・・・・・・Xn
Time-division driving is performed by repeating line sequential scanning. When a certain scanning electrode (Xs in the figure) is selected, Yl + which is the signal electrode 13 is applied to all pixels on that electrode.
Yl......Yn, select or non-select display signals are added simultaneously according to the signal to be displayed. In this way, lighting or non-lighting of the intersection is selected by the combination of voltage pulses applied to the scanning electrode and the signal electrode. The number of scanning electrodes X in this case corresponds to the number of time divisions.

従来の液晶表示素子では、表1に例示したような時分割
駆動特性しか得られないために、時分割数32あるいは
64が実用的には限界であった。
In conventional liquid crystal display elements, only the time-division driving characteristics illustrated in Table 1 can be obtained, so that the number of time divisions of 32 or 64 is a practical limit.

しかし、近年、液晶表示素子の画質の改善と表示情報量
増大に対する要求が厳しくなっておシ、要求仕様を満足
できない状況に到っている。
However, in recent years, demands for improving the image quality of liquid crystal display elements and increasing the amount of displayed information have become stricter, and it has become impossible to satisfy the required specifications.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来の液晶表示素子と全く異なったセ
ル構造をとることによって、極めて優れた時分割駆動特
性を持ち、時分割数32以上でも良好な画質を持った液
晶表示素子を提供することにある。
An object of the present invention is to provide a liquid crystal display element that has extremely excellent time-division driving characteristics and good image quality even when the number of time divisions is 32 or more, by adopting a cell structure completely different from that of conventional liquid crystal display elements. There is a particular thing.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために本発明による液晶表示
素子は、液晶分子のらせん構造のねじれ角を90度から
160度の範囲とし、この液晶分子のらせん構造の前後
に一対の偏光板を設け、それら偏光板の吸収軸(あるい
は偏光軸)を、電極基板に隣接する液晶分子の配向方向
に対し一定角角度ずらせて配設することを特徴とするも
のである。
In order to achieve such an object, the liquid crystal display element according to the present invention has a twist angle of the helical structure of liquid crystal molecules in the range of 90 degrees to 160 degrees, and a pair of polarizing plates are provided before and after the helical structure of the liquid crystal molecules. , the absorption axes (or polarization axes) of these polarizing plates are arranged to be shifted by a certain angle with respect to the alignment direction of liquid crystal molecules adjacent to the electrode substrate.

〔発明の実施例〕[Embodiments of the invention]

次に図面を用いて本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail using the drawings.

第4図は本発明による液晶表示素子を上側から見た場合
の液晶分子の配列方向(例えばラビング方向)、液晶分
子のねじれ方向、偏光板の吸収軸(アフいは偏光軸)方
向を示している。この場合、液晶分子が上側電極基板の
ラビング方向6を起点として反時計回シに下側電極基板
のラビング方向71で角度αだけねじれている。また、
上側電極基板のラビング方向6と上側偏光板の吸収軸(
あるい紘偏光軸)8とのなす角度βlは上側電極基板の
ラビング方向6を起点として液晶分子のねじれ方向10
(この場合は反時計回シ方向)と同じにとシ、下側電極
基板のラビング方向Tと下側偏光板の吸収軸(あるいは
偏光軸)9とのなす角度β鵞もβ1と同様に定義する。
FIG. 4 shows the alignment direction of liquid crystal molecules (for example, rubbing direction), the twisting direction of liquid crystal molecules, and the absorption axis (polarizing axis) direction of the polarizing plate when the liquid crystal display element according to the present invention is viewed from above. There is. In this case, the liquid crystal molecules are twisted counterclockwise from the rubbing direction 6 of the upper electrode substrate as a starting point by an angle α in the rubbing direction 71 of the lower electrode substrate. Also,
The rubbing direction 6 of the upper electrode substrate and the absorption axis of the upper polarizing plate (
The angle βl with the polarization axis) 8 is the twisting direction 10 of the liquid crystal molecules with the rubbing direction 6 of the upper electrode substrate as the starting point.
(in this case, counterclockwise direction), and the angle β between the rubbing direction T of the lower electrode substrate and the absorption axis (or polarization axis) 9 of the lower polarizing plate is also defined in the same way as β1. do.

ここでβlあるいはβ3に180度の整数倍の角度を加
えたものはβ1およびβ2と等価であることは言うまで
もない。以降、β1とβ倉の値は等価な角度群の最小値
をもって代表する。
It goes without saying that the sum of βl or β3 plus an angle that is an integral multiple of 180 degrees is equivalent to β1 and β2. Hereinafter, the values of β1 and β will be represented by the minimum value of the equivalent angle group.

さらに、液晶分子のねじれ方向10とねじれ角αは、上
側電極基板の2ピング方向6と下側電極基板のラビング
方向7およびネてチック液晶に添加される旋光性物質の
種類と量によって規定される。
Furthermore, the twist direction 10 and twist angle α of the liquid crystal molecules are determined by the two-pin direction 6 of the upper electrode substrate, the rubbing direction 7 of the lower electrode substrate, and the type and amount of the optically active substance added to the netic liquid crystal. Ru.

ねじれ角αはしきい値近傍の点灯状態が光を散乱する配
向となることから、最大値が制限され、160度が上限
であシ、また下限は液晶表示素子の色の視角依存性が顕
著となることによって制限され、90度が限界である。
The maximum value of the twist angle α is limited because the lighting state near the threshold value is an orientation that scatters light, and the upper limit is 160 degrees, and the lower limit is due to the remarkable viewing angle dependence of the color of the liquid crystal display element. The limit is 90 degrees.

上側偏光板の吸収軸(あるいは偏光軸)8と上側電極基
板のラビング方向6とのなす角β!および下側偏光板の
吸収軸(あるいは偏光軸)9と下側電極基板の2ピング
方向7とのなす角β2はコントラスト、明るさおよび色
等を考慮すると、それぞれ25度から65度の範囲に設
定することが好ましい。
The angle β between the absorption axis (or polarization axis) 8 of the upper polarizing plate and the rubbing direction 6 of the upper electrode substrate! And the angle β2 formed by the absorption axis (or polarization axis) 9 of the lower polarizing plate and the 2-pin direction 7 of the lower electrode substrate is in the range of 25 degrees to 65 degrees, respectively, considering contrast, brightness, color, etc. It is preferable to set

なお、第4図においては液晶分子のねじれ方向10を反
時計回シとしてβ1およびβ冨を定義したが、液晶分子
のねじれ方向10が時計回シの場合であってもβ1とβ
雰のとシ方を時計回シ方向に合わせれば、同様であるこ
とは言うまでもない。
In addition, in FIG. 4, β1 and β-value are defined assuming that the twisting direction 10 of the liquid crystal molecules is counterclockwise, but even if the twisting direction 10 of the liquid crystal molecules is clockwise, β1 and β
Needless to say, if the atmosphere and direction are set in the clockwise direction, the result will be the same.

tた、本発明による液晶表示素子は顕著なΔn・d依存
性を示し、コントラスト、明るさ1色の点から0,8μ
m≦ΔnIId≦1.2μmの条件を満足すると棟に良
好な結果を示す。ここで、Δnの値については一般に波
長依存性が1、短波長側で大きく、長波長側で小さくな
る傾向がある。本明細書で使用しているΔnの値は、H
eNeレーザ光(波長6328X)を使用し、25℃で
測定したものであるから、他の波長で測定した場合には
本明細書におけるΔnodの値は若干変化する。
In addition, the liquid crystal display element according to the present invention exhibits a remarkable Δn·d dependence, and the contrast and brightness are 0.8μ from the point of view of one color.
When the condition of m≦ΔnIId≦1.2 μm is satisfied, good results are obtained for the ridges. Here, the value of Δn generally has a wavelength dependence of 1, which tends to be large on the short wavelength side and small on the long wavelength side. The value of Δn used in this specification is H
Since the measurements were made using eNe laser light (wavelength 6328X) at 25° C., the value of Δnod in this specification will change slightly if measurements are made at other wavelengths.

ここで、本発明による液晶表示素子の具体的な一実施例
について、その構造と測定結果を説明する0 第5図はその構造、すなわち電極基板のラビング方向、
液晶分子のらせん構造のねじれ方向および角度、偏光板
の偏光軸(あるいは吸収軸)の関係を示し、液晶表示素
子を上から見た図である。
Here, the structure and measurement results of a specific example of the liquid crystal display element according to the present invention will be explained. FIG. 5 shows the structure, that is, the rubbing direction of the electrode substrate,
FIG. 2 is a diagram showing the relationship between the twist direction and angle of the helical structure of liquid crystal molecules and the polarization axis (or absorption axis) of a polarizing plate, as seen from above of a liquid crystal display element.

使用した液晶はビフェニール系液晶とエステルシクロヘ
キサン(ECH)系液晶を特徴とする特許チック液晶で
、旋光性物質としてメルク社の8811を0.5重量係
添加したものである。この混合液晶のΔnは0.123
である。
The liquid crystal used is a patented liquid crystal characterized by biphenyl-based liquid crystal and ester cyclohexane (ECH)-based liquid crystal, to which 0.5 weight percent of Merck's 8811 is added as an optically active substance. Δn of this mixed liquid crystal is 0.123
It is.

第5図において、上側および下側電極基板のラビング方
向6,7のなす角度は140度であシ、旋光性物質58
11によってねじれ方向は10.ねじれ角αは140度
となる。また、ラビング方向6,7と偏光板の吸収軸8
,9とのなす角β1.β2はいずれも45度である。
In FIG. 5, the angle formed by the rubbing directions 6 and 7 of the upper and lower electrode substrates is 140 degrees, and the optically active substance 58
11, the twist direction is 10. The twist angle α is 140 degrees. Also, the rubbing directions 6 and 7 and the absorption axis 8 of the polarizing plate
, 9 is the angle β1. β2 is 45 degrees in both cases.

以上のようなセル構造で液晶層の厚さdを変えてΔn@
dを変化させた液晶セルを作シ、色および明るさを観察
した。その結果を表2に示す。
By changing the thickness d of the liquid crystal layer with the above cell structure, Δn@
Liquid crystal cells with different values of d were produced and their colors and brightness were observed. The results are shown in Table 2.

この結果から、Δn@dが1.00μm近傍、すなわち
0.90μmから1.10μmの範囲において、明るさ
および色ともに表示素子として全く問題がない極めて良
好なレベルであることがわかった。また、Δnodのさ
らに詳細な検討から第5図の関係がある場合はΔn@d
が0.80μmから1.20μmの範囲において実用上
何ら問題がないことがわかった。
From this result, it was found that when Δn@d is around 1.00 μm, that is, in the range from 0.90 μm to 1.10 μm, both the brightness and color are at extremely good levels with no problems as a display element. Furthermore, from a more detailed study of Δnod, if there is a relationship shown in Figure 5, then Δn@d
It was found that there is no practical problem in the range of 0.80 μm to 1.20 μm.

次にΔn@d=1.05μmの液晶セルの時分割駆動特
性を測定した結果を表3に示す。表1に示した従来の液
晶表示素子に比較してγ、Δφ9mいずれもが著しく改
良されていることがわかる。
Next, Table 3 shows the results of measuring the time division drive characteristics of a liquid crystal cell with Δn@d=1.05 μm. It can be seen that both γ and Δφ9m are significantly improved compared to the conventional liquid crystal display element shown in Table 1.

表3 なお、第5図では偏光板の軸として吸収軸を使用したが
、偏光軸を使用してもほとんど同様の結果が得られた。
Table 3 Although the absorption axis was used as the axis of the polarizing plate in FIG. 5, almost the same results were obtained even if the polarization axis was used.

また実施例ではビフェニール系とECH系の混合液晶を
使用したが、他の種類の正の誘電異方性をもつネマチッ
ク液晶でも同様の効果が得られることは言うまでもない
。また、以上の例では、らせん構造のねじれ方向を反時
計回シとして説明したが、第6図に示す如く時計回シの
ねじれ方向の場合も全く同じ作用効果が得られることは
勿論である。
Furthermore, although a biphenyl-based and ECH-based mixed liquid crystal was used in the embodiment, it goes without saying that similar effects can be obtained with other types of nematic liquid crystals having positive dielectric anisotropy. Further, in the above example, the twisting direction of the helical structure was explained as counterclockwise, but it goes without saying that the same effect can be obtained even when the twisting direction is clockwise as shown in FIG.

また、旋光性物質についてもラビング方向とねじれ方向
との関係を第4図、第5図および第6図の如く保てば、
種類を限定するものではないことは言うまでもない。
Also, for optically active substances, if the relationship between the rubbing direction and the twisting direction is maintained as shown in FIGS. 4, 5, and 6,
Needless to say, the type is not limited.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、従来全く不可能で
あった高時分割駆動特性および高品質の表示特性をもつ
液晶表示素子が得られるという極めて優れた効果を有す
る。
As explained above, according to the present invention, it is possible to obtain a liquid crystal display element having high time-division drive characteristics and high quality display characteristics, which were completely impossible in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は時分割特性の定義に用いられる液晶表示素子の
電圧−輝度特性を示す説明図、第2図は時分割駆動特性
の測定方向を定義する説明図、第3図は時分割駆動を説
明する図、第4図、第5図および第6図は本発明による
液晶表示素子の液晶分子の配列方向、液晶のねじれ方向
および偏光板の軸の方向の関係の一実施例を示す説明図
である。 1会・・・液晶表示素子、2,6・・―・上側電極基板
のラビング方向、3,7・−・・下側電極基板のラビン
グ方向、4.10−−・一液晶分子のねじれ方向、8・
・・・上側偏光板の吸収軸あるいは偏光軸方向、9・・
・ゆ下側偏光板の吸収軸あるいは偏光軸方向、11・・
・・上側電極基板、12e・・・下側電極基板。 第1図 印l1ロ電ノjミ(*、唆シフイ、2)第2図 第3図 +4 ノ ノ
Figure 1 is an explanatory diagram showing the voltage-luminance characteristics of a liquid crystal display element used to define time division characteristics, Figure 2 is an explanatory diagram defining the measurement direction of time division drive characteristics, and Figure 3 is an explanatory diagram showing time division drive characteristics. The explanatory diagrams, FIG. 4, FIG. 5, and FIG. 6 are explanatory diagrams showing an example of the relationship among the alignment direction of liquid crystal molecules, the twist direction of the liquid crystal, and the direction of the axis of the polarizing plate in the liquid crystal display element according to the present invention. It is. 1. Liquid crystal display element, 2, 6 --- Rubbing direction of upper electrode substrate, 3, 7 --- Rubbing direction of lower electrode substrate, 4.10 --- Twisting direction of one liquid crystal molecule , 8・
...Absorption axis or polarization axis direction of the upper polarizing plate, 9...
・Absorption axis or polarization axis direction of the lower polarizing plate, 11...
... Upper electrode substrate, 12e... Lower electrode substrate. Figure 1 Seal l1 Roden Noj Mi (*, Instigation, 2) Figure 2 Figure 3 +4 Nono

Claims (1)

【特許請求の範囲】[Claims] 正の誘電異方性を有し、旋光性物質が添加されたネマチ
ック液晶が、対向配置された上下一対の電極基板間に挾
持され、その厚さ方向に90度から160度の範囲内の
ねじれのらせん構造を形成しかつこのらせん構造を挾ん
で設けられた一対の偏光板の偏光軸あるいは吸収軸を、
隣接する電極基板の液晶分子配列方向と液晶分子の上記
ねじれ方向に25度から65度の範囲内値だけずらし、
かつ液晶層の厚みd(μm)と液晶の屈折率異方性△n
の積Δnodが0.8μmから1.2μmの範囲にある
ことを特徴とする液晶表示素子。
A nematic liquid crystal having positive dielectric anisotropy and added with an optically active substance is sandwiched between a pair of upper and lower electrode substrates arranged opposite each other, and is twisted within a range of 90 degrees to 160 degrees in the thickness direction. The polarization axis or absorption axis of a pair of polarizing plates that form a helical structure and are provided with this helical structure in between,
Shifting the liquid crystal molecule alignment direction of the adjacent electrode substrate and the above twist direction of the liquid crystal molecules by a value within a range of 25 degrees to 65 degrees,
and the thickness d (μm) of the liquid crystal layer and the refractive index anisotropy △n of the liquid crystal
A liquid crystal display element characterized in that the product Δnod is in the range of 0.8 μm to 1.2 μm.
JP59015112A 1984-02-01 1984-02-01 Liquid-crystal display element Pending JPS60162225A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59015112A JPS60162225A (en) 1984-02-01 1984-02-01 Liquid-crystal display element
US06/695,942 US4652088A (en) 1984-02-01 1985-01-29 Liquid crystal display device
GB08502315A GB2154016A (en) 1984-02-01 1985-01-30 Liquid crystal display device
DE19853503259 DE3503259A1 (en) 1984-02-01 1985-01-31 LIQUID CRYSTAL DISPLAY DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015112A JPS60162225A (en) 1984-02-01 1984-02-01 Liquid-crystal display element

Publications (1)

Publication Number Publication Date
JPS60162225A true JPS60162225A (en) 1985-08-24

Family

ID=11879740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015112A Pending JPS60162225A (en) 1984-02-01 1984-02-01 Liquid-crystal display element

Country Status (1)

Country Link
JP (1) JPS60162225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222219A (en) * 1986-03-24 1987-09-30 Seiko Epson Corp Projection type display device
US4859037A (en) * 1986-02-18 1989-08-22 Seiko Epson Corporation Liquid crystal electrically-controlled birefringence display devices with improved contrast

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859037A (en) * 1986-02-18 1989-08-22 Seiko Epson Corporation Liquid crystal electrically-controlled birefringence display devices with improved contrast
JPS62222219A (en) * 1986-03-24 1987-09-30 Seiko Epson Corp Projection type display device
JPH0816752B2 (en) * 1986-03-24 1996-02-21 セイコーエプソン株式会社 Projection display device

Similar Documents

Publication Publication Date Title
KR890003232B1 (en) The liquid crystals element for expression
JPS61210324A (en) Liquid crystal display element
US6466290B2 (en) Fringe field switching mode LCD
JPH0656459B2 (en) Liquid crystal display element
KR0134974B1 (en) Liquid crystal display device using nematic liquid crystal
JPS6231822A (en) Liquid crystal displaying element
JP2598495B2 (en) Driving method of liquid crystal display device
KR101888516B1 (en) Dual mode liquid crystal display device
JPS61137127A (en) Liquid crystal display element
KR20010004524A (en) Liquid crystal display device
JPS61256324A (en) Liquid crystal display element
JP2773748B2 (en) Liquid crystal display device
JPS60162225A (en) Liquid-crystal display element
JPS60162226A (en) Liquid-crystal display element
JP2001147414A (en) Tn type liquid crystal display device
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd
JPH10301082A (en) Color liquid crystal display device
EP0679923B1 (en) Color liquid crystal display device and liquid crystal display apparatus
JP2717731B2 (en) Liquid crystal display device
JPH04211223A (en) Liquid crystal display element
JPS61120123A (en) Liquid crystal display device
JP2860806B2 (en) LCD color display
JPH03248121A (en) Liquid crystal display element
JPH0438328B2 (en)
JPS58123522A (en) Liquid crystal display panel